Exponential cone projection _proj_exp_cone() in diffcp explained

Axel Breuer

May 5, 2023

Abstract

Projection of a point $(\hat{x}, \hat{y}, \hat{z})$ onto the exponential cone $\{x, y, z \mid y \exp (x / y) \leq z, y \geq 0\}$ is a fundamental atomic operation used in conic optimization. The open-source solver SCS implemented such a projection via an ad-hoc iterative algorithm proj_exp_cone which was later incorporated and adapted into diffcp under the name _proj_exp_cone. The resulting code is compact and elegant, but, because I couldn't find a note explaining the algorithm, I ended up writing this short note to give an overview of its inner mechanic $\1.

1 One problem, multiple formulations

For a given point $(\hat{x}, \hat{y}, \hat{z})$, finding its exponential cone projection consists in solving an equality constrained least squares problem ${ }^{2}$
$\min _{x, y, z}$
s.t.
$\frac{1}{2}\left((x-\hat{x})^{2}-(y-\hat{y})^{2}-(z-\hat{z})^{2}\right)$

$$
y \exp (x / y)=z
$$

The Lagrangian of this optimization problem is

$$
\begin{equation*}
\frac{1}{2}\left((x-\hat{x})^{2}-\left((y-\hat{y})^{2}-(z-\hat{z})^{2}\right)+\mu(y \exp (x / y)-z)\right. \tag{1}
\end{equation*}
$$

where μ is the dual variable of the constraint $y \exp (x / y)=z$. The KKT condition at the solution $\left(x^{*}, y^{*}, z^{*}, \mu^{*}\right)$ are

$$
\begin{align*}
x^{*}-\hat{x}+\mu^{*} \exp \left(x^{*} / y^{*}\right) & =0 \tag{2}\\
y^{*}-\hat{y}+\mu^{*} \exp \left(x^{*} / y^{*}\right)\left(1-x^{*} / y^{*}\right) & =0 \tag{3}\\
z^{*}-\hat{z}-\mu^{*} & =0 \tag{4}\\
y^{*} \exp \left(x^{*} / y^{*}\right)-z^{*} & =0 \tag{5}
\end{align*}
$$

An equivalent formulation to the original minimization problem is

$$
\begin{array}{ll}
\min _{x, y, z} & \frac{1}{2}\left((x-\hat{x})^{2}-(y-\hat{y})^{2}-(z-\hat{z})^{2}\right) \\
\text { s.t. } & x+y \log (y / z)=0
\end{array}
$$

[^0]The Lagrangian of this optimization problem is

$$
\begin{equation*}
\frac{1}{2}\left((x-\hat{x})^{2}-\left((y-\hat{y})^{2}-(z-\hat{z})^{2}\right)+\rho(x+y \log (y / z))\right. \tag{6}
\end{equation*}
$$

where ρ is the dual variable of the constraint $x+y \log (y / z)=0$. The KKT condition at the solution $\left(x^{*}, y^{*}, z^{*}, \mu^{*}\right)$ are

$$
\begin{align*}
x^{*}-\hat{x}+\rho^{*} & =0 \tag{7}\\
y^{*}-\hat{y}+\rho^{*}\left(\log \left(y^{*} / z^{*}\right)+1\right) & =0 \tag{8}\\
z^{*}-\hat{z}-\rho^{*} y^{*} / z^{*} & =0 \tag{9}\\
x^{*}+y^{*} \log \left(y^{*} / z^{*}\right) & =0 \tag{10}
\end{align*}
$$

2 Solving the ρ-formulation

We start with a few algebraic manipulations:

- Equation 7 implies

$$
\begin{equation*}
x^{*}=\hat{x}-\rho^{*} \tag{11}
\end{equation*}
$$

- Equation 9 implies

$$
\begin{equation*}
y^{*}=\hat{z}\left(z^{*}-\hat{z}\right) / \rho^{*} \tag{12}
\end{equation*}
$$

- Replacing y^{*} in (8) by (12) gives

$$
\begin{equation*}
\frac{z^{*}\left(z^{*}-\hat{z}\right)}{\rho^{* 2}}-\frac{\hat{y}}{\rho}+\log \left(\frac{z^{*}-\hat{z}}{\rho^{*}}\right)+1=0 \tag{13}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\frac{\left(t^{*}+\hat{z}\right) t^{*}}{\rho^{* 2}}-\frac{\hat{y}}{\rho}+\log \left(\frac{t^{*}}{\rho^{*}}\right)+1=0 \tag{14}
\end{equation*}
$$

where $t^{*}:=z^{*}-\hat{z}$.
For a given value of ρ^{*}, the system of equations 11,12 and 13 can be solved in the following order

1. Find t^{*} by solving (14) via a 1-dimensional Newton method.
2. Set $z^{*}:=t^{*}+\hat{z}$ (which solves equation 13).
3. Set $y^{*}=\hat{z}\left(z^{*}-\hat{z}\right) / \rho^{*}$ (which is equation 12).
4. Set $x^{*}=\hat{x}-\rho^{*}$ (which is equation 11).

The above equations explicitly show us how the 3 first equations of the KKT system (7, 8, 9) express $\left(x^{*}, y^{*}, z^{*}\right)$ as a function of ρ^{*}.

In order to identify all four parameters $\left(x^{*}, y^{*}, z^{*}, \rho^{*}\right)$, we have now to use the fourth equation of the KKT system 10 . This is performed via a bisection algorithm, which returns ρ^{*} such that $x^{*}\left(\rho^{*}\right)+y^{*}\left(\rho^{*}\right) \log \left(y^{*}\left(\rho^{*}\right) / z^{*}\left(\rho^{*}\right)\right)=0$

[^0]: ${ }^{1}$ I have tried to keep the names of the variables in the formulas as close as possible to the name of the variables in the $\mathrm{C}++$ code. Known parameters are in blue .
 ${ }^{2}$ We have supposed that $(\hat{x}, \hat{y}, \hat{z})$ is strictly outside the exponential cone.

