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Local optimization for VO

The front-end outputs a motion estimate from a pair 
of subsequent images (monocular or stereo) and the 
trajectory can be obtained by concatenating the 
sequence of transformations.

However, this small displacement concatenations lead 
to integration (summing up) of small displacement 
errors which over time can yield rather large final 
pose errors – we say that the odometry drifts. 

One strategy of addressing the drift issue is to 
perform local optimization on a window of past m 
frames that will reduce the drift and increase overall 
trajectory estimation accuracy.

Image sequence
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Motion estimation
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Alleviating drift

Odometry inherently drifts and pose uncertainty increases with each 
subsequent frame.

To alleviate effects of drift, we perform local optimization over a window of 
past m frames, thus enforcing local consistency.

estimated
true

Local optimization over m frames
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BA and PGO

Local optimization

BA PGO

Bundle adjustement1

- optimizes over camera
poses (extrinsics) and
triangulated features
(structure, map) – can also
include the intrinsic camera
parameters

Pose graph
optimization –
optimizes only
over camera
poses

1 B. Triggs; P. McLauchlan; R. Hartley; A. Fitzgibbon (1999). „Bundle Adjustment — A Modern Synthesis.”
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BA and PGO

Local optimization

BA PGO

Bundle
adjustement

Pose graph
optimization
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Reprojection function

Before formulating the BA problem, lets review first the projection equations
1. Transform the 3D point to the camera frame

2. Project the point to the normalized plane

3. Undistort the coordinates (here only radial distortion is modelled)

4. Compute the pixel coordinates using intrinsic parameters

5. We summarize the whole process in a single reprojection function 
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Reprojection function

The reprojection function       requires all of the above parameters but when 
it is used in an optimization problem, usually only the unknown 
optimization variables are stated, e.g., for the BA we have                 . 

In essence,       takes a 3D point defined in some reference coordinate frame 
(world, previous, left/right camera frame) and projects it to the image plane 
to obtain its pixel coordinates in the image.

3D point

Transformation
between frames

(world2ccam, cam2cam)

Intrinsic camera
parameters

Lens distortion
coefficientsImage point
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Reprojection error

Let's assume that we have detected in image
feature     whose 3D coordinates       in the world frame
we know. Using        we can comptue projection of
to the image plane in pixel coordinates     .
For this example we assume that rotation, translation
and camera parameters are known.
Given that, we can define an error as the difference of
the detected     and projected     point coordinates

We call this error the reprojection error, since the 3D points are triangulated 
from feature correspondences and then reprojected to the image. 
When used as the cost function in optimization problems it calls for non-
linear optimization techniques.
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Non-linear least squares

In many instances targeted methods involve non-linear optimization. 
Indeed, many are initialized with closed-form solutions (e.g., 3D-2D with P3P) 
and then refined via non-linear optimization (e.g., by minimizing the 
reprojection error).

Non-linear optimization is a field of its own but here we will look into the 
specific case of the non-linear least squares

measurements
(data)

Non-linear functionoptimal
state value
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Linear least squares

In case f is linear                    , the problem boils down to least squares

To solve this problem we simply minimize the error F(x)

This is the standard linear least squares solution.
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Non-linear iterative optimization

Unlike linear least squares, non-linear problems cannot be solved directly 
but require an iterative solution starting from a suitable initial estimate.

A variety of algorithm exist that differ in how they locally approximate the 
nonlinearity but they all share the following basic structure:

1. Form an initial estimate
2. Repeat

1. In each iteration calculate the increment
2. Update the next estimate 

3. Until convergence criteria are reached 



16

Non-linear minimization

In the non-linear case 

To solve this problem we again aim to minimize the error F(x)
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Non-linear function Jacobian

Where J(x) is the Jacobian matrix containing partial derivatives with respect 
to the vector x

Evidently, we cannot simply solve the equation for x as in the linear case.
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Gauss-Newton method

The Gauss-Newton method approaches the optimization problem as follows.
Lets define a linearization point       and the Jacobian matrix of         is

Now we can expand         using first-order Taylor expansion

The cost function F(x) now takes the form
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Gauss-Newton method

Now the problem is one of linear least squares and the optimal solution is 
obtained by solving the following normal equation

In essence, this way we are solving the following optimization problem

Computationally most efficient is Cholesky factorization (since        is 
symmetric), or  QR and SVD factorization. If         is very large, then methods 
like pre-conditioned conjugate gradient can be used. 
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Gauss-Newton method

To sum up, the Gauss-Newton method iterates as follows
1. Form the initial estimate 
2. Repeat

1. Calculate the Jacobian                 and the residual
2. Solve the normal equation  
3. Update the state
4. The updated state is the new initial estimate 

3. Until convergence criteria are reached (              or max_iter)
Gauss-Newton is widely used due to its effectivness but it can encounter 
problems if the local approximation with a quadratic is not good enough. 
More robust approaches, at the expense of possibly slower convergence, can 
be used like trust region methods, e.g., Levenberg-Marquardt.
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Minimizing the reprojection error

For n points the reprojection error for frame      amounts to the following (as 
it is usually used in optimization, we take the sum of squared norms). 

