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Preface

Domain-specific knowledge graphs have emerged as a field unto their own, steadily
and perhaps not so slowly. Graphs have been pervasive in AI for a long period of
time, dating back to the earliest eras in the field, but automatically representing
large quantities of data as graphs is a relatively modern invention. With the advent
of the Web, and the need for smarter search engines, both Google and (over a decade
later) the Google Knowledge Graph were born. The Google Knowledge Graph has
changed the way we interact with search engines, even though we often do not
realize it. For example, it is not uncommon anymore for users to not click on a
single link when they are searching for something; generally, the search engine itself
is able to provide the solution for the problem the user seems to be facing. Organic
integration of the traditional search engine with images, news, and videos has only
added an element of richness to these interactions.

For all its success, the Google Knowledge Graph (and other similar efforts) was
not designed with a specific domain in mind, although Google has rolled out flavors
of “domain-specific search” engines (e.g., Google Scholar) every now and then.
One would almost be forgiven for thinking that building domain-specific systems,
powered by knowledge graphs, for problems such as geopolitical event forecasting,
or academic literature mining, is too esoteric to come into its own as an independent,
impactful area of study.

What has changed the game and made researchers (and customers) look at
domain-specific knowledge graphs as a viable technology is that it has become
easier to build such knowledge graphs, starting from data collection all the way
to the application interface. This was not always the case. Only a few years ago,
if I wanted a domain-specific knowledge graph for the e-commerce domain, for
example, I would have to assemble a team and build out a system for months
before anything remotely viable would emerge. The DARPA Memex program has
had an enormous impact in changing this sad state of affairs, by allowing the
democratization of domain-specific knowledge graph construction. Technologies
that emerged from the Memex program combined both classic and state-of-the-art
techniques in fields as diverse as information extraction and entity resolution to
produce end-to-end systems that could be used by nontechnical domain experts to
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viii Preface

build entire search engines powered by knowledge graphs. A lot of the work that we
describe here was rediscovered and utilized in the Memex program to build these
end-to-end systems.

Some of the fields that I mentioned above, such as information extraction and
entity resolution, are entire areas of study in their own right, with numerous
surveys and books individually covering them. Thus, I have had to make some
necessary trade-offs in writing this book, and I have chosen to focus on breadth, and
comprehensiveness, rather than depth and full academic rigor. In other words, what I
attempt to provide in this short work is a comprehensive, practical methodology for
constructing domain-specific knowledge graphs using the full range of technology
that is available today. I do not shy away from the truism that in many cases, there are
no right solutions; one has to deal with compromises. This book tries to detail what
these compromises are and when it makes sense for someone wishing to construct
domain-specific knowledge graphs to adopt a particular technology or technique.

Since the book is largely based on the findings of multiple communities, there
is a lot of credit to go around in conveying the content of each chapter. In some
cases, such as IE, I have drawn broadly on widely cited reviews of the field by
merging and conveying key elements of both classic and modern surveys, to give
the reader a sense of both new developments and established techniques. Because
this book is only meant to be a condensed, though hopefully practical and relatively
comprehensive, introduction to the field, I have not attempted to provide a rigorous
citation for every system or statement. Rather, at key junctures, I have provided
pointers to the broader sources that provide a much more comprehensive treatment
of related work for the more technically oriented researcher.

I am fairly confident that this book will not provide the last word on this subject.
All indicators suggest that research on knowledge graph construction is intensifying,
and with increasing synergies between natural language processing, deep learning,
knowledge discovery, and semantic web, we will likely see some exciting new work
emerge in the years to come. At the time of writing, it is safe to conclude that the
field stands at an exciting junction.

Marina del Rey, CA, USA Mayank Kejriwal
December 2018



Acknowledgments

This book would not be possible without the guidance of, and constant stimu-
lating discussions with, my colleagues and fellow researchers at the Information
Sciences Institute. Over the years, we have been jointly funded under multiple
projects sponsored by agencies like DARPA and IARPA, covering domains as
diverse as geopolitical events, human trafficking, cyberattack prediction, and hybrid
forecasting, to only name a few. Many of these involve constructing domain-specific
knowledge graphs in support of the final system, where direct or indirect. As such,
my time working on some of these projects and collaborating with others on building
real applications has led to many of the core findings (and even the structure) in this
book.

I also want to thank my students, whose heavy lifting on many of these projects
has been at least as valuable to me in learning about knowledge graphs as traditional
academic material. I also want to thank the funding agencies themselves, especially
DARPA, for sponsoring these students and our work. Ultimately, without their
support, this work and its impact would have gone unrealized.

ix



Contents

1 What Is a Knowledge Graph? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Example 1: Academic Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Example 2: Products and Companies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Example 3: Geopolitical Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Challenges of IE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Scope of IE Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Named Entity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Relation Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Event Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.4 Web IE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Evaluating IE Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Entity Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Challenges and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Two-Step Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Measuring Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 Measuring Blocking Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.2 Measuring Similarity Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Extending the Two-Step Workflow: A Brief Note . . . . . . . . . . . . . . . . . . . . . 51

xi



xii Contents

3.6 Related Work: A Brief Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6.1 Automated ER Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.2 Structural Heterogeneity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6.3 Blocking Without Supervision: Where Do We Stand?. . . . . . . . 56

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Advanced Topic: Knowledge Graph Completion . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Knowledge Graph Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 TransE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 TransE Extensions and Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.3 Limitations and Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.4 Research Frontiers and Recent Work . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.5 Applications of KGEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Ecosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Web of Linked Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Linked Data Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.2 Technology Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.3 Linking Open Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.4 Example: DBpedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Google Knowledge Vault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Schema.org . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5 Where is the Future Going? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



Acronyms

KG Knowledge Graph
AI Artificial intelligence
GKG Google Knowledge Graph
IRI Internationalized Resource Identifiers
SW Semantic Web
URI Uniform Resource Identifiers
HTML Hypertext Markup Language
NLP Natural language processing
IE Information extraction
KGC Knowledge graph construction
NER Named entity recognition
ER Entity resolution
CRF Conditional random field
Open IE Open information extraction
IR Information retrieval
RNN Recurrent neural network
LSTM Long short-term memory
RE Relation extraction
ACE Automatic content extraction
MUC Message Understanding Conference
NE Named entities
EE Event extraction
PC Pairs completeness
PQ Pairs quality
RR Reduction ratio
ROC Receiver operating characteristic
KGE Knowledge graph embedding
KB Knowledge base
RDF Resource description framework
LDA Latent Dirichlet allocation
RDF Resource description framework

xiii



xiv Acronyms

PSL Probabilistic soft logic
TKRL Type-embodied knowledge representation learning
DKRL Description-embodied knowledge representation learning
LOD Linking Open Data
GKV Google Knowledge Vault
KV Knowledge Vault
OKN Open Knowledge Network



Chapter 1
What Is a Knowledge Graph?

1.1 Introduction

In recent years, knowledge graphs (KGs) have emerged as a major area in Artificial
Intelligence (AI) [139]. Graphs have always been pervasive in the broader AI
literature, but with the advent of large quantities of data on the Web (‘Big Data’)
and in the broader commercial sphere, there emerged a need to enable machines
to ‘understand’ and make use of this data in some productive analytical way. The
inability of machines to truly understand English, and other ‘natural’ languages
like it, with all their irregularities and nuances, has also been largely evident in the
(unsuccessful) quest to achieve general AI and commonsense reasoning. Although
much progress has been made in all of these domains, it is still very much the case
that machines have an easier time processing structured data in the form of graphs,
dictionaries and tables than in natural language.

In modern history, Google was among the first big companies to recognize and
couple this ability with that of providing richer search capabilities on the Web. In
fact, the use of the term ‘Knowledge Graph’ in recent Computer Science articles,
papers and posts, can be traced back to the Google Knowledge Graph, which was
described in an influential blog post in the early 2010s. The basic motto behind
the Google Knowledge Graph was to make search about things not strings [164].
In other words, it would allow search to evolve from simple string searching (with
all its bells and whistles), to one that involved reasoning about entities, attributes
and relationships. The effort can be argued to have been very successful. While the
full size and scope of the Google Knowledge Graph is not known, it has grown
considerably in size and many search results on Google now involve knowledge
panels (Fig. 1.1), which are elaborate, yet condensed, information sets about entities
that the user might have been searching for. This is in contrast to the previous status
quo, which was a list of webpages, ordered by predicted relevance to the user’s
search query. Beyond Google, other companies have also now started investing in
knowledge graphs, and a number of KG-centric startups have emerged in multiple

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
M. Kejriwal, Domain-Specific Knowledge Graph Construction, SpringerBriefs
in Computer Science, https://doi.org/10.1007/978-3-030-12375-8_1
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2 1 What Is a Knowledge Graph?

Fig. 1.1 An illustration of a knowledge panel rendered in Google for the search query ‘wwe’. At
least in part, the panel is powered by KG-centric technologies

countries and continents. There are also applications in non-profit, government and
academia. We cover an exciting range of current and growing KG ecosystems in
Chap. 5.

Defined abstractly, a knowledge graph is a graph-theoretic representation of
human knowledge such that it can be ingested with semantics by a machine. In
other words, it is a way to express ‘knowledge’ using graphs, in a way that a
machine would be able to conduct reasoning and inference over this graph to
answer queries (‘questions’) in some meaningful way. However, this definition is
not very operational. The simplest functional definition of a knowledge graph is
that it is a set of triples, with each triple intuitively representing an ‘assertion’. If
the KG was constructed correctly (with 100% accuracy) over a trustworthy data
source, we could also think of assertions as facts. Formally, a triple is a 3-tuple
(h, r, t) where h represents a head entity, t represents a tail entity, and r expresses
a relationship between the two entities. Many, though not all, statements in natural
language (e.g., English) can be expressed conveniently in this form. Consider, for
example, the sentence Fido the dog stole a bone from Mary’s backyard, which can
be expressed as a set of triples1 {(Fido, is-a, Dog), (Fido, stole, bone_1), (bone_1,
is-a, Bone), (bone_1, located-in, yard_1), (yard_1, is-a, Yard), (yard_1, belongs-to,
Mary), (Mary, is-a, Person)}.

Why does it make sense to call such a set a ‘graph’? For a long time, in fact, it was
not conventional to do so and what we are referring to as a knowledge graph here
used to be known (and is still known, in many papers) as a knowledge base. One of

1For reasons that will become clear throughout the book, we use identifiers such as bone_1 and
yard_1 to refer to instances of concepts (also called classes) such as Bone and Yard. The convention
adopted herein is to use capitalized initials for concepts.
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the main reasons why knowledge bases slowly morphed into knowledge graphs can
be attributed to the influence and success of the Google Knowledge Graph. However,
there was also pervasive influence from both the knowledge discovery, and Semantic
Web, communities, both of which have always been closely associated with graph-
theoretic innovations. For a large part of this millennium, the database community
was also studying graph databases, algorithms and data structures in detail.

This fascination (both industrial and academic) with graphs aside, there was
another good reason to think of knowledge bases as graphs. First, if one takes the
step of visualizing the first and third elements (i.e. h and t) of a triple as nodes, and
the second element r as a labeled, directed edge pointing from h (the head entity)
to t (either a tail entity or an attribute), an intuitive data model emerges (Fig. 1.2).
In fact, many people would find it easier to draw the kind of diagram shown in
Fig. 1.2 (with a few examples for guidance) than thinking carefully about sets of
triples. In a certain sense, the KG can be said to serve as a lingua franca between
machines and humans, in that it is structured enough for machines to process and
ingest with semantics, but is intuitive enough for humans to make sense of, at least
if represented and drawn using common-sense mnemonics. In fact, the Freebase
knowledge graph, and more recently, Wikidata, allow the crowdsourced acquisition
of such structured knowledge, as opposed to Wikipedia, where the crowdsourced
knowledge is acquired mostly in natural language.

Fig. 1.2 The Knowledge Graph (KG) representation of the information expressed in the Fido the
dog example. Filled ovals (i.e. concepts) are parts of the ontology, while the unfilled ovals are part
of the KG itself (the instances) is-a relationships (dashed edges) mediate between instances (in
the KG) and concepts (in the ontology). Other relationships are defined in the ontology, but used
in the KG. Constraints on how the relationships may be used are considered part of the ontology,
typically defined using formal declarations
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Although the simple definition (which we shall refer to as the ‘knowledge base’
or KB-definition, where relevant) has many advantages, not the least of which is
its simplicity and ease of reading into, and serializing from, machine learning and
other data analytics programs, it is also unsatisfactory for certain applications. Just
like we do not want a database to have an ‘open’ schema, we do not always want a
knowledge graph to be unconstrained in terms of the data it contains, and the ways
in which that data is modeled. This leads to the notion of an ontology, which (put
simply) defines (and imposes constraints) on the concepts and relationships that are
permissible in a KG. For example, considering the earlier example of Fido the dog, it
is clear that the ontology contains concepts such as Dog, Bone, Yard and Person and
defines relationships as well. An example of a defined constraint is that the ‘belongs-
to’ relation must have a Person instance (e.g., Mary) as its target. Considering the
example in Fig. 1.2, the is-a relationship mediates between the KG, which contains
instances, and the ontology, which contains concepts. Although the example makes
it look straightforward, it can sometimes become a point of contention as to what is
a concept and what is an instance in the real world.

Beyond the Google KG, most KGs are domain-specific and have some kind of
underlying ontology. This is because there is typically no ‘one-size fits all’ schema
or ontology that is well-suited for solving all problems or answering all queries.
Deciding what makes for a good ontology is a controversial topic that is outside the
scope of this book. However, once an ontology is given, the expectation is that the
KG will conform to the ontology. The more complex the ontology, the harder it is to
make the KG conform, but the stronger are its semantics and the complexity of the
queries that can be posed on the knowledge graph. As the community has moved
towards statistical, data-rich methods, ontologies (designed for knowledge graphs)
have generally become less complex over time since it makes the publishing and
checking of data easier. Knowledge graphs that contain encyclopedic information
have also fueled this trend, since it is not clear if it is even possible to design deep,
sophisticated ontologies for ‘broad’ domains.

