Exponential cone projection
_proj_exp_cone() in diffcp explained

Axel Breuer

May 5, 2023

Abstract
Projection of a point (Z, 4, 2) onto the exponential cone {z,y, z|yexp(z/y) < z,y > 0}
is a fundamental atomic operation used in conic optimization. The open-source solver |SCS
implemented such a projection via an ad-hoc iterative algorithm [proj_exp_cone| which was
later incorporated and adapted into |diffcp|under the name _proj_exp_cone, The resulting
code is compact and elegant, but, because I couldn’t find a note explaining the algorithm,
I ended up writing this short note to give an overview of its inner mechanic

1 One problem, multiple formulations

For a given point (&, 9, 2), finding its exponential cone projection consists in solving an equality
constrained least squares proble

91;{112 %((1‘— A)Q_(Z/_?)f—(z_é)z)
s.t. yexp(z/y) =z

The Lagrangian of this optimization problem is

1

5((%‘—5?7)2 —((y=9)* = (= 2)*) + uly exp(z/y) - 2) (1)

where p is the dual variable of the constraint y exp(z/y) = z. The KKT condition at the solution
(z*,y*, 2%, u*) are

a* — &+ pexp(z”/y*) =0 (2)
Y=g+ ptexp(zt/y*) (1 —2"/y*) =0 (3)
2 —Z—pu" =0 (4)

Y exp(z®/y*) — 2" =0 (5)

An equivalent formulation to the original minimization problem is

min S8 (=9~ (== 2))
s.t. x+ylog(y/z) =0

T have tried to keep the names of the variables in the formulas as close as possible to the name of the variables
in the C++ code. Known parameters are in blue .
2We have supposed that (&, 9, 2) is strictly outside the exponential cone.

https://www.cvxgrp.org/scs/
https://github.com/cvxgrp/scs/blob/eee0cca45655540a4207acaab17379763cf59867/src/cones.c
https://github.com/cvxgrp/diffcp
https://github.com/cvxgrp/diffcp/blob/master/cpp/src/cones.cpp

2 SOLVING THE p-FORMULATION 2

The Lagrangian of this optimization problem is

Sz =2)* = ((y = 9)* = (2 = £)*) + p(z + ylog(y/2)) (6)

where p is the dual variable of the constraint « + ylog(y/z) = 0. The KKT condition at the
solution (z*,y*, z*, u*) are

gt —2i+p =0 (7)
y =9+ p(logly"/z") +1) =0 (8)
2F—Z2—p'y* /2" =0 (9)
a" 4y log(y”/z") = 0 (10)
2 Solving the p-formulation
We start with a few algebraic manipulations:
e Equation [7] implies
=1 —p (11)
¢ Equation [implies
g =2)" (12)
e Replacing y* in by gives
2*(z*=2%2) 9 z*—Z
I)+1=0 13)
p*2 p * (
which is equivalent to
—=+4log(—)+1=0 14
P P (5) (14)

* ~

where t* := z* — Z.

For a given value of p*, the system of equations [T} [I2] and [I3] can be solved in the following
order

1. Find t* by solving via a 1-dimensional Newton method.
2. Set z* :=t* + Z (which solves equation [13]).

3. Set y* = 2(2* — 2)/p* (which is equation [12)).

4. Set z* = & — p* (which is equation [T1]).

The above equations explicitly show us how the 3 first equations of the KKT system
E[) express (z*,y*,2*) as a function of p*.

In order to identify all four parameters (z*, y*, z*, p*), we have now to use the fourth equation
of the KKT system . This is performed via a bisection algorithm, which returns p* such that

¥ (p*) +y* (p*) log(y*(p*)/2*(p*)) =0

	One problem, multiple formulations
	Solving the -formulation