Optimal parameters can then be found by minimizing the reprojection error 
using non-linear least squares.

A non-linear error
function
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Minimizing the reprojection error

If we were solving for             by minimizing the
reprojection error  

We the above equation would be solving the PnP
problem via non-linear optimization.

In BA, we include also the 3D points as we are 
estimating the map (structure) of the scene
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Left camera as origin, but this is arbitrary. Can also be modified for instrinsics.

Two-view BA

As a minimal example let's have a look at a 
two view BA, which, again, is a non-linear, 
joint optimization of the map (structure)                      

and motion             .

Commonly initialized with the result from the 
5- or 8-point algorithm.

Solution is found by minimizing the sum of 
squared reprojection errors

Reprojected
points
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Multi-view BA
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Multi-view BA

BA over m frames is again a non-linear, joint optimization of the map 
(structure)                             and camera poses

and we minimize the sum of squared 
reprojection errors across all views.

We assumed that the first camera is the origin, but this is a matter of 
choice. The non-linear least squares problem can be solved using, e.g., the 
Gauss-Newton or Levenberg-Marquardt algorithm.

Popular optimization frameworks that are often used in robotics to solve 
such problems include GTSAM, iSAM2, Ceres, and g2o.

https://gtsam.org/
https://gtsam.org/doxygen/4.0.0/a01402.html
http://ceres-solver.org/
https://github.com/RainerKuemmerle/g2o
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Jacobian sparsity in BA

Our state vector x in the general BA case is

While the non-linear function (now for a specific point i and camera pose k)

The Jacobian for point i and camera pose k evaluates to

Pose k Point i
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Jacobian sparsity in BA

We can note that the Jacobian exhibits a sparse structure
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Sparsity in BA

The effect of sparsity is best 
noticed on the structure of 
matrix         which corresponds 
to the bundle depicted below.
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Sparsity in BA

Why do we care so much about the 
structure of        ? Because BA is solved 
using non-linear least squares that solve 
the following normal equation in each 
iteration 

This involves inverting and sparsity 
can be exploited to obtain 
computationally more efficient solutions. 
Specifically, in real-world BA the number 
of features is much larger than the 
number of camera poses, and the        
matrix        has an arrow-like structure.
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Sparsity in BA

The submatrices A and C have a block diagonal structure,
where each block in C is a 3 x 3 matrix, while in A it is
6 x 6 (3 for translation and 3 for rotation).

The structure of the off-diagonal elements depends on
the point observations of the camera poses.

We can restructure out normal equation as follows

It will be computationally less complex to invert a block-diagonal matrix 
than a general dense matrix.
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Schur elimination

The idea is to eliminate the non-diagonal part B of the
restructured normal equation and this is called the 
Schur elimination

The upper row is independent of        and produces a 
reduced system just for the camera update that is of much lower dimension 
than the whole problem
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Schur elimination

The, the map (structure) is solved by back substitution 
where we insert the solved        in the equation to 
obtain the points update

Note that this is still computationally efficient since we
only need to compute the block diagonal inverse        . 

It is also interesting to mention that the matrix
is called the co-visibility matrix whose

non-zero elements indicate that there is at least one
common observation between the corresponding two camera poses.
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Pose graph optimization

An alternative to BA is pose-graph optimization (PGO) that does not 
estimate the map (structure) but only optimizes over the camera poses             

.

In odometry, this means that besides consecutive poses we also have 
additional constraints in the form of non-adjacent camera poses in the 
window of m frames
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Pose graph optimization

Note that we are slightly abusing the notation in                       since we 
need to measure distance between two matrices, while their difference is 
not what we are looking for. 

Metrics on the space of rigid body transformations and optimization on the 
space thereof is an involved subject and part of our postgraduate studies.

Nevertheless, popular optimization frameworks often used in robotics can 
also solve PGO problems (GTSAM, iSAM2, Ceres, and g2o) with addition of SE-
Sync that is specialized for PGO.

https://gtsam.org/
https://gtsam.org/doxygen/4.0.0/a01402.html
http://ceres-solver.org/
https://github.com/RainerKuemmerle/g2o
https://github.com/david-m-rosen/SE-Sync
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Feature-based vs. direct odometry

The approaches that we have discussed thus far were based of feature 
detection and matching, in literature such methods are nowadays called 
feature-based or indirect methods. 