In the next few sections, we detail some concrete examples of knowledge graphs
in various domains. These examples were selected to express both how intuitive,
and expressive, a knowledge graph can be in representing diverse information sets
across multiple domains. The examples also illustrate the importance of the domain
in modeling and representing knowledge graphs. Some domains, like the event
domain, require lots of classes and properties in their underlying ontologies while
others can be modeled with only a few classes and properties. Often, there is a
choice in how expressive to make the ontology.

1.2 Example 1: Academic Domain

As our first example of a domain-specific KG, let us consider the academic
publication domain (Fig. 1.3). The two purple nodes in the center of the KG
represent different publications, named mnemonically by their publication titles.
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Fig. 1.3 An illustration of a Publication knowledge graph, showing two different publications
sharing authors. Rectangles are typically used diagrammatically to represent literals while oval
nodes represent resources or entities

Some important details concerning the publications are also shown, including their
authors, dates of publication and venues.

Despite its simplicity, the KG in Fig. 1.3 illustrates some of the expressiveness in
representation, an issue that becomes extremely important in communities such as
the Semantic Web (SW). The oval nodes in the figure represent entities or resources,
and are generally referred to (in the SW community) as Internationalized Resource
Identifiers (IRIs), a generalized form of Uniform Resource Identifiers (URIs). In
this book, we do not define these concepts, since they are community-specific,
but focus more on the overall distinction between entities and literals (also known
as attributes). Entities can have relationships with other entities (such as between
authors and their publications) or attributes (such as the year of a publication). The
distinction can be expressed by the fact that in a triple (h, r, t), t is either a literal
(for the latter) or an entity (for the former). Note that h is always an entity.

1.3 Example 2: Products and Companies

In the second example, inspired by the products and e-commerce domain, we expand
upon the notions presented in academic domain. Once again, we see the distinction
between literals and entities, but as illustrated in Fig. 1.4, there are numerous degrees
of freedom even when modeling the most basic structures in KGs. In this case, we
see the same product, represented and modeled in two different ways. The choice
of modeling can have implications both for upstream tasks (such as information
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Fig. 1.4 An illustration of a Product knowledge graph, showing the same product but represented
in different ways. The problem of linking the same underlying entity nodes (Entity Resolution)
will be covered in detail in Chap. 3

extraction) and downstream tasks, such as entity resolution and querying, that occur
after the initial KG has been extracted and stored. We also see that the availability
of information can vary, usually depending on the source from which the KG nodes
were extracted to begin with. Also, because the two product mentions have not
been resolved into a single underlying entity, it is not straightforward to compute
an aggregation (e.g., the number of unique products) over such KGs and expect
reasonable or correct answers. Because it is often the case that the same entity
is extracted independently from multiple raw sources, one has to perform Entity
Resolution on the extracted KG. We cover this step in more detail in Chap. 3.

1.4 Example 3: Geopolitical Events

Finally, we consider the most complex, and cutting-edge, example of a geopolitical
event KG. In addition to the usual artifices that we saw before (entities vs. literals
etc.), the graph illustrates how ‘second-order’ entities like events can be represented
in a KG. Events are second-order because they have first-order entities like locations
and times as their arguments; in turn, these first-order entities have attributes
describing them further (Fig. 1.5). Events can also directly have attributes, and
similar to first-order entities, have relationships between themselves. The notion
of what separates first-order from second-order entities is not completely well-
understood and is more of a semantic rather than a syntactic issue. In practice, the
difference is very real. Extracting and resolving events, for example, have become
areas of research in their own right, and performance on them continues to be poor
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Fig. 1.5 An illustration of an Event knowledge graph, showing two disparate geopolitical events

in comparison to performance on extracting and resolving first-order entities like
persons and locations. A good example of an event knowledge graph is GDELT
[101].

1.5 Conclusion

Knowledge graphs have become a popular data representation that sits at the
intersection of knowledge discovery, data mining, Semantic Web and Natural
Language Processing. Each of these communities has had dealings with knowledge
graphs and their applications. In fact the term is so broad that there is no real ‘survey’
of knowledge graphs, making it difficult to attribute the invention to a specific paper
or author. Generally, the focus is on ‘generic’ knowledge graphs without too much
emphasis on the domain, and domain-specific constraints, that girds the construction
and representation of the knowledge graph. An increasing amount of evidence
suggests that there is no one size fits all model for knowledge graph construction
and inference that can be used across all domains; rather, special domain-specific
techniques must be used to obtain state-of-the-art performance. In the rest of this
book, we cover domain-specific knowledge graph construction in detail. Although
the area is continuing to evolve, some trends have been established and are built on
prior research developed over multiple decades. At the time of writing, knowledge
graph-powered applications continue to proliferate (Chap. 5).



Chapter 2
Information Extraction

2.1 Introduction

Information extraction (IE) is a fundamental component in any knowledge graph
construction pipeline, whether domain-specific or generic [111, 119]. As the name
implicitly suggests, the goal of an IE system is to extract useful information from
‘raw’ data, usually text or webpages. Useful information has many dimensions, but
the most important dimension for computational purposes is that the information
can be queried, and reasoned about, by machines. One of the reasons why IE was
identified as an early problem in communities like natural language processing was
because machines are not good at understanding natural languages like English or
French due to problems like subtlety, ambiguity and irregularity. Even today, despite
rapid advances, machines still cannot read and understand English nearly as well as
humans. Thus, an early goal of IE was to extract key pieces of information, such
as entities, relations, events and attributes from natural language text. The advent
of the Web only made the problem more interesting, since webpages are visually
intuitive (if rendered in an compatible browser), but in their raw HTML versions,
contain many interesting ‘markup’ elements like tables, lists, links, images and even
dynamic elements like Javascript programs [36].

In Chap. 1, we implicitly demonstrated the results of ‘perfect’ information extrac-
tion when we converted an English sentence (about Fido the dog) to ‘equivalent’
knowledge graph triples. To take another example, a sentence such as ‘Vladimir
Putin, President of Russia, attended the G20 meeting’, can be represented by
the following set of triples: {(Vladimir Putin, presidentOf, Russia), (Russia, is-
a, Country), (Vladimir Putin, is-a, Person), (G20, is-a, Geopolitical Meeting),
(Vladimir Putin, attended, G20)}.

Recall that we referred to elements like ‘Vladimir Putin’ as entities, while
elements like ‘presidentOf’ are generally referred to as relations, relationships or
properties. We also introduced the notion of literals (also called attributes or slot
fillers depending on both the context and community) in the previous chapter; e.g.,
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if we had a triple such as (Vladimir Putin, DOB, “10/07/1952”), the date of birth
would be a triple. Generally, numbers and strings are understood to be literals.

The example above notwithstanding, the term ‘IE’ is far too broad to be useful
in practice, since there is no one IE system that can extract all possible entities and
relationships from a (‘completely triplify’) given English (or other natural language)
sentence. Generally, IE systems are constrained by an underlying ontology, just
like an actual knowledge graph, although in recent years, the concept of Open IE
(which is open-world and not constrained by an ontology) has been gaining some
traction [10].

In this chapter, we take a practical view of IE based on established literature.
Over the last few decades, IE has been heavily researched and many techniques are
currently in use in the community, including classic rule-based techniques, more
modern sequence labeling techniques such as Conditional Random Fields (CRFs)
[100] but also more cutting-edge techniques such as deep neural networks [47]. We
begin by describing why IE is so challenging, and why it continues to be the most
important component in building high quality KGs from scratch. Next, we survey
IE from a range of functional perspectives.

2.2 Challenges of IE

IE has been explored in the AI community for several decades now [48, 161]. That
the problem is still actively researched and has not been solved yet is a testament
both to its difficulty and its relevance. In this section, we explore some predominant
challenges that prevent IE systems from reaching arbitrarily high quality for many
real-world datasets.

First, state-of-the-art IE systems tend to be based on supervised machine learn-
ing, a class of techniques whose success is predicated on having access to labeled
training data. Labeling data from scratch is an expensive and time-consuming
endeavor that cannot be effectively scaled. In some cases, the labeled data itself
(as opposed to the algorithms trained on the data) is the basis for a system’s
competitive advantage, and is closely guarded, especially in the commercial sphere.
However, due to efforts like the Message Understanding Conferences (MUCs) [68],
the research community as a whole has come a long way in developing a robust
set of benchmarks both for training and evaluating IE algorithms. However, even
within this body of labeled data, some IE tasks (like named entity recognition) are
much better supported than others. As novel IE tasks and data emerge, such as joint
text-video extraction and event extraction, the utility of previously labeled datasets
become less clear [175].

Second, for domain-specific KGC, IE presents some additional challenges. Like
with so many techniques that use machine learning and are optimized for a ‘generic’
(or open-world) domain such as the encyclopedic world covered by Wikipedia or the
Google news corpus, problems especially arise in domains that are different from
these common corpora and require special techniques for maximal performance.
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The question that arises is: how does one build reasonably high-quality IE systems
without access to a lot of labeled data? On a related note, how does one make
judicious use of unlabeled data? What kinds of supervision are possible besides
mundane labeling of lots of data? These questions have been explored in the
research community for quite some time, and we cover some techniques in this
chapter.

Third, the format and heterogeneity of the raw data is very important and can also
be a challenge when transitioning results across communities or research groups.
Are we extracting information from HTML webpages or from a plain text file?
Within an HTML file, do we have a lot of tables, markup and even javascript?
Isolating the relevant information from the page before running an IE system over
it can itself be a challenge. We describe in a later section how wrapper induction
techniques can be used to extract meaningful information from webpages [99].

2.3 Scope of IE Tasks

Because IE is such a diverse problem, any review must necessarily scope the
problem. In some cases, the tasks are different enough that they get separated
by community. Multiple surveys and reviews also tend to take this view; see for
example [161] and [111]. Where possible, we attempt to follow a similar flow as
others that have extensively surveyed individually components of this chapter. For
example, much of the work on NER described in this chapter is closely inspired
by the survey of Nadeau and Sakine [121]. For example, traditionally, it has
been the case that Web IE was treated very differently from NLP-centric IE like
extracting named entities, relations and events from text. Although these distinctions
still remain, their significance has diminished, in part because even within each
community a wide range of techniques and methodologies have flourished. For
this reason, we do not separate Web IE and NLP-centric IE in this chapter, but
consider them as different IE tasks. Among the different tasks below, the first
three (Named Entity Recognition, Relation Extraction and Event Extraction) have
been overwhelmingly researched by the NLP community. The last task, Web IE,
has witnessed more research attention in the overall AI literature, with wrappers
emerging as a dominant technique even in the early days of the Web. Machine
learning has been used extensively for all the different IE tasks described below.
Interesting combinations are also possible. For example, given a corpus of text-
heavy webpages (e.g., blog articles scraped from an online portal), one may initially
run a wrapper or Web IE system to strip out the HTML boilerplate, and obtain the
underlying text. Next, a sufficiently trained and tuned IE for tasks such as NER and
relation extraction may be applied.

In fact, many such combinations are possible, and the flexibility, architecture
and quality of an overall IE pipeline depends significantly both on the experience
and imagination of an application designer. The tasks below are not expected to be
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mutually exclusive, and some are mutually reinforcing. We illustrate a particularly
important case of this when we describe joint event-entity extraction.

2.3.1 Named Entity Recognition

Named Entity Recognition (NER) is often the first line of attack in a given IE
problem domain [121]. Given a document and a set T = {t1, . . . , tn} of n entity
types (defined in an ontology, as previously covered), a NER system generally
returns a set of extracted mentions, where each mention may be expressed in the
form (t, start-offset, end-offset), with t ∈ T . Consider the sentence ‘Tom Cruise
shot the latest Mission Impossible movie in Dubai’, where the extracted mentions
are in bold. Given the type set {Person, Location}, the mention ‘Tom Cruise’ is
clearly of type Person, while ‘Dubai’ is of type Location. It is precisely because
the mentions are typed that they are often referred to as named entities. However,
the term is also a misnomer, since mentions that refer to the same underlying entity
need to be resolved to a single named entity. This process, called Entity Resolution
(ER) in the graph-theoretic and broader KG community [66], will be covered in
the next chapter. In a similar vein, the step of ‘coreference resolution’ is also often
undertaken in the NLP community to leverage text and syntax features (such as
part-of-speech tagging and Wikipedia linking [73, 173]) to link different mentions,
including pronouns, to each other [122].

As the example sentence above illustrated intuitively, full named-entity recogni-
tion can be broken down into two distinct problems: detection of named entities,
and classification of the named entities by the ontological type (i.e. concept). The
first phase is akin to segmentation (which falls in the same category as other shallow
parsing tasks e.g., chunking in the NLP community [97]). More generally, named
entities are defined to be contiguous non-nested spans of tokens, so that ‘President
Barack Obama’ is a single named entity, disregarding the fact that inside this name,
the substring ‘Barack Obama’ is itself a valid named entity. This can sometimes
lead to interesting problems for evaluating IE, especially at scale. Whether ‘Barack
Obama’ or even ‘Obama’ would be tagged as correct instances of detection, as
opposed to the more complete and unambiguous ‘President Barack Obama’ depends
on the application and the way in which the evaluation is set up.

The second phase would require assigning a concept from T to the detected
named entity. Mis-typed named entities would lead to errors in evaluation, as we
describe towards the end of the chapter. Intuitively, we do not want to tag ‘Tom
Cruise’ as a location rather than a person.

In practice, the situation can become rapidly more complex, since, in the
definition of T above, there is no reason to restrict it to just a set of types. In fact,
in a more complex task, such as event extraction, it is more reasonable to allow
T to represent the ontology itself. Some event ontologies, such as CAMEO [180],
can be very hierarchical and contain fine-grained classes like ‘reject accusation’,
‘deny responsibility’, ‘express accord’ and ‘appeal for diplomatic cooperation’.
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With such hierarchical ontologies, one would ideally want to tag a detected
mention with the most fine-grained type, which is more difficult than distinguishing
between coarse-grained concepts like Location and Person. For example, one could
imagine an ontology that has fine-grained types such as ‘Politician’, ‘Businessman’,
‘Celebrity’, many of which would be linked to a super-type such as ‘Person’. Given
such an ontology, would it be incorrect to tag ‘Tom Cruise’ with type ‘Businessman’
or would ‘Celebrity’ be the only correct answer? How do we penalize a system
which tags ‘Tom Cruise’ as ‘Person’ vs. a more sophisticated system that tags the
mention as ‘Celebrity’? In general, evaluating the outputs of NER with respect
to such an ontology is itself a complex issue, and in practice, depends on the
application. We do not consider the issue in detail here. In the rest of the section
on NER, we restrict our attention to the most popular version of the problem, which
assumes a single non-hierarchical set T of terms as the ontology. Later, we briefly
discuss an exception to the availability of an ontology (Open IE [10]).

