
1

Local optimization and state of the art

3D Computer Vision

Ivan Marković
University of Zagreb Faculty of Electrical Engineering and Computing
Department of Control and Computer Engineering
Laboratory for Autonomous Systems and Mobile Robotics (lamor.fer.hr)

2

Outline

• Introduction
• Reprojection error

• Non-linear optimization primer

• Local optimization
• Bundle adjustment

• Exploiting sparsity

• Pose graph optimization

• Visual odometry state of the art
• Feature-based and direct methods

3

Outline

• Introduction
• Reprojection error

• Non-linear optimization primer

• Local optimization
• Bundle adjustment

• Exploiting sparsity

• Pose graph optimization

• Visual odometry state of the art
• Feature-based and direct methods

4

Local optimization for VO

The front-end outputs a motion estimate from a pair
of subsequent images (monocular or stereo) and the
trajectory can be obtained by concatenating the
sequence of transformations.

However, this small displacement concatenations lead
to integration (summing up) of small displacement
errors which over time can yield rather large final
pose errors – we say that the odometry drifts.

One strategy of addressing the drift issue is to
perform local optimization on a window of past m
frames that will reduce the drift and increase overall
trajectory estimation accuracy.

Image sequence

Feature detection

Feature tracking (or
matching)

Motion estimation

2D-2D 3D-2D 3D-3D

Local optimization

BA PGO

Fr
on

t-
en

d
Ba

ck
-e

nd

5

Alleviating drift

Odometry inherently drifts and pose uncertainty increases with each
subsequent frame.

To alleviate effects of drift, we perform local optimization over a window of
past m frames, thus enforcing local consistency.

estimated
true

Local optimization over m frames

6

Alleviating drift

Odometry inherently drifts and pose uncertainty increases with each
subsequent frame.

To alleviate effects of drift, we perform local optimization over a window of
past m frames, thus enforcing local consistency.

estimated
true

Local optimization over m frames

7

BA and PGO

Local optimization

BA PGO

Bundle adjustement1

- optimizes over camera
poses (extrinsics) and
triangulated features
(structure, map) – can also
include the intrinsic camera
parameters

Pose graph
optimization –
optimizes only
over camera
poses

1 B. Triggs; P. McLauchlan; R. Hartley; A. Fitzgibbon (1999). „Bundle Adjustment — A Modern Synthesis.”

8

BA and PGO

Local optimization

BA PGO

Bundle
adjustement

Pose graph
optimization

9

Reprojection function

Before formulating the BA problem, lets review first the projection equations
1. Transform the 3D point to the camera frame

2. Project the point to the normalized plane

3. Undistort the coordinates (here only radial distortion is modelled)

4. Compute the pixel coordinates using intrinsic parameters

5. We summarize the whole process in a single reprojection function

10

Reprojection function

The reprojection function requires all of the above parameters but when
it is used in an optimization problem, usually only the unknown
optimization variables are stated, e.g., for the BA we have .

In essence, takes a 3D point defined in some reference coordinate frame
(world, previous, left/right camera frame) and projects it to the image plane
to obtain its pixel coordinates in the image.

3D point

Transformation
between frames

(world2ccam, cam2cam)

Intrinsic camera
parameters

Lens distortion
coefficientsImage point

11

Reprojection error

Let's assume that we have detected in image
feature whose 3D coordinates in the world frame
we know. Using we can comptue projection of
to the image plane in pixel coordinates .
For this example we assume that rotation, translation
and camera parameters are known.
Given that, we can define an error as the difference of
the detected and projected point coordinates

We call this error the reprojection error, since the 3D points are triangulated
from feature correspondences and then reprojected to the image.
When used as the cost function in optimization problems it calls for non-
linear optimization techniques.

12

Outline

• Introduction
• Reprojection error

• Non-linear optimization primer

• Local optimization
• Bundle adjustment

• Exploiting sparsity

• Pose graph optimization

• Visual odometry state of the art
• Feature-based and direct methods

13

Non-linear least squares

In many instances targeted methods involve non-linear optimization.
Indeed, many are initialized with closed-form solutions (e.g., 3D-2D with P3P)
and then refined via non-linear optimization (e.g., by minimizing the
reprojection error).

Non-linear optimization is a field of its own but here we will look into the
specific case of the non-linear least squares

measurements
(data)

Non-linear functionoptimal
state value

14

Linear least squares

In case f is linear , the problem boils down to least squares

To solve this problem we simply minimize the error F(x)

This is the standard linear least squares solution.

15

Non-linear iterative optimization

Unlike linear least squares, non-linear problems cannot be solved directly
but require an iterative solution starting from a suitable initial estimate.