Why indirect? Simply to put them in contrast to direct methods that instead 
of minimizing the reprojection error, aim to minimize the photometric error

Given that, direct methods work directly on pixel intensity values.
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Feature-based vs. direct odometry

Compared to feature-based (indirect) methods that
1. detect and match features
2. run RANSAC to determine the inlier set
3. minimize the reprojection error,

Direct methods, on the other hand, have no feature detection and matching, 
thus no RANSAC is required, but only

1. minimize the photometric error.
Thus, direct methods have the advantage of (1) lower computational 
complexity, (2) higher robustness to motion blur and weak texture; however, 
drawbacks are (1) limitation to smaller baselines and are (2) sensitivity to 
initialization (due to the high non-linearity of the optimization problem). 
They are evidently also sensitive to illumination changes, but due to high 
framerate, this might not pose such a problem.
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Direct methods: sparse, semi-dense, and dense

Direct methods are also divided based on the volume of used pixels; thus 
we have sparse, semi-dense, and dense methods.

Dense methods use all the pixels, semi-dense focus on edges (parts with a  
strong gradient), while sparse use corners and „edgelets”.

1 C. Forster, Z. Zhang, M. Gassner, M. Werlberger, D. Scaramuzza (2017.) „SVO: Semi-Direct Visual Odometry for Monocular
and Multi-Camera Systems.”

Sparse Semi-dense Dense
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ORB-SLAM

ORB-SLAM2 is a feature-based odometry and SLAM system:
1. Based on detecting FAST corners and matching them using ORB 

descriptors
2. Minimizes the reprojection error (3D-2D)
3. Uses local bundle adjustement over a sliding window of camera 

frames
4. Can relocalize (once lost find the location within the built map
5. Includes asynchronous global optimization

Available in open source and extended to ORB-SLAM3 leverage IMU sensors 
and wide-angle lenses.

2 R. Mur-Artal, J. D. Tardos, J. M. M. Montiel (2015.) „ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras.”

https://github.com/raulmur/ORB_SLAM2
https://github.com/UZ-SLAMLab/ORB_SLAM3
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SOFT2

SOFT23 is a croatian-made visual odometry system:
1. Based on detecting and matching blob patterns via normalized cross-

correlation
2. Runs multihypothesis patch perspective correction for matching
3. Minimizes point-to-epipolar line distances (2D-2D)
4. Online extrinsic camera calibration
5. Runs local epipolar-line bundle adjustement over a window of frames
6. Pure odometry (no loop closing and global optimization)
7. For road vehicles only

At the moment of writing the highest ranking visual odometry on the KITTI 
and KITTI-360 datasets.

3 I. Cvišić, I. Marković, I. Petrović (2022.) „SOFT2: Stereo Visual Odometry for Road Vehicles based on a Point-to-Epipolar-Line Metric.”
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VINS-Fusion

VINS-Fusion4 is a feature-based SLAM system:
1. Optical-flow based feature detection and tracking
2. Fuses inertial measurements in a 3D-2D motion estimation pipeline
3. Includes IMU bias correction and online extrinsic calibration
4. Runs local bundle adjustement over a sliding window of camera 

frames
5. Contains loop closing, relocalization and global pose graph 

optimization over keyframes
6. Contains rolling shutter support

4 T. Qin, S. Cao, J. Pan, P. Li, S. Shen (2019.) „VINS-Fusion: An optimization-based multi-sensor state estimator.”
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LSD-SLAM

5 J. Engel, T. Schöps, D. Cremers (2014.) „LSD-SLAM: Large-Scale Direct Monocular SLAM.”

LSD-SLAM5 is a direct semi-dense odometry and SLAM system:
1. Minimizes photometric error
2. Builds a semi-dense map of edges
3. Uses local bundle adjustement over a sliding window of camera

frames
4. Contains loop closing, relocalization and global optimization

(asynchrounous)
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DSO

DSO6 is a direct sparse odometry system:
1. Minimizes photometric error
2. Builds a sparse map of points with strong gradients
3. Uses local bundle adjustement over a sliding window of camera frames
4. Runs global optimization (asynchrounous)

6 J. Engel, V. Koltun and D. Cremers (2018.) „DSO: Direct Sparse Odometry.”
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SVO

SVO7 is a blend of direct and feature-based approaches:
1. Minimizes photometric error for frame-to-frame motion estimation
2. Minimizes reprojection error for pose refinement to keyframes
3. Maps corners and edgelets
4. Contains loop closing, relocalization and global optimization 

(asynchrounous)
5. Can run up to 400 fps on laptop computers

7 C. Forster, M. Pizzoli and D. Scaramuzza (2014.) „SVO: Fast Semi-Direct Monocular Visual Odometry.”
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D3VO

D3VO8 is a direct sparse odometry with deep 
depth estimation:

1. Minimizes photometric error 
2. Builds a sparse map of points with 

strong gradients
3. Includes self-supervised monocular 

deep depth estimation (couples 
DepthNet and PoseNet, minimizes 
photometric error)

4. Models photometric uncertainties and 
illumination changes 

5. Uses local bundle adjustment over a 
sliding window of camera frames

8 C. Forster, M. Pizzoli and D. Scaramuzza (2014.) „SVO: Fast Semi-Direct Monocular Visual Odometry.”
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Questions?
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