Before describing the classes of techniques that are generally used for NER,
we note that the question of how to precisely define a named entity is important
philosophically, but is almost always evident from the application context. A
functional definition is that a named entity is simply a span of text that can be
typed according to one or more classes in a pre-specified ontology. The last word
on whether a named entity is correct or not mechanistically depends on the gold-
standard, which can itself occasionally contain missing and wrong entries, both due
to human error or because of annotator disagreements.

2.3.1.1 Supervised Methods

The current dominant technique for addressing the Named Entity Recognition
problem is supervised machine learning. Such techniques have classically included
Hidden Markov Models, Support Vector Machines (SVMs) and Conditional Ran-
dom Fields (CRFs) [78, 100, 191]. Although CRFs have emerged as the popular
technique due to superior performance, in general, all of these machine learning
methods can be used to construct a system that is trained using a large anno-
tated corpus. In essence, such a system creates disambiguation rules based on
discriminative features. An obvious baseline statistical learning method that is often
proposed consists of tagging words of a test corpus when they are annotated as
entities in the training corpus. The performance of the baseline system depends
on the vocabulary transfer, which is the proportion of words, without repetitions,
appearing in both training and testing corpus. As reported in a review, in a
vocabulary transfer study that was conducted on the MUC-6 training data, it was
found that vocabulary transfer accounted for 21% of performance, with about
42% accounting for locations, 17% for organizations and 13% for person names
[134]. What these numbers illustrate is that achieving generalization is an important
requirement, but that considerable variance exists across common ontological types.
Vocabulary transfer is also a good signal of the recall (number of entities identified
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over the total number of entities) of the baseline system but (on the flip-side) may be
more pessimistic than it appears since some entities are more frequent than others.

2.3.1.2 Semi-supervised Methods

Unlike supervised learning, semi-supervised learning (sometimes also known as
weakly supervised) is designed to significantly reduce labeling effort without
removing the human in the loop altogether (unlike unsupervised learning, which
is covered subsequently) [120, 149]. An example of an influential semi-supervised
NER technique is ‘bootstrapping’, which generally requires a set of seeds for
initiating the learning process. For example, a system aimed at recognizing case
citations in legal documents might ask the user to provide a small number of
example citations. Then the system searches for sentences that contain these names
and tries to identify some contextual clues (e.g., surrounding words, or their word
embedding representations) common to the provided examples. Subsequently, the
system tries to find other instances of citations that appear in similar contexts.
This learning process is reapplied to the newly found examples, to discover more
new relevant contexts. By iterating and repeating this process, a large number
of case citations and contexts will eventually be discovered. Although supervised
learning continues to be state-of-the-art, some experiments in semi-supervised NER
have yielded performance rivaling baseline supervised approaches. Recently, these
methods have become even more important in the context of extracting named
entities from Twitter with minimal supervision [107, 156]. Thus, specific techniques
are worth considering. We provide a brief review of some influential methods below

Mutual bootstrapping Mutual bootstrapping, first introduced in [155] as multi-
level bootstrapping, consists of growing a set of entities and contexts by starting
with a handful of seed entity examples of a given type (e.g., Sharon Stone and
Sylvester Stallone are entities of type Actor) and accumulating the patterns found
around these seeds in a sufficiently large corpus. Contexts, which are like linguistic
patterns, (e.g., starred in X, is the star of X) are also ranked and used to find new
examples to achieve some semblance of generalization. The authors of the original
paper note that performance can rapidly deteriorate as noise starts to creep into
either the entity list or pattern list. Although the overall empirical results were
mixed, the idea behind mutual bootstrapping proved to be highly influential and has
been considered as a prominent approach since, with multiple proposed variants. For
example, one variant is to use syntactic relations (subject-object pairs) to describe
context around the entities, rather than simple linguistic patterns. Furthermore,
rather than relying on human-generated seeds, the process could be automated by
relying on existing NER system outputs instead. In yet another variant, distributional
similarity has been leveraged to generate synonyms or words which are members of
the same semantic class [34], which allows for more robust pattern generalization
(which, broadly speaking, is what much of NLP is about [109]). For instance, for
the pattern X holds his meeting on a Monday, synonyms for Monday would be
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{Tuesday, Wednesday, Tue., . . . }, thereby enabling the induction of more novel
and generalizable patterns. Several authors have demonstrated that, by applying this
technique to large corpora (hundreds of millions of webpages) and starting only
from a seed of 10 examples facts, it is possible to generate one million facts with a
precision of about 88%, an impressive performance metric.

How should one go about selecting the unlabeled data on which such mutual
bootstrapping methods (or their variants) can be applied? One way is to rely not
just on large arbitrary collection of documents, but to select documents using
information retrieval-like relevance measures [160]. Furthermore, selection of
specific contexts that are rich in proper names and coreferences bring the best results
in their experiments. In general, the data selection problem is still not completely
solved, especially given the almost limitless amounts of data (on any domain) now
available on the Web. This problem has emerged into its own, and goes by various
names, including intelligent crawling and domain discovery. For a treatment on the
subject, see [133].

2.3.1.3 Unsupervised Methods

Clustering is the quintessential unsupervised machine learning approach [79].
Clustering of entities can rely on the similarity of context, lexical resources (e.g.,
WordNet), and even lexical patterns and statistics computed on a sufficiently large.
Some specific approaches are described below.

As one form of unsupervised clustering, [4] studies the problem of labeling
an input word with an appropriate named entity type from WordNet, the primary
approach being to assign a topic signature to each WordNet synset by merely listing
words that frequently co-occur with it in a large corpus. Then, given an input word
in a given document, the word context (words appearing in a fixed-size window
around the input word) is compared to type signatures and classified under the most
similar one.

In a similar vein, a method similar to the identification of hyponyms/hypernyms
described originally in [74] was proposed to identify potential hypernyms of
sequences of capitalized words appearing in a document. Other variants have been
proposed as well.

The observation that named entities often appear together in several news
articles, whereas common nouns do not, has also been leveraged as ‘background’
knowledge for unsupervised NER model building. For example, a strong correlation
was found between being a named entity and appearing contemporaneously in
multiple news sources, which has allowed the identification of rare named entities
in an unsupervised manner and can also be effectively combined with other NER
methods.

The authors in [59] proposed and Information Retrieval (PMI-IR) as a feature
to assess whether a named entity can be classified under a given type. PMI-IR was
originally designed to measure the dependence between two expressions using web
queries. A high PMI-IR meant that expressions tended to co-occur. The technique
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was leveraged for unsupervised NER by creating features for each candidate entity
(e.g., Sharon Stone) and a large number of automatically generated discriminator
phrases like ‘is a movie star’, ‘starred in’, ‘won the Golden Globe’ etc.

2.3.1.4 Features

Even the brief descriptions of approaches listed above for supervised, unsupervised
and semi-supervised NER show that features are extremely important for good
performance, and more often than not, can prove to be decisive factors in the
quality of a system. Furthermore, in domain-specific KGC systems, whether for
biomedicine, chemistry or even space, features can play an even more important
role than usual [158, 162].

Features are characteristic attributes of words or other (such as segmented noun
phrases) that are especially important for robust and good performance of machine
learning classifiers. As an example, consider a quantitative feature that counts the
number of characters in a word. Features represent abstract properties of a unit that
assist in the generalization capabilities of machine learning capabilities. Boolean
features return either true or false (e.g., whether a word is capitalized or not), while
quantitative features return numbers, whether real-valued or discrete. Features can
also be nominal or categorical1 e.g., an ‘identity-lowercase’ feature would simply
return the lower-cased version of the word as its output.

Although features have come to be associated closely with machine learning,
expert and rule systems also make use of features. We may choose to institute a
rule in our NER that says that if (1) the capitalization feature returns true, and (2)
the nominal feature ‘inc’ or ‘corp’ (and other variants that we decide a priori) is
detected, then the ‘slot’ should be output by the IE system with type Organization.
Although rules work well for regular sentences and constrained grammars and
styles, real systems tend to be much more complex and rules have to be induced
using learning techniques or have to be superseded (as state-of-the-work often
does) by machine learning-based sequence-labeling using cutting-edge deep neural
networks like Recurrent Neural Networks (RNNs), which use units such as Long-
Short Term Memory (LSTMs) units for advanced state-of-the-art sequence labeling,
or more classic Conditional Random Fields (CRFs).

Features most often used for NER can be categorized along three different axes,
as described in the survey by [121]: word-level, list lookup, and document and
corpus. We describe these below, followed by notes on some recent advancements
in representation learning that have fundamentally influenced feature engineer-
ing [118].

1One could also imagine ordinal features, which would be helpful in tasks such as recommenda-
tion, but these tend to be less common in IE.
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Word-level features Word-level features tend to describe the ‘’ of a word,
including such aspects as word case, punctuation, special characters and numerical
value. It is especially important not to underestimate the usefulness of digits when
defining word features. Digits can be used to express such information as dates,
percentages and intervals, but each of these tend to be expressed using specific
patterns. For example, a pattern such as ‘aa?’ where ‘?’ expresses a placeholder
for a sequence of consecutive numerical characters, could be used to express e.g., a
flight number (for American Airlines). Similarly, one can define patterns such that
two-digit and four-digit numbers can stand for years, one and two digits may stand
for a day or a month and so on [188].

Morphological features, heavily featured in any sufficiently robust NLP pipeline,
including for tasks extending beyond (or preceding) NER, relate to elements such as
words affixes and roots. Words ending in ‘ist’ (physicist, radiologist) could be used,
with some probability, to detect Person entities that are professionals. Words ending
in affixes like ‘ish’ could indicate nationalities, or even languages e.g., Danish [22].
However, one must be careful, since there are exceptions. For example, it would
not be correct to tag the word ‘apologist’ as a Person entity with a professional
background. There is an obvious multi-lingual element to these features as well [13].
For these features to provide value, they must be combined with other features in
sufficiently robust learning algorithms. Given a large background corpus, statistical
methods can also be used to discover relevant morphological features that may have
been overlooked by a feature engineer.

As the examples and feature categories above suggest, features can also be
extracted by applying functions over words. Collins and Singer [46] provides
an early example where the authors construct a feature function that operates
by isolating and concatenating non-alphabetical characters from an input word.
For example, given the word ‘T.J.Max’, the output of the feature function would
be ‘..’. Many candidates like this function now exist in the hundreds of NLP
papers describing both statistical and rule-based systems for a variety of problems,
including NLP. One of the more popular and recurring features is character n-grams,
introduced by [138], although variants of the idea had been around for a while,
especially in the information retrieval (IR) community. This feature is important
enough that we describe the procedure for extracting it below. It is also slightly
unusual in that the output is not a single value but a set of values. In popular variants,
the set may also be a multi-set or a ‘bag’ i.e. it may contain duplicate elements.

Character n-gram Feature Function Let us assume a character n-gram feature
function, where n (≥1) is known in advance, and a special character #. Given a
character sequence (which could be a single word, but can also be a multi-word
sequence; the only general constraint is that the input should be a sequence and
that the sequence should not include the special character) [c1, . . . , cm] containing
m ≥ 1 characters, the function would first pre-pend and append n−1 #’s to the
sequence, thereby creating a new sequence of length m + 2(n − 1). Next, a window
of size n is slid over the sequence from beginning to end, and the sub-sequence
contained within this window is placed inside the output set.
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As an example, suppose we wanted to extract 3-grams (called tri-grams) given
the chunk ‘President Obama’. First, we would append and pre-pend n−1 #’s (##) to
the sequence, yielding the new sequence (represented as a string for convenience)
‘##President Obama##’. Now, a window of size 3 is slid over the entire sequence to
yield the set {##P, #Pr, Pre,. . . ,ama,ma#,a##}.

Despite its simplicity, tri-grams and bi-grams have some advantages that make
them robust to artifacts like spelling errors. Also, characters at the beginning and
end of the chunk are overweighted compared to characters in the middle. This is
in recognition of the fact that beginnings and endings tend to be important when
comparing named entities. Character n-grams are also complementary to another
line of important techniques proposed in the information retrieval community
decades ago for robust comparison of ‘bags of words’, namely token-based and
set-based similarity measures like cosine similarity on tf-idf vectors.

Pattern features were introduced by [45] and then used by others [44]. The idea is
to map words onto a small set of patterns over character types. The goal is to achieve
robustness and generalization by performing such a mapping. For instance, a pattern
feature might map all uppercase letters to ‘A’, all lowercase letters to ‘a’, and all
punctuation to ‘.’. With such a representation, seemingly different words begin to
look similar e.g., ‘ABC Corp’ and ‘NBC News’ would both map to the same pattern
using just the simple rules described above. It is possible to have pattern features that
are much more sophisticated, and one could also induce relevant type-customized
patterns from a background corpus of named entities. Such sophistication can be a
double-edged sword in its own way. For example, if the background corpus is too
general, performance of such pattern features may not be well suited or applicable to
more domain-specific problems. On the other hand, if significant effort is expended
to develop such corpora or patterns for domain-specific problems, then it may
not be easy to extend to new domains. Robustness should also be given priority;
small changes in inputs or background corpora should not strongly affect results on
unknown or unseen (but still same-domain) datasets.