A variety of algorithm exist that differ in how they locally approximate the
nonlinearity but they all share the following basic structure:

1. Form an initial estimate
2. Repeat

1. In each iteration calculate the increment
2. Update the next estimate

3. Until convergence criteria are reached

16

Non-linear minimization

In the non-linear case

To solve this problem we again aim to minimize the error F(x)

17

Non-linear function Jacobian

Where J(x) is the Jacobian matrix containing partial derivatives with respect
to the vector x

Evidently, we cannot simply solve the equation for x as in the linear case.

18

Gauss-Newton method

The Gauss-Newton method approaches the optimization problem as follows.
Lets define a linearization point and the Jacobian matrix of is

Now we can expand using first-order Taylor expansion

The cost function F(x) now takes the form

19

Gauss-Newton method

Now the problem is one of linear least squares and the optimal solution is
obtained by solving the following normal equation

In essence, this way we are solving the following optimization problem

Computationally most efficient is Cholesky factorization (since is
symmetric), or QR and SVD factorization. If is very large, then methods
like pre-conditioned conjugate gradient can be used.

20

Gauss-Newton method

To sum up, the Gauss-Newton method iterates as follows
1. Form the initial estimate
2. Repeat

1. Calculate the Jacobian and the residual
2. Solve the normal equation
3. Update the state
4. The updated state is the new initial estimate

3. Until convergence criteria are reached (or max_iter)
Gauss-Newton is widely used due to its effectivness but it can encounter
problems if the local approximation with a quadratic is not good enough.
More robust approaches, at the expense of possibly slower convergence, can
be used like trust region methods, e.g., Levenberg-Marquardt.

21

Outline

• Introduction
• Reprojection error

• Non-linear optimization primer

• Local optimization
• Bundle adjustment

• Exploiting sparsity

• Pose graph optimization

• Visual odometry state of the art
• Feature-based and direct methods

22

Minimizing the reprojection error

For n points the reprojection error for frame amounts to the following (as
it is usually used in optimization, we take the sum of squared norms).

Optimal parameters can then be found by minimizing the reprojection error
using non-linear least squares.

A non-linear error
function

23

Minimizing the reprojection error

If we were solving for by minimizing the
reprojection error

We the above equation would be solving the PnP
problem via non-linear optimization.

In BA, we include also the 3D points as we are
estimating the map (structure) of the scene

24

Left camera as origin, but this is arbitrary. Can also be modified for instrinsics.

Two-view BA

As a minimal example let's have a look at a
two view BA, which, again, is a non-linear,
joint optimization of the map (structure)

and motion .

Commonly initialized with the result from the
5- or 8-point algorithm.

Solution is found by minimizing the sum of
squared reprojection errors

Reprojected
points

25

Multi-view BA

26

Multi-view BA

BA over m frames is again a non-linear, joint optimization of the map
(structure) and camera poses

and we minimize the sum of squared
reprojection errors across all views.

We assumed that the first camera is the origin, but this is a matter of
choice. The non-linear least squares problem can be solved using, e.g., the
Gauss-Newton or Levenberg-Marquardt algorithm.

Popular optimization frameworks that are often used in robotics to solve
such problems include GTSAM, iSAM2, Ceres, and g2o.

https://gtsam.org/
https://gtsam.org/doxygen/4.0.0/a01402.html
http://ceres-solver.org/
https://github.com/RainerKuemmerle/g2o

27

Jacobian sparsity in BA

Our state vector x in the general BA case is

While the non-linear function (now for a specific point i and camera pose k)

The Jacobian for point i and camera pose k evaluates to

Pose k Point i

28

Jacobian sparsity in BA

We can note that the Jacobian exhibits a sparse structure

29

Sparsity in BA

The effect of sparsity is best
noticed on the structure of
matrix which corresponds
to the bundle depicted below.

Camera

Ca
m

er
a

Points

Po
in

ts

30

Sparsity in BA

Why do we care so much about the
structure of ? Because BA is solved
using non-linear least squares that solve
the following normal equation in each
iteration

This involves inverting and sparsity
can be exploited to obtain
computationally more efficient solutions.
Specifically, in real-world BA the number
of features is much larger than the
number of camera poses, and the
matrix has an arrow-like structure.

Camera

Ca
m

er
a

Points

Po
in

ts

31

Sparsity in BA

The submatrices A and C have a block diagonal structure,
where each block in C is a 3 x 3 matrix, while in A it is
6 x 6 (3 for translation and 3 for rotation).

The structure of the off-diagonal elements depends on
the point observations of the camera poses.