List-lookup Features In knowledge graph construction systems that often rely
on background knowledge, such as knowledge derived from public sources like
Wikipedia, DBpedia and YAGO [8, 167], list lookup features are extremely impor-
tant. In traditional work, terminology can be varied, with gazetteer, lexicon and
dictionary all used interchangeably with list. Lists are useful not just for named
entity detection (the probability that Buenos Aires is a named entity rather than
Buenos and Aires separately, increases significantly when we observe a Buenos
Aires in an external lexicon), but more importantly, for entity typing. In the case
of Buenos Aires, it is unlikely we will ever observe the named entity in a context
other than as having type ‘Location’ or ‘City’ (if finer-grained typing is supported).
In other situations, there can be considerable ambiguity. In earlier examples, we
described how locations can sometimes be confused with geopolitical entities and
vice versa. Because of word polysemy [151], additional problems arise. In the case
of domain-specific KGC, especially for non-English scenarios, good dictionaries
may not even exist. It is also important to realize a fundamental limitation of
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knowledge bases like Wikipedia, which generally contain pages on ‘well-known’
entities. In many domains, it is the long tail of less well-known entities, relations
and events that is of interest to analysts and users.

Sometimes, however, lists exist in ‘plain sight’. Common nouns listed in a
dictionary are useful, for instance, in the disambiguation of capitalized words in
ambiguous positions (e.g., sentence beginning). Mikheev et al. [117] reports that
from 2677 words in ambiguous position in a given corpus, a general dictionary
lookup allows identifying 1841 common nouns out of 1851 (99.4%) while only
discarding 171 named entities out of 826 (20.7%). In other words, 20.7% of named
entities are ambiguous with common nouns, in that corpus.

Many authors propose to recognize organizations by identifying words that
are frequently used in their names, such as ‘Inc’, ‘Corp’, ‘Associates’ or even
‘Telecom’. Most approaches implicitly require candidate words to exactly match
at least one element of a pre-existing list. However, we may want to allow some
flexibility in the match conditions. We describe some possibilities below.

First, words can be stemmed (stripping off both inflectional and derivational
suffixes) or lemmatized (normalizing for inflections only) before they are matched
[43]. For instance, if a list of cue words contains ‘subsidiary’, the inflected form
‘subsidiaries’ will be considered as a successful match. For some languages [80],
diacritics can be replaced by their canonical equivalent (e.g., naïve would be
replaced by naive).

Second, candidate words can be fuzzily matched against a reference list using
techniques like thresholded edit-distance [171] or Jaro-Winkler [44]. This allows
capturing small lexical variations in words that are not necessarily derivational
or inflectional. For instance, John could match Johnny because the edit-distance
between the two words is sufficiently small. In fact, Jaro-Winkler’s metric was
specifically designed to match proper names following the observation that the first
letters tend to be correct while name ending often varies. Other string similarities
exist for specific matching tasks.

Third, phonetic algorithms like Soundex or Metaphone can be used to match
against a reference list [146], since such algorithms normalizes candidate words to
a phonetic code such that names which sound very similar map to the same code
e.g., Jon and John would map to the same code. Soundex, which is the oldest and
best known of the phonetic algorithms, produces a code which is a combination of
the first letter of a word plus a three digit code that represents its phonetic sound.

Document and Corpus Features In the most general case, document features are
defined over both document content and structure. This section describes some
features that go beyond simple single and multi-word expression features to include
meta-information and statistics about documents and corpora.

In an early work on document-centric features, several authors extract features
from documents simply by identifying words that appear both in uppercased and
lowercased form in a single document [117, 152, 169]. Those words are hypothe-
sized to be common nouns appearing dually in ambiguous (e.g., the beginning of a
sentence) and unambiguous positions.
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Another feature, which is recognizing multiple occurrences of a unique entity
in a document, dates back to research in the field that started in the early 1990s
[115]. Determining multiple aliases2 of an entity is a variant of the famous
coreference resolution problem [122], which is still not solved. In early research,
deriving features from coreference is mainly done by exploiting the context of
every occurrence (e.g., Obama signed a treaty, Obama said that taxes will not be
raised, Obama declared a truce. . . ). Deriving features from aliases is mainly done
by leveraging the union of alias words (Sir, Elton, E., John).

Finding coreferences and aliases in a text can be reduced to the same problem
of finding all occurrences of an entity in a document, a complex endeavor. In
a well-known domain-specific example, for instance, the authors in [64] use 31
heuristic rules to match multiple occurrences of company names. As an example
of a heuristic, two multi-word expressions match if one is the initial subsequence
of the other. Cross-document coreference resolution is even more complicated, on
which research continues to this date. Both supervised and unsupervised approaches
have been proposed and compared [103]. One proposal is to use word-level features
engineered to handle equivalences (e.g., dr. is equivalent to doctor), with relational
features encoding the relative order of tokens between two occurrences.

Unfortunately, word-level features are insufficient for complex problems. A , for
instance, denotates a different concept than the literal denotation of a word (e.g.,
does Boston stand for the city of Boston or the Boston Red Sox?). The issue boils
down to one of semantic tagging in the sentence [143].

Beyond document content, metadata can also be directly used as features,
although the usage does tend to be domain-specific. For example, one could use
email headers as good indicator of person names. Many news articles often start
with a location name. Sometimes the purpose is to calibrate probabilities e.g.,
document URLs can be used to bias probabilities of entities. Again, the knowledge
can be highly domain-specific. An interesting fact that has been noted is that names
(e.g., bird names) have high probability to be a project name if the URL is from a
computer science department domain than not.

Advances in Feature Engineering: Word Embeddings The preceding discus-
sions highlighted the importance of feature engineering. In prior work, the utility
of the features was central in determining the actual effectiveness of a machine
learning algorithm for information extraction. In fairly recent work however, dating
to the early part of this decade, word embeddings have emerged as an excellent
way to mitigate feature engineering effort [118]. The basic idea behind most word
embedding algorithms is to map each word in the corpus to a low-dimensional (in
comparison to the dimensionalities of other text featurization algorithms like tf-
idf), continuous (i.e., real-valued) vectors. The dimensions tend to lie between 20
and 100, depending on the size of the corpus. The embedding dimensionality is

2Aliases of an entity are the various ways the entity is written in a document e.g., Sir Elton John,
E. John.
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a hyperparameter and is accepted as given by the embedding algorithm. Generally,
these embeddings work in a completely unsupervised fashion i.e. they do not require
labeled data, although various complicated variants are also able to take labels into
account when generating the embeddings. In modern work, a neural network (which
is usually not deep unlike, say, a convolutional neural network) like a skip-gram
model or a continuous bag of words model is used for the actual optimization.

The intuition is as follows. Imagine that we are globally trying to derive vectors
for all the words such that, for a given word (e.g., ‘cat’), either its vector is predictive
of the vectors of its context words (in this case, the words that fall within a short
distance of cat), or the context word vectors are together predictive of the given
word.3 However, when optimizing, the ‘window’ that defines the context is slid over
all words in the corpus, so even though the context considered is local, the smooth
sliding of the window ensures that influence is gradually percolating, leading to
vectors that are hard to interpret but that have some remarkable intuitive properties.

These intuitive properties were borne out in some of the early (in the modern
era4) work on word embeddings. The best known of these, and still extremely
popular, is the word2vec algorithm. Word2vec allows optimization using either skip-
gram or CBOW. Empirically, skip-gram has been found to be slightly better in
actual problem settings. When using word2vec to embed a ‘common’ corpus like
Wikipedia or the Google news corpus, it was observed that the vectors for words
falling in the same (or similar) semantic class e.g., dog, cat and horse, fell close
together in the vector space. Even more interestingly, it was possible to compute
analogies in the vector space. In a famous example, one could do a computation such
as King − Man + Woman in the vector space, and if a sufficiently large and broad
corpus (like Wikipedia) was available then the resultant vector for the expression
above was found to be close to the vector for Queen. This result is obtained despite
the fact that the algorithm never received any labels, or any knowledge about which
words fall in the same semantic class etc. Other algorithms inspired by word2vec
or obeying similar methodology include GloVe and bag-of-tricks [84, 140]. All of
them are based on some notion of context based on word co-occurrence, although
the specific optimization functions are different. The bag-of-tricks approach also
uses sub-word information, which allows it to deal with misspellings and OOV (out
of vocabulary) words. This can be useful, especially when robustness is an important
issue.

Embeddings have become so popular that they have percolated to allied commu-
nities in the knowledge discovery community, including graph embeddings, network
embeddings, document embeddings and even knowledge graph embeddings. We
cover the latter in Chap. 4. Because of the popularity of the field (formally called

3What is used for the prediction and what is being predicted is the difference between CBOW
optimization and skip-gram optimization.
4The concept of embedding things into low-dimensional vector spaces is not novel. Using neural
networks like skip-gram and CBOW and showing that they uncover properties of words that we
intuitively understand is a relatively novel phenomenon.
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‘representation learning’), it has become an enormously influential and impactful
research of area within machine learning. Most likely, we have not seen the last of
it and work will continue to emerge in this area.

2.3.2 Relation Extraction

(RE) is the problem of detecting and classifying relationships between named
entities (NEs) extracted from the text [9]. A relation usually denotes a well-defined
(having a specific meaning) relationship between two or more NEs.We illustrate
using the following examples (including the relation type with the arguments in
parantheses):

1. Personal/Social: [Mary, Queen of Scots] was the royal cousin of [Elizabeth I]
2. Employment/Affiliation: [Albert Einstein] was one of the most distinguished

faculty appointed for life at the [Institute for Advanced Study] in [Princeton,
New Jersey].

3. Physical5: [Josephine] moved the [couch] from the left corner of the room to the
right corner, so that it was next to her [aunt’s portrait].

4. Geographical: [India] and [Nepal] are neighboring countries.

As with NER, we note that the set of relationship types that are within scope for
the RE system is specified by a pre-defined ontology, although much of the existing
work on relation extraction has tended to rely on a few ontologies for evaluation,
such as the highly influential ontology from the Automatic Content Extraction
(ACE) program [50]. ACE focuses on binary (relations between two entities), rather
than arbitrary n-ary, relations. The two entities involved are generally referred to as
arguments. The ACE ontology defines a set of major relation types and their sub-
types, examples of major types including physical (e.g. an entity is physically near
another entity), personal/social (e.g. a person is a family member of another person),
and employment/affiliation (e.g. a person is employed by an organization) types.
ACE also makes a distinction between relation extraction and relation mention
extraction. The former refers to identifying the semantic relation between a pair of
entities based on all the evidence we can gather from the corpus, whereas the latter
refers to identifying individual mentions of entity relations. This is an interesting
deviation from how NER systems have evolved, which (even today) focus primarily
on the extraction of mentions, leaving it to modules like (both within-document and
cross-document) coreference resolution and entity resolution (covered in Chap. 3)
to cluster mentions into the same underlying entity. In practice, however, because

5This particular example shows how a seemingly simple sentence in English can prove enormously
difficult to capture in a structured semantic form. Movement in this context is a quarternary relation
(who moved what from where to where), but the sentence also expresses a simpler ‘next-to’
relation.
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corpus-level relation extraction largely relies on accurate mention-level relation
extraction, the latter is of primary interest in any discussion on relation extraction.

The examples also illustrate how open-ended the RE problem can be in terms
of arguments, relation types and granularities. Even in the simple geographical
example sentence, one can see that multiple sub-types of relations can exist
(neighbor-of, has-continent, located-in-country etc.) and each such sub-type can be
expressed in different ways (we could have equivalently written the sentence as
‘India and Nepal share borders’) rendering the ambiguity problem in IE particularly
challenging for even supervised systems.

For these reasons, despite its obvious importance to domain-specific knowledge
graph construction, relation extraction systems do not currently enjoy the same
levels of performance as state-of-the-art NER systems [98]. Generally, the more
complex the definition of an extraction, the worse its corresponding extractor
performs. For example, event extraction, which we cover subsequently, performs
even worse than relation extraction, with even state-of-the-art systems far from the
70% F-Measure mark (with even worse performance in more novel domains than the
ones where the system might have been trained) that is considered feasible for large-
scale adoption. Much research is still left to be done for these extraction problem
domains.

In fact, successful RE requires detecting the argument mentions (e.g., Barack
Obama, United States), with the entity types chaining these mentions to the
ontological types (e.g., Politician, Country) their respective entities, and the type of
relation (e.g., PresidentOf) that holds between these arguments. Relation extraction
faces several challenges, several of which are shared by NER, though not to the
same extent. First, RE is much more dependent on the domain, and the language,
then NER. Supervised machine learning techniques applied to RE face the usual
difficulty of a lack of sufficient training data. Another interesting problem is that the
notion of a relation is inherently ambiguous, which means that labeling itself can be
a problematic endeavor, reflected in high inter-annotator disagreements. Extending
binary RE techniques to RE involving higher arity is also problematic, as we
describe in the section on Event Extraction (EE). Even in the simple example above,
we can intuitively see that detecting or classifying Barack Obama as President of the
United States is much easier than detecting that Barack Obama was the President of
the United States from 2009 to 2016. Quickly, the problem can become intractable,
or the noise makes results unusable.

Many of the earlier techniques that we mentioned for NER, including supervised,
semi-supervised and unsupervised learning, also apply to RE. Examples of systems
that are now considered relatively classic include DIPRE, Snowball, KnowItAll
and TextRunner [2, 32, 59, 187], all of which are semi-supervised rather than fully
supervised or unsupervised. The problem is modeled differently however. Assuming
binary relations, one way to model RE is to train either a binary (per relation)
or multi-class classifier for pairs of extracted NEs. However, if one does this for
every pair of entities extracted from the document, the complexity quickly becomes
quadratic, and performance declines sharply. Thus, heuristics often have to be
used to impose constraints. For example, one might only consider applying such
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classifiers to pairs of NEs extracted within a given span of text, or even within the
same sentence. Recently, deep learning methods have also been extensively applied
to RE [98].

Similar to NER, feature engineering has also been an important issue, and word-
level, semantic and kernel features have all been proposed over the years. Kernel
methods were especially popular in the earlier part of the last decade, an influential
work being [189]. Feature classes specific to relation extraction have also been
proposed. In general, such classes become necessary for ‘higher-order’ extractions
like relations and events. Also, as described earlier, word embeddings have had a
major impact on all of NLP, and RE feature engineering is no different. A more
exciting development has been the joint modeling and extraction of relations and
entities [190], and more generally, the joint extraction of events and entities. We
describe the intuition behind such joint models in more details in the next section.
Also, as pointed out earlier, deep learning methods, which almost always include
some form of representation learning, have also been applied to RE, making the
feature engineering problem less of an ad-hoc effort [98].

Because of the difficulty of the RE problem, and its recency, performance is
lower across the board compared to NER; furthermore, performance tends to decline
much more sharply as supervision levels are lowered compared to NER. More
details on RE approaches and evaluation, including fairly comprehensive surveys
and methodology reviews, may be found in [19, 98] and [9]. As the authors in that
paper describe, the field is still relatively new compared to NER and much work
is left to be done, especially in multi-lingual RE, n-ary RE and improvements in
state-of-the-art methods.

2.3.3 Event Extraction

(EE) refers to the task of identifying events in free text and deriving detailed and
structured information about them, ideally identifying who did what to whom,
when, where, through what methods (instruments), and why [142]. Event extraction
involves extraction of several entities and relationships between those entities. For
instance, in an example taken from [142], extracting terrorist attack events from
the text fragment ‘Masked gunmen armed with assault rifles and grenades attacked
a wedding party in mainly Kurdish southeast Turkey, killing at least 44 people.’
involves identification of perpetrators (masked gunmen), victims (people), number
of killed/injured (at least 44), weapons and means used (rifles and grenades), and
location (southeast Turkey). Just like relation extraction, the problem can be very
domain-specific. For example, in the mergers and acquisition domain, an event
might be a merger that has just happened, which would require extracting the
companies undergoing the merger (usually asymmetrically), the underwriter, the
dates, specific merger terms, attorneys involved etc. EE is considered to be the
hardest of RE, NER and EE.
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For geopolitical style events, EE has been mainly studied using the ACE
ontology [50], though other alternatives, such as CAMEO and ICEWS also exist
[180]. For the biomedical domain, the BioNLP shared tasks are popular [91].
Because intense research continues to be conducted in EE, it is much too early
to say which techniques are established and will stand the test of time. Some
strands have started to emerge, however. For example, to reduce task complexity,
early work tended to employ a sequence of classifiers that first extracted event
triggers, then determined the trigger arguments [3, 28]. With the advent of deep
neural networks, Convolutional Neural Networks (CNNs) have been employed as
the pipeline classifiers [130]. Regardless, pipeline approaches suffer from error
propagation via cascading, and joint extraction methods have emerged as state-of-
the-art as a result [102]. As the name suggests, joint IE approaches tend to extract
event triggers and arguments together, using methods such as structured perceptron
[102], and dependency parsing algorithms [114].

The intuition behind joint IE is worth considering, especially considering the
systems-level nature of knowledge graph construction. One can think about it
as follows. Events and entities are closely related; entities are often actors or
participants in events and events without entities are uncommon. The interpretation
of events and entities is highly contextually dependent. Existing work in information
extraction typically models events separately from entities, and performs inference
at the sentence level, ignoring the rest of the document. An alternate approach
that has recently come into vogue is to model the dependencies among variables
of events, entities, and their relations, and to perform joint inference of these
variables across a document. In essence, the learning problem is decomposed into
three tractable subproblems: learning within-event structures, learning event-event
relations, and learning for entity extraction. Probabilistic models are learned for
all of these subproblems, with a joint inference framework integrating the learned
models into a single model to jointly extract events and entities across a document.

The experimental results have been quite impressive, achieving state-of-the-art
performance on EE typed according to the ACE ontology. Even more importantly, it
was found that the benefits would often be mutual i.e. even a well-studied task like
entity extraction benefited from better performance when done in the context of a
joint inference framework. This is in line with the intuition stated earlier that there
are close semantic connections between event triggers and arguments, and it is best
to model such connections explicitly in the extraction framework itself.

One limitation of joint IE approaches is that they can suffers from complexity
issues, like joint or collective approaches in general. To combat this problem,
some approaches tend to rely on heuristic search to aggressively shrink the search
space. One sophisticated exception is [154], which uses dual decomposition for
joint inference with runtime guarantees. Other approaches proposing to do joint
IE without enormous complexity burdens are continuing to slowly emerge from the
research community.
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Overall, the performance of EE is quite poor compared to NER. One avenue
of research for improving EE performance is to exploit document-level contexts.
Berant et al. [16] exploits event-event relations, e.g., causality, inhibition, which
frequently occur in biological texts. It is clear that such relations are domain-
specific. For more general texts, existing work tends to focus on exploiting temporal
event relations [35, 54, 113]. For the ACE domain [50], there is work on utilizing
event type co-occurrence patterns to propagation event classification decisions
[81, 104]. Intuitively, co-occurrence is generally a useful feature (e.g., a DIE
event tends to co-occur with ATTACK events but interestingly also, TRANSPORT
events). In recent years, more general approaches have been proposed in this vein
that can handle broad-domain event relations (e.g., causal and temporal) through
the design of appropriate features. Similar to other extraction problems, ontological
constraints can also be leveraged. For example, an entity mention of type PER can
only fill roles that can be played by a person. The empirical utility of ontological
constraints for such tasks is only starting to be studied in detail, and we will likely
learn a lot more about the benefits and limitations of such constraints in the periods
to come.

2.3.4 Web IE

The Web has emerged as the single biggest source of data for many domains,
including reviews, e-commerce, academic literature and even investigative domains
like securities fraud and human trafficking. Given a domain, one problem is to
find and crawl relevant pages from the Web. This problem is known as domain
discovery, and although recent research on it has made much progress (using
techniques like reinforcement learning and page classification, for example), it
continues to be an interesting and difficult area of study.6 However, even given such
a corpus, constructing a domain-specific KG involves extracting important pieces of
information from the webpages.

Web IE [36], which covers this problem broadly, has an extensive history, with
the vast majority of influential papers being published about 10–15 years within the
initial growth of the Web. The dominant technique is a ‘wrapper’ [99], which was
originally defined as a component in a Web information integration system aimed at
providing a single uniform query interface to access multiple information sources.
In the case where the information source is a Web server, a wrapper must query the
Web server to collect the resulting pages via HTTP protocols, perform information
extraction to extract the contents in the HTML documents, and finally integrate
with other data sources. Due to historical reasons, the term ‘wrapper’ is now almost
exclusively associated (in the IE community) with Web IE.

6Two reasons are the dynamic nature of the Web, but also the safeguards often put in place (such
as registration requirements, and captchas) to avoid crawlers.
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At a high level, wrapper induction (WI) is the process used to generate wrappers,
usually using semi-automatic, rather than manual or fully automatic, methods.
Broadly speaking, a wrapper performs a pattern matching procedure relying on a
set of extraction rules. Tailoring a WI system to a new task can be challenging,
depending on the text type, domain, and scenario. To maximize reusability and
minimize maintenance cost, designing a trainable WI system has been an important
topic in Web knowledge discovery and domain-specific search. Unlike NLP-centric
IE, covered before, Web IE processes online documents that are semi-structured
and is consumed by a server-side application program that is attempting to ingest
the information in the documents into some kind of a database that is ultimately
accessed as a knowledge graph. Unlike traditional IE, Web IE is often not able to
leverage techniques such as lexicons and grammars to the same extent, since HTML
is very different from natural language, and has to instead rely often on exploiting
a mix of heterogeneous features, such as syntactic patterns, layout structures of
template-based documents as well as more traditional text-based features.

Similar to NER systems, WI systems can be classed as supervised, semi-
supervised and unsupervised [36], although sometimes the distinctions aren’t
completely clear.7 Supervised WI systems take a set of web pages labeled with
examples of the data to be extracted and output a wrapper. The user provides an
initial set of labeled examples and the system (perhaps with the help of a GUI)
may suggest additional pages for the user to label. The advantage of using a GUI
is to empower general users, rather than programmers, to use the system and label
additional data, which permits greater applicability. In this sense, supervised WI
systems are different from supervised NER systems.

Regardless, labeling examples with precision has always been considered to
be a difficult and arduous task in the broader AI community. Semi-supervised
WI systems like OLERA and Thresher try to find a way around this problem by
accepting a rough set of (instead of a complete and exact set of) examples from users
for extraction rule generation [37, 77]. Systems like IEPAD do not require labeling
[38], but instead push effort to the post-processing stage, when the user is asked to
choose a target pattern and indicate the data to be extracted. All these systems are
targeted for record-level extraction tasks. In the KG context, a record can be thought
of as an entity of interest, along with attributes describing that entity. For example,
a record describing a product would have the product identified as the central entity,
and attributes like price or description would be attributes that constitute the non-
ID ‘columns’ of the record. In this way, a KG can be incrementally constructed by
collecting such record-level extractions over a corpus of webpages. However, since
no extraction targets are originally specified for such systems, a GUI is still required
for users to specify intuitive extraction targets after the learning phase.

7For example, if the system required a lot of model engineering but no training data, is it really
‘unsupervised’?
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Purely unsupervised Web IE systems do not use any labeled training examples
and have no user interactions to generate a wrapper. The best examples are Road-
Runner and ExAlg [6, 49], which were designed to solve page-level extraction tasks,
while systems like DeLa and DEPTA are better-known for record-level extraction
tasks. Unsupervised systems ‘discover’ the extraction target by segmenting the data
that is used to generate the page or isolating non-tag texts in ‘data-rich’ regions
of the page. The overall problem tends to be severely under-constrained, making
it difficult e.g., several schemas may comply with the training pages leading to
ambiguity as to which attributes are important and which ones are not pertinent to
the domain. The choice of determining the right schema is left to users, meaning the
system is not fully unsupervised after all. Similarly, if only some of the extractions
are relevant, post-processing may be required for the user to select relevant data and
name the extracted clusters appropriately. The general goal however is to ensure that
supervision is minimal compared to semi-supervised and supervised WI systems. A
downside of this automation is that the system may become overly dependent on
the layouts of pages in the development and model engineering phases, and may not
do well (or even crash) in test phases or when subjected to new domains. In other
words, the price of high automation can sometimes end up being a lack of robustness
and generalization.

Because unsupervised WI continues to be a difficult area of research, relatively
few systems exist compared to supervised systems. Earlier, we described Road-
Runner as a highly influential example, whose impact has continued to be felt
many years after it was first proposed. RoadRunner considers the site generation
process as encoding the original database content into strings of HTML code [49].
As a consequence, data extraction is considered as a decoding process. Therefore,
generating a wrapper for a set of HTML pages boils down to the inference
of a grammar for the HTML code. RoadRunner uses a matching technique to
compare HTML pages of the same class and generates a wrapper based on their
similarities and differences. The main idea is to start by comparing two pages,
using the ACME (which stands for Align, Collapse under Mismatch, and Extract)
technique, described in the original paper [49], to align the matched tokens and
collapse for mismatched tokens. Since there can be several alignments, RoadRunner
adopts union-free regular expressions to reduce the complexity of the process. The
alignment result of the first two pages is compared to the third page in the page
class, and the process continues.

Although the techniques details of RoadRunner can become complex, it is worth
noting that, unlike other wrapper induction techniques that generated wrappers by
examining labeled examples and has knowledge of the target schema, RoadRunner
does not have prior knowledge about the organization of the pages. The technique is
also quite efficient, since the authors proposed various mechanisms (such as union-
free regular expressions) to ensure that the complexity does not exceed practical
limits. In the original paper, RoadRunner was able to outperform supervised
wrapper induction techniques like Wien and Stalker on an efficiency metric (CPU
time) by orders of magnitude [49].
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2.4 Evaluating IE Performance

Like any class of algorithms that has been rigorously researched and improved over
decades, IE can also be evaluated on multiple metrics of interest (of its output)
to a consumer. Many of these metrics quantify the difficulty of the problem via
tradeoffs. Two metrics that we pay special attention to, and that will also play a
role when we describe the evaluation of Entity Resolution in the next chapter are
recall and precision, which were originally adopted from the Information Retrieval
research community. These metrics, defined subsequently, can be respectively seen
as measures of completeness and correctness.

Since the metrics will be computed on the output of an IE with respect to a
gold-standard set of annotations, it is worthwhile asking what the outputs and gold-
standard look like. Given a corpus of documents, each document d can be defined
as a sequence of characters such that any (consecutive) span within the document
may be identified using a start offset and an end offset. In this simple model, the
gold-standard may be thought of as a set of triples, where each triple is of the
form (d, start offset, end offset). The IE output will also have this format. Let us
define each element of the gold standard as a slot. Intuitively, the IE system ingests
a corpus of documents, and outputs a set of candidate fillers for the slots. The goal
is to evaluate the IE system’s candidate slots against the reference slots in the gold
standard. Although the NER systems that were covered fall very naturally in this
category (with entity extractions filling slots), relation extractions and even event
extractions (broken down into argument and trigger detection) can be defined in a
similar way.

As a first step, let numSlots denote the number of slots in the gold standard G

(a set of slots), and let the IE output O be the set of candidate slot fillers. We define
the set of true positives to be O ∩ G i.e. the slots in O that were correctly extracted.
Let the set of false negatives be G − (O ∩ G) i.e. the slots in G that were never
extracted by the IE system. Finally, we refer to the slots in O that do not occur in G

as false positives.
Using these definitions, precision and recall are defined as follows:

precision = true positives

true positives + f alse positives
(2.1)

recall = true positives

numSlots
(2.2)

This simple model of IE outputs and gold standard is appealing because it can
easily be extended to other, more complex, IE problems. For example, in a particular
kind of IE system (NER), the system must not only identify the slots but must
also type the slots according to concepts from an ontology. Examples of concepts,
as covered earlier, include ontological elements such as Person, Organization and
Location. Per this notion, a slot in a gold standard would have the form (d,
start offset, end offset, type). For a more fine-grained picture of an IE system’s
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performance, precision and recall are often measured for each slot type separately.
The F-measure is used as a weighted harmonic mean of precision and recall, which
is defined as follows:

F = 2 ∗ precision ∗ recall

precision + recall
(2.3)

Precision, recall and F-measure are metrics that are used quite broadly within
computer science and are largely influenced by developments in the Information
Retrieval (IR) community. However, some metrics are IE-specific. One example
is the slot error rate (SER) which characterizes the extent to which the IE system
makes mistakes (as opposed to the other metrics defined above, which characterize
either correctness or completeness of the IE system). To define the SER, we must
first assume that slots in the IE output O are aligned (usually algorithmically) to the
slots in the gold standard G. A simple, but very conservative, definition of alignment
is that both the start and end offsets must be equal for two slots to be aligned. Note
that if the IE problem involves entity types, such as in NER, two slots (one from O

and one from G) can be aligned but not match, since the type in each slot could be
different. For example, it is possible that an extraction ‘United States’ got typed as
a location by the IE system, but is actually a geopolitical entity in the gold standard.
We assume that a slot in the gold standard can be aligned with at most one slot in
G. With this in mind, let us define the variable #wrong as the number of slots in G

that are (1) aligned with some slot in O, (2) do not match the aligned slot in O. In a
similar vein, let us define #missing as slots in G that are not aligned with any slot in
O. With these variables in place, SER can be defined as:

SER = #wrong + #missings

numSlots
(2.4)

The intuition behind SER is relatively simple: how many of the slots in the
gold standard G did the IE system either miss or get wrong? Similar to the other
metrics, SER is always between 0.0 and 1.0, but unlike the other scores, a lower
SER indicates a higher quality IE system.