We can restructure out normal equation as follows

It will be computationally less complex to invert a block-diagonal matrix
than a general dense matrix.

Camera

Ca
m

er
a

Points

Po
in

ts

32

Schur elimination

The idea is to eliminate the non-diagonal part B of the
restructured normal equation and this is called the
Schur elimination

The upper row is independent of and produces a
reduced system just for the camera update that is of much lower dimension
than the whole problem

Camera

Ca
m

er
a

Points

Po
in

ts

33

Schur elimination

The, the map (structure) is solved by back substitution
where we insert the solved in the equation to
obtain the points update

Note that this is still computationally efficient since we
only need to compute the block diagonal inverse .

It is also interesting to mention that the matrix
is called the co-visibility matrix whose

non-zero elements indicate that there is at least one
common observation between the corresponding two camera poses.

Camera

Ca
m

er
a

Points

Po
in

ts

34

Pose graph optimization

An alternative to BA is pose-graph optimization (PGO) that does not
estimate the map (structure) but only optimizes over the camera poses

.

In odometry, this means that besides consecutive poses we also have
additional constraints in the form of non-adjacent camera poses in the
window of m frames

35

Pose graph optimization

Note that we are slightly abusing the notation in since we
need to measure distance between two matrices, while their difference is
not what we are looking for.

Metrics on the space of rigid body transformations and optimization on the
space thereof is an involved subject and part of our postgraduate studies.

Nevertheless, popular optimization frameworks often used in robotics can
also solve PGO problems (GTSAM, iSAM2, Ceres, and g2o) with addition of SE-
Sync that is specialized for PGO.

https://gtsam.org/
https://gtsam.org/doxygen/4.0.0/a01402.html
http://ceres-solver.org/
https://github.com/RainerKuemmerle/g2o
https://github.com/david-m-rosen/SE-Sync

36

Outline

• Introduction
• Reprojection error

• Non-linear optimization primer

• Local optimization
• Bundle adjustment

• Exploiting sparsity

• Pose graph optimization

• Visual odometry state of the art
• Feature-based and direct methods

37

Feature-based vs. direct odometry

The approaches that we have discussed thus far were based of feature
detection and matching, in literature such methods are nowadays called
feature-based or indirect methods.

Why indirect? Simply to put them in contrast to direct methods that instead
of minimizing the reprojection error, aim to minimize the photometric error

Given that, direct methods work directly on pixel intensity values.

38

Feature-based vs. direct odometry

Compared to feature-based (indirect) methods that
1. detect and match features
2. run RANSAC to determine the inlier set
3. minimize the reprojection error,

Direct methods, on the other hand, have no feature detection and matching,
thus no RANSAC is required, but only

1. minimize the photometric error.
Thus, direct methods have the advantage of (1) lower computational
complexity, (2) higher robustness to motion blur and weak texture; however,
drawbacks are (1) limitation to smaller baselines and are (2) sensitivity to
initialization (due to the high non-linearity of the optimization problem).
They are evidently also sensitive to illumination changes, but due to high
framerate, this might not pose such a problem.

39

Direct methods: sparse, semi-dense, and dense

Direct methods are also divided based on the volume of used pixels; thus
we have sparse, semi-dense, and dense methods.

Dense methods use all the pixels, semi-dense focus on edges (parts with a
strong gradient), while sparse use corners and „edgelets”.

1 C. Forster, Z. Zhang, M. Gassner, M. Werlberger, D. Scaramuzza (2017.) „SVO: Semi-Direct Visual Odometry for Monocular
and Multi-Camera Systems.”

Sparse Semi-dense Dense

40

ORB-SLAM

ORB-SLAM2 is a feature-based odometry and SLAM system:
1. Based on detecting FAST corners and matching them using ORB

descriptors
2. Minimizes the reprojection error (3D-2D)
3. Uses local bundle adjustement over a sliding window of camera

frames
4. Can relocalize (once lost find the location within the built map
5. Includes asynchronous global optimization

Available in open source and extended to ORB-SLAM3 leverage IMU sensors
and wide-angle lenses.

2 R. Mur-Artal, J. D. Tardos, J. M. M. Montiel (2015.) „ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras.”

https://github.com/raulmur/ORB_SLAM2
https://github.com/UZ-SLAMLab/ORB_SLAM3

41

SOFT2

SOFT23 is a croatian-made visual odometry system:
1. Based on detecting and matching blob patterns via normalized cross-

correlation
2. Runs multihypothesis patch perspective correction for matching
3. Minimizes point-to-epipolar line distances (2D-2D)
4. Online extrinsic camera calibration
5. Runs local epipolar-line bundle adjustement over a window of frames
6. Pure odometry (no loop closing and global optimization)
7. For road vehicles only

At the moment of writing the highest ranking visual odometry on the KITTI
and KITTI-360 datasets.