Metrics other than SER, precision, recall and F-measure also exist for charac-
terizing IE system quality. Most modern systems, however, tend to focus on these
metrics.

2.5 Summary

Information Extraction (IE) is the first, and possibly most important step, in a
domain-specific knowledge graph construction system, once preliminary steps such
as domain discovery and dataset collection have been performed. Like most AI
problems, IE is not a solved problem, though performance has continued to steadily
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improve over the years, including for semi-supervised and unsupervised IE. Modern
advances, especially in event extraction, have been quite exciting, particularly due to
deep neural networks, and more recently, generative adversarial networks (GANs).
In the next several chapters, we cover downstream steps such as Entity Resolution
and Knowledge Graph Completion that must consume the noisy outputs of IE
systems.



Chapter 3
Entity Resolution

3.1 Introduction

Entity Resolution (ER) is the problem of devising algorithmic solutions for
determining when two entities refer to the same underlying entity [66]. The problem
is very common in almost all communities that deal with a lot of data, including
knowledge discovery and data mining, databases and the Semantic Web. It is also
a hard problem, despite (or perhaps because) of its common-sense nature, since
it generally does not take specialized knowledge for a human being to answer
the question of when two things are the same. ER problems widely exist in both
industrial and non-industrial applications, and big technology companies often task
entire teams to address the problem in its various guises. Multiple commercial and
research solutions exist, some based on work that was originally done many decades
ago [41]. Many books and special issues have also been dedicated to the topic.
Although not humanly possible to cover ER in all its depth in this chapter, we
attempt to synthesize the field in a conceptually meaningful way that will provide
practical insights into why ER should be given special attention in any robust
domain-specific KGC pipeline.

By way of a running example, consider the illustration in Fig. 3.1. Let us
optimistically assume that complete and correct named entity recognition and
relation extraction systems were applied to a corpus, yielding knowledge graph
fragments. Clearly, the two nodes Nadal and Rafael Nadal extracted from the two
documents need to be resolved since they are referring to the same underlying entity.
In general, the problem is not unique to natural language sources, and can emerge
even when we are constructing knowledge graphs over semi-structured (or even
structured) raw sources like log files and XML. That being said, the natural language
version of the problem is still special since one could potentially use linguistic
clues to determine when extracted pronouns in a document refer to the same entity
(anaphora or co-reference resolution). When extractions must be linked across
documents, the problem is generally referred to as cross-document coreference
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Fig. 3.1 An illustration of the cross-document ER problem. Only some extractions are shown
from each of the documents, with the same color used if the nodes should be resolved together.
The first document illustrates the ‘provenance’ of the KG nodes and relations. In general, each KG
node or relation can trace its provenance to a set of co-referenced extracted mentions

resolution. Just because the document sources are separate doesn’t preclude the use
of linguistic cues and features.

However, the problem of ER is much broader, and the earliest known instances
of it emerged in the patient linking and biomedical literature almost 50 years ago
[123]. Even today, much more work has been done on the structured version of the
problem (in both the database and Semantic Web communities) than in the natural
language community [57, 96]. Much of the work in the structured data communities
can be synthesized in a somewhat unified manner using similar concepts and terms.
This synthesis, though brief, will be the focus of this chapter. Because of the nature
of English language data as opposed to structured data, the NLP community has
been forced to take a somewhat different approach to the problem. A good review
of co-reference resolution may be found in [122].

In much work on ER, it was often the case that single-source, single-schema ER
(often called deduplication) was the main focus of the research, along with close
variants such as multi-source, single-schema ER. Recent research has attempted
to address the multi-schema version of the problem [89], especially in KG-centric
communities like the Semantic Web.

3.2 Challenges and Requirements

Before diving into solutions, we provide some intuition on why ER has proven
so difficult to automate and algorithmically encode. Figure 3.2 provides some
insight, despite its simplicity. The most important challenge in automating ER is the
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Fig. 3.2 An illustration of challenges that must be fulfilled to resolve entities in real-world
knowledge graphs. Note that, even when graphs are not ‘Web scale’ a scalability challenge still
arises because of the quadratic theoretical complexity of ER

ambiguity of the information extracted. Ambiguity is much harder to resolve in the
presence of noise, and without access to underlying text, but even after accounting
for those, it is not completely obvious how a machine is supposed to figure out that
‘Nadal’ in the first document refers to ‘Rafael Nadal’ or ‘Toni Nadal’. In the much
harder version of the problem, one would also have to figure out that ‘Hamburg’ in
the first document is actually referring to the ‘Masters Series Hamburg’ and not the
location Hamburg, as in the last document. More generally, because of nicknames
(e.g., Pistol Pete vs. Pete Sampras) and other alternatives, one may also have a hard
time coming up with viable candidates unlike the previous two cases, where one is
faced with the finer-grained problem of choosing among viable linking candidates
for a given node. Additionally, as in the natural language version of the problem,
there is also the issue of having to deal with singleton nodes i.e. those that show up
only once in the corpus and have no links to any other nodes.

Perhaps the most important challenge for an AI system attempting to counter
the ambiguity in ER is that humans seem to draw on background, often intuitive,
knowledge (often without even conscious reasoning) in several common ER
domains that can be hard to pin down precisely in code. A computational challenge
that will become more apparent in the subsequent discussion is scale, since naïve
solutions to ER grow quadratically with the number of nodes in the KG [42].
As the introduction also pointed out, multi-schema ER is still very much in the
nascent stages of research compared to the deduplication and single-schema cases.
For knowledge graph construction systems that control the underlying reference
ontologies of information extraction systems, multi-source, single-schema ER is
still often applicable. However, in the most general case, multi-schema ER is
necessary when constructing knowledge graphs over many sources, documents and
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tables, and across the outputs of multiple (not often transparent) systems. Building
such an ER system is still a challenge, especially if the domain is unusual in some
way and there is little guidance by way of prior work in academia, or precedent in
industry. Good performance from machine learning-based ER systems (the state-
of-the-art) may also require a lot of training data, which is hard to acquire, since
regular sampling and annotation does not work well in ER due to data skew
(intuitively, this can be understood by considering that one entity, if randomly paired
with another entity, will almost always never be a duplicate pair). While modern
machine learning techniques can partially deal with the challenge of limited labeled
data, human-level performance is yet to be achieved in the general case, and data
augmentation, transfer learning and semi-supervised learning techniques from other
machine learning applications (and theory) have yet to make a strong mark on ER.
Finally, noise in the input, usually because of the imperfections of IE systems but
also due to incompleteness in the original data, also have to be dealt with, since KGs
are rarely constructed over data sources that are already easy to reason with.

Given these challenges, it should not be surprising that real-world ER systems
perform well in some aspects, such as automation or scalability, but may be deficient
in others (e.g., heterogeneity) [85, 86]. Figure 3.2 captures these requirements
visually.

Automation First, given the increasing expense of data scientists and subject
matter experts, an ideal ER solution should exhibit a high degree of automation.
This requirement can be met by a non-adaptive system, but such a system would
have low robustness or real-world utility. If the system is adaptive and uses some
form of machine learning, the requirement can only be fulfilled by algorithms that
are minimally supervised (i.e. use small amounts of training data) or more rarely,
completely unsupervised. An alternate option that has been explored in industrial
ER is to leverage crowdsourcing or a professional annotation service. This option is
limited by both cost and scalability.

Scalability The size and growth in data ecosystems like Wikipedia, social media,
Linked Open Data, webpages, sensor data and schema.org markup (Chap. 5)
suggests that building a feasible ER system requires devising solutions that meet
requirements of elastic scalability, preferably requiring computational resources
that increase only linearly in the size of the data. While for many algorithmic
pipelines, this is an achievable goal, it is much harder for ER. The reason is that ER
is inherently (and theoretically) quadratic as we subsequently describe. Bringing
down this quadratic complexity to almost-linear complexity is a field of research in
its own right (called blocking).

Heterogeneity Earlier, we already suggested that multi-schema ER is becoming
more important for KG-centric applications. For the purposes of ER, multi-schema
heterogeneity can be broken down into two separate (but inter-related) problems.
The first is type heterogeneity, which arises when different ontologies are used for
different raw data elements. For example, one IE system may produce fine-grained
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types such as Inventor and Politician, while another may produce coarser-grained
types (e.g., Employed Person and Unemployed Person). The problem is further
compounded by potential noise in type annotations, and by the presence of
overlapping but not perfectly aligning type hierarchies across different sources
and IE sub-systems. For example, is an inventor employed? The problem is more
common than it seems, since the ontologies of many domains and datasets are
developed relatively independently. Except in a few domains (such as the Gene
Ontology in the biology domain [7]), heterogeneous ontologies and type-sets are
the norm, rather than exceptions.

The second heterogeneity problem is property heterogeneity (the matching of
property or edge labels across ontologies) that tends to arise once types are aligned.
For example, let us assume that an ER system has correctly managed to address
type heterogeneity by aligning Inventor (in one ontology) with Entrepreneur (in
a second ontology). The ER system would also have to deduce such alignment
relationships between properties such as :co-founder_of and :organization. As these
examples show, alignment does not necessarily imply relationships of subsumption
or equivalence, but is simply an empirical determination of sufficient entity overlap.
Just like other processes in KGC, like IE, instance-driven ontology alignment is
itself a problem that continues to be researched and has not been solved with human-
level performance [1].

Domain-adaptation Finally, if the ER system is to be re-used across domains, it
must also be domain-adaptable in its workings. By domain-adaptable, we do not
mean that the ER system has to be a static one-size-fits-all model that magically
works well across all domains, or even that it needs to be trained in one domain but
is expected to perform well in a separate test domain (transfer learning). Rather,
it must have the ability to adapt as the domain changes. In this sense, domain-
adaptability is not necessarily mutually exclusive from domain-specificity, but refers
to the meta-ability of an ER system to be re-trained, re-deployed and re-used on a
different domain with minimal overhead. Domain-adaptability is hard to formalize;
it is a practical and empirical constraints. In practice, no ER system is completely
domain-adaptable (some assumptions built into the system are directly influenced
by a use-case) or completely domain-specific (some re-use is always possible, and
more re-use is generally possible in related domains). However, some systems are
so strongly influenced by a particular use-case (e.g., product Entity Resolution) that
adapting them to other domains is equivalent to writing the system from scratch.
Event resolution is emerging as an excellent example of this phenomenon. Although
event resolution is still heavily in flux as a research area, with a growing body
of output, the best systems (both for event resolution and extraction e.g., BBN
ACCENT [153]) tend to be heavily tuned not only for events, in general, but specific
types of event. It is not unreasonable to suppose that an event resolution system
designed for geopolitical events may not do as well if transferred to concert or
entertainment events. Characterizing and evaluating such transferability is currently
an open research problem.
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In summary, there is a natural tradeoff between domain-adaptability and automa-
tion, and the two tend to influence each other in the design phase. For domain-
specific ER systems, it is unlikely that (even with reasonable training data) the
system will be able to resolve entities that look very different from the entities
the system was designed to resolve. Modern representation learning techniques,
such as word and graph embeddings [90, 132], have alleviated concerns about
domain adaptation to a certain extent, since embeddings can be trained on unlabeled
corpora. There is no free lunch however, since training good embeddings requires
a sufficiently large corpus. In some domains, availability of such corpora may be
limited.

3.3 Two-Step Framework

Even in early research, the quadratic complexity of pairwise ER was well recognized
[123]. Given two data sources G1 and G2, where the set of non-literal entities in
graph G is represented by the symbol E, a naïve ER system would evaluate all
possible entity pairs. Assuming constant cost per evaluation, the run-time would be
O(|E1||E2|). In the rest of this section, for two entity sets E1 and E2, an entity pair
(e1, e2) is denoted as bilateral iff e1 ∈ E1 and e2 ∈ E2. Given a collection of entities
from E1 ∪ E2, two entities e1 and e2 are said to be bilaterally paired iff (e1, e2) is
bilateral.

To mitigate the quadratic complexity of generating all possible bilateral pairs, a
two-step approach is adopted, as illustrated in Fig. 3.3 [41]. The first step, blocking,
uses a many-many function called a blocking key to cluster approximately similar
entities into overlapping blocks [42]. Only entities sharing a block are bilaterally
paired and become candidates for further evaluation by a link specification function
in the similarity step [172]. The link specification function may be either Boolean
or probabilistic, and is used to indicate whether a candidate entity pair represents
the same underlying entity.

Because ER developed as an important research area in the database community,
the majority of ER research still assumes input databases to be structurally
homogeneous i.e. if more than one database is input to the ER system, the databases

Fig. 3.3 The typical two-step workflow adopted for Entity Resolution
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are assumed to have the same schema and same semantics [41, 57]. In the knowledge
graph world, this would be equivalent to matching entities between knowledge
graphs that have the same underlying ontology i.e. sets of concepts and proper-
ties. An important special application of structural homogeneity is deduplication,
whereby matching entities in a single dataset must be found. Although structural
homogeneity may seem like a limitation (which in some applications, can be severe),
it is also often the case that ER is the next step after information extraction in a
domain-specific KGC pipeline, and a single ontology is involved. Thus, the goal of
ER is to deduplicate sets of entities extracted and typed according to this ontology.
In the rest of this section, structural homogeneity is assumed. Later, we will briefly
discuss extending the two-step model to include structural heterogeneity, but for an
extensive discussion refer the interested reader to [86].

3.3.1 Blocking

Blocking is a preprocessing step that is used to mitigate the quadratic complexity of
applying the link specification function on all (unordered) pairs of mention nodes in
the knowledge graph. Given a set M of mention nodes (i.e. ‘raw’ entities extracted
from documents), this exhaustive set contains (|M||M| − 1)/2 distinct unordered
pairs, which is an untenable number of link specification computations for |M| �
1000. In the most general case, blocking methods use a many-many function called
a blocking key to cluster approximately similar entities into overlapping blocks.

Definition 3.1 (Blocking Key) Given a set M of mention nodes, a blocking key
K is a many-many function that takes a mention m ∈ M as input and returns a
non-empty set of literals, referred to as the blocking key values (BKVs) of m.

Let K(m) denote the set of BKVs assigned to the mention m ∈ M by the
blocking key K . Furthermore, without loss of generality, the literals in the definition
above are all assumed to be strings.

Example 3.1 (Blocking Key) Assuming the publication domain, with the Publica-
tion concept being the domain of properties Author, Venue and Year, and with the
special property : label indicating the title of the publication, one possible blocking
key K for deduplicating citations might be overlap(Author(m1), Author(m2)) ∧
commonT oken(V enue(m1), V enue(m2)). This rule says that two publication
mentions should share a block if their titles have at least three common tokens,
or their venues have a common token (e.g., ACM KDD vs. KDD). We return to this
example later in the context of automatically ‘learning’ good blocking keys. Note
that this blocking key can generate multiple blocking key values for each node. More
precisely, if a mention node has j authors and t tokens in its venue, the number of
possible BKVs for the node is j + t . If any of these j + t BKVs intersect with
the BKV set of another node, they would fall within the same block (labeled by its
BKV). The two nodes would share more than one block if they share more than
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one BKV. Intuitively, this would happen when they share more than one common
token across their venue attributes, or they share more than one author, or they share
an author and a common token in their venue attributes (or any combination of
the three options). For reasons covered shortly, some blocks may end up being
discarded. In many situations, therefore, the higher the number of shared blocks
between two mentions, the higher the probability they will actually be compared in
the similarity step.

Given a blocking key K , a candidate set C ⊆ M × M of mention pairs can be
generated by a blocking method using the BKVs of the mentions. We describe three
influential methods that are generally included in established surveys [42], and all
of which assume that a blocking key K is already specified by a user. Depending on
the method, K must also obey some constraints. Subsequently, we also describe the
automatic learning of good blocking keys.

3.3.1.1 Traditional Blocking

Given a blocking key K , an obvious solution is to generate the candidate set C as
the set {(mi,mj )|mi,mj ∈ M ∧ mi 
= mj ∧ K(mi) ∩ K(mj ) 
= {}}. Put simply,
if two mention nodes share a blocking key then they would be paired and inserted
into C. Note that the definition of C as a set further implies that mi and mj may
share multiple BKVs, although in the earliest definitions of this so-called traditional
blocking, a mention was allowed to have exactly one BKV (hence, blocks could not
overlap but represented a partition, with singleton blocks automatically discarded
from further comparison).

A problem with traditional blocking approach is that of data skew. Consider,
for example, two mentions from a People knowledge graph that are blocked based
on the tokens in their last names. Last name frequencies in many countries tend
to exhibit skew (a Zipf-like distribution) for some values (e.g. Smith in English-
speaking countries). A consequence of the skew is that the run-time of the blocking
method ends up being roughly proportional to the number of pairs generated by the
largest block. This implies that run-time is still roughly quadratic in the number
of mentions, unlike state-of-the-art blocking methods, where run-time tends to be
slightly super-linear.

Despite this problem, traditional blocking is often the first line of attack in
practical systems. In recent years, researchers have modified traditional blocking
to handle the large blocks that result from skew. A simple method that is easy to
implement and difficult to outperform is block purging. The premise of the method
is that, with a sufficiently expressive blocking key, blocks that are too large can be
safely ignored. Such blocks are most likely indexed by BKVs that are equivalent
to stop-words like the or an. The algorithm takes a purging threshold as an input
parameter, and discards all blocks that have more pairs than this threshold. The
threshold may be learned from the data, and tends to be empirically robust to good
default values as long as the default value is not too low.
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Fig. 3.4 An illustration of the Sorted Neighborhood workflow

3.3.1.2 Sorted Neighborhood

Another influential blocking method that was fundamentally designed to guarantee
a bound on the size of the candidate set is the Sorted Neighborhood (SN) method,
also known as merge-purge [76]. The algorithm works as follows. First, a single
blocking key value (BKV) is generated for each mention using a many-one blocking
key. Next, the BKVs are used as sorting keys to impose an ordering on the mentions.
Finally, a window of constant size w is slid over the sorted list. All mentions sharing
a window are paired and added to the candidate set. Figure 3.4 illustrates a workflow
with a sliding window of size 3. We assume that the single BKV is generated by
concatenating the last name of the first author of the publication with the year of the
publication.

The sliding window has two implications for candidate set generation. First,
mentions with different blocking key values may still get paired. This happens when
the window straddles mention IDs in the list that have consecutively sorted BKVs
(e.g., gff dt5 and llg6y5 get paired in Fig. 3.4). Second, some mentions with the
same blocking key value may not get paired. For example, in Fig. 3.4, if the BKV
for node gmhq1 had been Kejriwal2013 instead of Kejriwal2014, and the window
size had been 2 instead of 3, then the node pair {gghy1, gmhq1} would not be added
to the candidate set.

Assuming that the window size w is much smaller than the total number of
mentions, Sorted Neighborhood has time and space complexity that is linear in the
size of the data. For this reason, it has endured as a popular blocking technique,
especially when inputs are highly structured and it is possible to devise good
blocking keys that yield a single, reliable BKV per mention. Numerous variations
now exist, including implementations in Big Data architectures like Hadoop and
MapReduce [95]. In general, the primary differences between the variants and
the original version are input data types (e.g., XML Sorted Neighborhood vs.
Relational), constraints on blocking keys and tuning mechanisms for the sliding
window parameter (e.g. adaptive vs. constant) to achieve maximal performance in
the similarity stage.
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The main disadvantage of SN algorithms for KG-centric deduplication is their
reliance on a single-valued blocking key. The authors of the original SN algorithm
recognized this as a serious limitation and proposed multi-pass SN, whereby
multiple blocking keys (each of which would still have to be single-valued) could
be used to improve coverage. For a constant number of passes, the run-time of
the original method is not affected asymptotically. Practical scaling is achieved by
limiting the number of passes to the number of cores in the processor.

However, because even in multi-pass SN, each blocking key still remains
single-valued, the use of expressive blocking keys (or even simple token-based
set similarity measures that have high redundancy) is precluded. Extending SN
to account for heterogeneous data sources is also non-trivial. For this reason, the
application of Sorted Neighborhood to knowledge graphs and other heterogeneous,
semi-structured data sources has been limited. The use of a simple blocking method
such as traditional blocking (combined with skew-compensating measures like
block purging) has remained popular for that reason.

3.3.1.3 Canopies

Clustering methods such as Canopies have also been successfully applied to
blocking [112]. The basic algorithm takes a distance function and two threshold
parameters t ight ≥ 0 and loose ≥ t ight , and operates in the following way. First,
a seed mention m is randomly chosen from M . All mentions that have distance less
than loose are assigned to the canopy represented by m. Among these mentions, the
mentions with distance less than t ight (from the seed mention) are removed from M

and not considered further. Another seed mention is now chosen from all mentions
still in M , and the process continues till all points have been assigned to at least one
canopy.

In the Canopies framework, each canopy represents a block. However, unlike
more typical methods like Sorted Neighborhood, Canopies does not rely on a
blocking key, and instead takes a distance function as input. For this reason, at
least one work has referred to it as an ‘instance-based’ blocking method, and distin-
guished it from ‘feature-based’ blocking methods such as Sorted Neighborhood and
Traditional Blocking.

Similar to other popular blocking methods like Traditional Blocking and Sorted
Neighborhood, several variants of Canopies have been proposed over the years,
but the basic framework continues to be popular. For example, a nearest-neighbors
method could be used for clustering mentions, rather than a threshold-based method.
In yet another variant, a blocking key can be used to first generate a set of BKVs
for each mention, and Canopies can then be executed by performing distance
computations on the BKV sets of mentions, rather than directly on the mentions
themselves. Because this variant relies on a blocking key, it can no longer be
considered an instance-based blocking method.
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For the distance function, the method has been found to work well with (the
distance version of) a number of token-based set similarity measures, including
Jaccard and cosine similarity [12], but in principle, many other distance functions
can be used.

3.3.1.4 Research Frontier: Learning Blocking Keys

Earlier, we presented an example of a blocking key overlap(Author(m1),

Author(m2)) ∧ commonT oken(V enue(m1), V enue(m2)). This key, while
intuitive, has some severe drawbacks. First, it would cluster together all papers
authored by the same author into one single block. Some authors have many
hundreds of papers, and some others collaborate with others who also have hundreds
of papers. It is quite likely that, by itself, a rule such as this would end up placing
a large number of publication mentions in a single block, which would negate the
complexity benefits of blocking. A similar problem occurs with the second part
of the rule, which says that a common token in venues is all that’s required for
two publication mentions to get blocked together. Tokens like ACM and IEEE are
very common in venue titles (at least in Computer Science and Engineering), and
once again, we would face the problem of having far too many mentions (the vast
majority of which are non-matching) placed in one block.

In general, we note that the problem of data skew cannot really be avoided, unless
the rules are extremely precise. Because there is a tradeoff between precision and
recall in most real-world AI systems, the complexity reductions entailed by blocking
would end up having a high cost in terms of lost recall. The goal of blocking always
is to try and reduce complexity with minimal loss in recall. The blocking methods do
provide some respite from data skew, if tuned correctly. For example, block purging
would remove blocks that have too many mentions from further consideration in the
similarity step. However, the problem with the blocking rule above is that a ‘big’
block would also contain many matching pairs along with non-matching pairs of
mentions. Removing a big block would reduce complexity, but would yield recall
that is almost trivially low.

This argument shows that, even with good blocking methods in place, the quality
of the blocking key itself is very important for achieving a good tradeoff between
recall and complexity reduction. Devising such a blocking key was once the turf of
domain experts and knowledge engineers (and in many domains, still is), but with
the advent of machine learning, it has been found that good rules can be learned
automatically using a training set of labeled duplicate and non-duplicate mention
node pairs.

The general idea is to frame the problem as that of learning rules in Disjunctive
Normal Form (DNF). DNF formulae can technically be used to represent any
propositional formula, but in practice, some restrictions are imposed (e.g., negations
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of blocking predicates are not allowed, since this could make the blocking step
intractable). The optimization function can be informally stated as that of learning a
DNF formula such that: (1) the formula yields True for pairs of nodes in the positive
training set, and (2) the formula yields False for pairs of nodes in the negative
training set. It turns out that this problem can be decomposed as the famous Red-
Blue Set Covering problem, which is known to be NP-hard. However, the problem
is well-explored in the literature, and even a relatively greedy approach offers some
good guarantees. In the few (but still growing) literature on blocking key learning,
greedy algorithms were used to solve the reduced version of DNF blocking key
learning. For more details, we refer the reader to fairly recent work in [87, 88]
and [148].

3.3.2 Similarity

Once obtained, the candidate set C of mention pairs must undergo similarity
computations to determine, whether probabilistically or deterministically, the subset
of C that comprises duplicate mention pairs. In an i.i.d (independent and identically
distributed) formalism, each mention pair can be independently assigned a score,
with higher scores indicating greater likelihood of the pair being a duplicate pair.
Although scores are typically normalized so that they lie between [0, 1], there is
controversy about interpreting them as probabilities. We sidestep this controversy
by continuing to refer to these numbers as scores.

Two issues now remain, one of which is concerned more with practice, and
the other with theory. First, what methods do we use to obtain the scores in the
first place? Intuitively, the ‘goodness’ of every such method should be measured
by comparing against the perfect outcome i.e. the ground-truth. An ideal method
that has knowledge of the complete ground truth would assign a score of 1.0 to
every duplicate pair, and 0.0 to every non-duplicate pair. Subsequently, we present
some formal methods for measuring performance using this principle. In practice, a
validation or development set of labeled pairs can be used to select and tune methods
to yield (by way of expectation) the best performing distribution of scores.

Second, given that scores output by a practical method will lie between 0.0
and 1.0, and will not necessarily be binary, how should one use these scores to
‘partition’ the set C into sets of duplicate pairs and non-duplicate pairs? There is
a well-known theoretical model in the early ER literature known as the Fellegi-
Sunter model, named after the scientists who first formulated it. The model generally
requires not one but two (not necessarily distinct) thresholds to achieve a desired
optimal tradeoff between the often conflicting goals of minimizing false positives
and false negatives (which affect both precision and recall; see Sect. 3.4). The
intuition behind using two thresholds is that they partition the set of mention pairs
into three sets (matches, non-matches and possible matches i.e. pairs requiring
manual review). To compute the score that will be compared to these thresholds,
the ratio of conditional probabilities (with the condition based on whether the pair if
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assumed to be matching or non-matching) is used. For more details on the Fellegi-
Sunter model, we refer the reader to [61].

We also note that, for models that rely on rule bases or heuristics, labels may
be directly output. However, to get good rules or heuristics, extensive domain
engineering effort is required and in recent years, such methods have been largely
superseded by machine learning. Therefore, we focus on machine learning methods
for assigning scores to pairs in the candidate set. The evolution of the ER field (not
necessarily within knowledge graphs or Semantic Web alone) is complicated; we
provided an extensive survey, and the limitations of existing work, in [86].

In machine learning-based ER, each mention pair in C is first converted to
a numeric (typically, but not necessarily, real-valued) feature vector. Figure 3.5
illustrates the procedure for two mentions, assuming that special (i.e. ‘dummy’)
values are used in the event that (1) values for a given property are missing from
both mentions, even though values for that property were observed for at least one
other mention in the dataset; (2) the value for a given property is missing from one
(but not both) mentions.