3 I. Cvišić, I. Marković, I. Petrović (2022.) „SOFT2: Stereo Visual Odometry for Road Vehicles based on a Point-to-Epipolar-Line Metric.”

42

VINS-Fusion

VINS-Fusion4 is a feature-based SLAM system:
1. Optical-flow based feature detection and tracking
2. Fuses inertial measurements in a 3D-2D motion estimation pipeline
3. Includes IMU bias correction and online extrinsic calibration
4. Runs local bundle adjustement over a sliding window of camera

frames
5. Contains loop closing, relocalization and global pose graph

optimization over keyframes
6. Contains rolling shutter support

4 T. Qin, S. Cao, J. Pan, P. Li, S. Shen (2019.) „VINS-Fusion: An optimization-based multi-sensor state estimator.”

43

LSD-SLAM

5 J. Engel, T. Schöps, D. Cremers (2014.) „LSD-SLAM: Large-Scale Direct Monocular SLAM.”

LSD-SLAM5 is a direct semi-dense odometry and SLAM system:
1. Minimizes photometric error
2. Builds a semi-dense map of edges
3. Uses local bundle adjustement over a sliding window of camera

frames
4. Contains loop closing, relocalization and global optimization

(asynchrounous)

44

DSO

DSO6 is a direct sparse odometry system:
1. Minimizes photometric error
2. Builds a sparse map of points with strong gradients
3. Uses local bundle adjustement over a sliding window of camera frames
4. Runs global optimization (asynchrounous)

6 J. Engel, V. Koltun and D. Cremers (2018.) „DSO: Direct Sparse Odometry.”

45

SVO

SVO7 is a blend of direct and feature-based approaches:
1. Minimizes photometric error for frame-to-frame motion estimation
2. Minimizes reprojection error for pose refinement to keyframes
3. Maps corners and edgelets
4. Contains loop closing, relocalization and global optimization

(asynchrounous)
5. Can run up to 400 fps on laptop computers

7 C. Forster, M. Pizzoli and D. Scaramuzza (2014.) „SVO: Fast Semi-Direct Monocular Visual Odometry.”

46

D3VO

D3VO8 is a direct sparse odometry with deep
depth estimation:

1. Minimizes photometric error
2. Builds a sparse map of points with

strong gradients
3. Includes self-supervised monocular

deep depth estimation (couples
DepthNet and PoseNet, minimizes
photometric error)

4. Models photometric uncertainties and
illumination changes

5. Uses local bundle adjustment over a
sliding window of camera frames

8 C. Forster, M. Pizzoli and D. Scaramuzza (2014.) „SVO: Fast Semi-Direct Monocular Visual Odometry.”

47

Questions?

	Slide 1
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Local optimization for VO
	Slide 5: Alleviating drift
	Slide 6: Alleviating drift
	Slide 7: BA and PGO
	Slide 8: BA and PGO
	Slide 9: Reprojection function
	Slide 10: Reprojection function
	Slide 11: Reprojection error
	Slide 12: Outline
	Slide 13: Non-linear least squares
	Slide 14: Linear least squares
	Slide 15: Non-linear iterative optimization
	Slide 16: Non-linear minimization
	Slide 17: Non-linear function Jacobian
	Slide 18: Gauss-Newton method
	Slide 19: Gauss-Newton method
	Slide 20: Gauss-Newton method
	Slide 21: Outline
	Slide 22: Minimizing the reprojection error
	Slide 23: Minimizing the reprojection error
	Slide 24: Two-view BA
	Slide 25: Multi-view BA
	Slide 26: Multi-view BA
	Slide 27: Jacobian sparsity in BA
	Slide 28: Jacobian sparsity in BA
	Slide 29: Sparsity in BA
	Slide 30: Sparsity in BA
	Slide 31: Sparsity in BA
	Slide 32: Schur elimination
	Slide 33: Schur elimination
	Slide 34: Pose graph optimization
	Slide 35: Pose graph optimization
	Slide 36: Outline
	Slide 37: Feature-based vs. direct odometry
	Slide 38: Feature-based vs. direct odometry
	Slide 39: Direct methods: sparse, semi-dense, and dense
	Slide 40: ORB-SLAM
	Slide 41: SOFT2
	Slide 42: VINS-Fusion
	Slide 43: LSD-SLAM
	Slide 44: DSO
	Slide 45: SVO
	Slide 46: D3VO
	Slide 47: Questions?