In general, given n properties, and m functions in the feature library, the feature
vector would have mn elements. We say general, because it is also possible that
some features are designed for specialized values (e.g., a feature that computes
the number of milliseconds between two date values), and not applicable to two

Fig. 3.5 An illustration of feature vector computation (between the two nodes mentioning Michael
Rogers) assuming structural homogeneity. −1 is the dummy value used in this example
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arbitrary values. However, having so many features, many of them correlated and
often not useful, can be detrimental to machine learning generalization, especially
when the training set is small and highly heterogeneous, as is the case with real-
world ER tasks. There are several remedies for this; we consider two of the most
popular ones. First, one can start by computing all possible (i.e. mn) features and
then apply a feature selection method like Lasso. Second, one could spend some
amount of domain engineering effort assigning only a few (in many cases, one might
be sufficient) features to each property. Assuming that at most c feature function are
assigned to a column, with c � m, the total length of the feature vector will be
much less than mn, which would lead to presumably faster generalization and more
robust performance. Often, domain expertise can be leveraged to limit m to 1 by
deciding which feature function might be best for a given property. Considering
again the example in Fig. 3.5, we may have decided to use NYSIIS for computing
name similarity, normalized age difference for computing age similarity, TF-IDF
for computing address similarity and so on, as opposed to applying every single
function in our library for every possible property feature computation. Intuitively,
one would not want to apply NYSIIS to address similarity since it would likely
not be useful (and may even cause noise and problems with generalizing on fewer
training examples, an important concern).

What feature functions should be included in a library? There is an enormous
body of work on both string similarity, and to a lesser degree, phonetic similarity
functions, and not nearly as much research on numeric or date types. Software
packages in multiple languages exist that implement many of these similarity
functions. For the sake of completeness, we provide a list of functions that have
been popularly used in Table 3.1.

There is another problem that we alluded to at the beginning of the chapter,
namely, what should we do when there are multiple values per mention per
property? The pre-dominant way to extract features from such pairs of ‘sets’ is
to consider a two-layer similarity function, where the first layer consists of an
atomic similarity function (e.g., if the set consists of string values, this could be the
normalized similarity version of the edit distance function), and the second layer
consists of an aggregation. Aggregation functions of this kind have been explored
in detail in the clustering literature. Below, we portray such a two-layer function
using an example.

Example 3.2 (Two-layer Similarity Feature) Consider two sets of names {Jim,
Jimmy, Jeremy} and {James, Jim} between which we need to output a single simi-

Table 3.1 Illustrative instances of similarity functions typically used in ER workflows. Neither the
feature categories nor the example functions in each feature category are exhaustive

Feature category Example functions

Character Edit, Levenstein, Affine Gap, Smith Waterman, Jaro, Q-gram

Token Monge Elkan, TF-IDF (Soft, Q-gram), Jaccard

Phonetic Soundex, NYSIIS, ONCA, Metaphone, Double Metaphone
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larity score. An atomic similarity feature could be Monge-Elkan. Namely, we could
compute Monge-Elkan scores between each pair of terms in the two sets and output
the results as a complete weighted bipartite graph. Several aggregation measures
could be considered for the second layer of the similarity feature. For example, we
could take either the minimum or maximum of all scores in the graph as the final
score. We could also take the average. A more robust mechanism that has been
found to work well in several cases is the Hungarian algorithm, which tries to match
each term in the first set with at most one term in the second set (vice versa) such
that the total sum of scores is maximized. We only keep those edges in the graph
that were included in the optimal matching output by the Hungarian algorithm. Note
that the number of edges in the graph will be the minimum of the cardinalities of
the two sets, since a term in any set can never receive more than one assignment. In
this sparser graph, containing only optimal assignments, we could take the average,
minimum or maximum (or any reasonable aggregation) of edge weights.

As the example above shows, the more complicated a similarity measure
becomes, the more degrees of freedom it tends to have, and the more options there
are to explore. The extensive literature on ER is a good place to look for defaults,
but for unusual domains, there is no substitute for careful tuning, some of which
may have to be done through a systematic process of trial and error. Lately, vector
space embeddings (covered in the next chapter) have alleviated some of the feature
engineering effort that has gone into a typical ER workflow, but there is still much
more work to do on this front.

Once a feature extraction methodology is in place, each mention pair in C

is, in turn, converted to a feature vector. A machine learning classifier is trained
on positively and negatively labeled training samples, and is thereby used to
assign scores to the vectors in the candidate set. Several classifiers have been
explored in the literature, with random forest, multilayer perceptron and Support
Vector Machine (SVM) classifiers all found to perform reasonably well. We note
that, although all of these classifiers make the i.i.d. (independent and identically
distributed) assumption, transitivity does play a strong role in real-world ER
determinations (if (e, j) and (e, k) are classified with high scores, it is reasonable to
suppose that so should (j, k)). This fact is typically employed, not at this stage, but
in the post-processing clustering and soft transitive closure stage (briefly discussed
in a subsequent section) where we take the outputs of similarity and attempt to
‘collapse’ them into clusters, with each cluster representing all mentions of a single
underlying entity.

3.4 Measuring Performance

The independence of blocking and similarity suggests that the performance of each
can be controlled for the other in experiments. In the last decade, in particular,
both blocking and similarity have become increasingly complex. It is the norm,
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rather than the exception, to publish either on blocking or on similarity in an
individual publication. Despite its potential disadvantages (in practice, there are
interdependencies between blocking and similarity, since feature functions and
biases could often be traded between the two, sometimes without knowledge), this
methodology has resulted in the adoption of well-defined evaluation metrics for
both blocking and similarity. This independence assumption has been challenged in
a small number of applications in recent years; as just one example, a blocking
technique called comparisons propagation proposes using the outcomes in the
similarity step to estimate the usefulness of a block in real time [137]. The premise
is that if a block has produced too many non-duplicates, it is best to discard it rather
than finish processing it. By this logic, the cost of processing the block outweighs
the gain, at least in expectation.

While such techniques are appealing, their implementations have mostly been
limited to serial architectures, owing to the need for continuous data-sharing
between the similarity and block generating components. Experimentally, the
benefits of such techniques over independent techniques like Sorted Neighborhood
or traditional blocking (with skew-eliminating measures such as block purging) have
not been established extensively enough to warrant widespread adoption. The two-
step workflow, with both steps relatively independent, continues to be predominant
in the vast majority of ER research. With this caveat in place, we describe these
metrics below.

3.4.1 Measuring Blocking Performance

The primary goal of blocking is to scale the naïve one-step ER that pairs all
mentions (order-independently) with each other. A blocking system accomplishes
this goal by generating a smaller candidate set. If complexity reduction were the only
goal, the blocking system could simply generate the empty set and obtain optimal
performance. Such a system would be useless because it would generate a candidate
set with zero duplicates coverage.

Thus, duplicates coverage and candidate set reduction are the two goals that every
blocking system seeks to optimize. To formalize these measures, let Ω be denoted
as the exhaustive set of all |M|C2 pairs; in other words, the candidate set that would
be obtained if there were no blocking. Let ΩD denote the subset of that contains
all (and only) matching mention pairs (i.e. semantic duplicates). ΩD is designated
as the ground-truth or gold standard set. As in previous sections, let C denote the
candidate set generated by blocking. Using this notation, Reduction Ratio (RR) is
defined by the equation below:

RR = 1 − |C|
|Ω| (3.1)
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The higher the Reduction Ratio, the higher the complexity reduction achieved by
blocking, relative to the exhaustive set. Less commonly, RR can also be evaluated
relative to the candidate set Cb of a baseline blocking method (by replacing Ω

in Eq. 3.1 with Cb). Note that, since RR has quadratic dependence, even small
differences in RR can have an enormous impact in terms of run-time. For example, if
Ω contains 100 million pairs (not an unreasonable number, since it would only take
a mentions set M with about 20,000 mentions i.e. a relatively small dataset), and
System 1 achieves an RR of 99.7%, while System 2 achieves 99.5%, their candidate
sets would differ by 200,000 pairs.

In a similar vein, coverage, or Pairs Completeness (PC), is defined below:

PC = |C ∩ ΩD|
|ΩD| (3.2)

One interpretation of PC is to consider answering the following question: if we
knew L and apply it to the candidate set C output by blocking, what would be
the recall? From this perspective, PC is nothing but a measure of recall (used for
evaluating overall duplicates coverage in the similarity step, as described in the
subsequent section) that controls for the errors in further learning or approximating
L , which is not known. In other words, Pairs Completeness gives an upper bound
on the recall metric. For example, if PC is only 80%, meaning that 20% of the
duplicate pairs did not get included in the candidate set, then coverage on the full
ER task will never exceed 80%.

There is typically a tradeoff between achieving high PC and RR. The tradeoff
is achieved by tuning a relevant parameter. There are two ways to represent this
tradeoff. The first is a single-point estimate of the F-Measure, or harmonic mean,
between a given PC and RR:

F − Measure = 2 × PC × RR

PC + RR
(3.3)

A single-point estimate is only useful when it is not feasible to run the blocking
algorithm for multiple parameter values. Otherwise, a more visual representation of
the tradeoff can be achieved by plotting a curve of PC vs. RR for different values of
the parameters.

Another tradeoff metric, Pairs Quality (PQ), is less commonly used than the F-
Measure of PC and RR:

PQ = |C ∩ ΩD|
|C| (3.4)

Superficially, PQ seems to be a better measure of the tradeoff between PC and
RR than the F-Measure estimate, which weighs RR and PC equally, despite the
quadratic dependence of the former. In this vein, PQ has been described as a
precision metric for blocking. Intuitively, a high PQ indicates that the generated
blocks (and by virtue, the candidate set) are dense in duplicate pairs.
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In practice, PQ gives estimates that are difficult to interpret, and can be
misleading. For example, suppose there were 1000 duplicates in the ground-truth,
and only contained 10 pairs, of which 8 represent duplicates. PQ, in this case, would
be 80%. Assuming that the exhaustive set is large enough that RR is close to 100%,
the F-Measure (as defined above) would still be less than 2% (since PC is less than
1%). The F-Measure result would be correctly interpreted as an indication that,
for practical purposes, the blocking process has failed. The result indicated by PQ
alone is clearly misleading, suggesting that, as a tradeoff measure, PQ should not
be substituted for the F-Measure of PC and RR. An alternative, proposed by at least
one author but (to the best of our knowledge) not used widely, is to compute and
report the F-Measure of PQ and PC.

3.4.2 Measuring Similarity Performance

Given a candidate set C, the similarity step uses a learned linking function to
partition C into sets CD and CND of duplicates and non-duplicates respectively. The
two metrics predominantly used for evaluating the similarity step, and by virtue, ER
as a whole, are precision and recall:

Precision = |CD ∩ ΩD|
|CD| (3.5)

Recall = |CD ∩ ΩD|
|ΩD| (3.6)

In other words, precision is the ratio of true positives to the sum of true positives
and false positives, while recall is the ratio of true positives to all positives in the
ground-truth. Similar to PC and RR defined earlier, there is a tradeoff between
achieving high values for precision and recall. An F-Measure estimate can again
be defined for a single-point estimate, but a better, more visual, interpretation is
achieved by plotting a curve of precision vs. recall for multiple parameter values.

Note that, since similarity is defined as a binary classification problem in the
machine learning interpretation of ER, other measures such as accuracy can also
be defined. One reason why they are not considered in the ER literature is because
they also evaluate performance on the negative (i.e. non-duplicates) class, which is
not of interest in ER. An alternative to a precision-recall curve is Receiver Operating
Characteristic (ROC), which plots true positives against false positives. Historically,
and currently, precision-recall curves dominate ROC curves in the ER community,
but nowadays, important machine learning packages (e.g., sklearn in Python) allow
a user to print out various metrics and curves without any programming. In real life,
we recommend printing out both the precision-recall and ROC curves to evaluate
both (1) how well the ER system is doing in an ‘absolute’ sense; (2) how well the
ER system is doing above random.
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3.5 Extending the Two-Step Workflow: A Brief Note

Although the vast majority of ER (including research and implementation) is
concerned with optimizing and automating one or both of the two steps in the
standard blocking-similarity workflow, the heterogeneity of knowledge graphs can
require two additional steps to be given some thought in some application domains.
Earlier in the chapter, we discussed how heterogeneous schemas (by way of type
and property heterogeneity) can cause problems for ER systems. If we are linking
mentions between two independent knowledge graphs with different schemas, or
even between mentions in a single knowledge graph with very fine-grained types
and properties, it is important to develop a robust type and property matching system
that can be executed prior to blocking to reconcile schema heterogeneity. Just like
blocking, we generally desire such preprocessing steps to be recall-friendly, since
we do not want to risk losing (already sparse) duplicates before the similarity step,
which is expected to add noise of its own.

It turns out that there is a large body of work on both type and property
matching, sometimes involving the same researchers as ER, and generally falling
under the umbrella term of schema matching or ontology alignment. In practice,
simple solutions to ontology alignment get us most of the way in real-world domain-
specific KGC pipeline, though advanced solutions are mandated if the accuracy
requirements are higher than normal or if the domain is particularty difficult. More
recently, there has also been some work on schema-free approaches that do not
require an alignment between heterogeneous ontologies before executing an ER
workflow. The efficacy of these approaches is not fully understood, however, since
only a handful of papers have explored its applications.

Additionally, post-processing steps like clustering may also be required after
the similarity step has finished executing. We mentioned clustering and transitive
closure earlier, and these continue to be the most important post-processing steps.

3.6 Related Work: A Brief Review

Entity Resolution has been a research area for almost fifty years, even though the
problem has picked up a large amount of steam only in the last couple of decades
owing to the growth of the Web. Recall that we had listed four important challenges
when we had first described the problem (i.e. automation, heterogeneity, scalability
and domain adaptation). Concerning the last challenge (domain adaptation), we note
that most ER solutions in research tend to be domain agnostic, although a few are
specifically geared for customer (both people and business) names. Many of the best
domain-specific ER systems (such as for product names, or for publications) tend
to have been developed in industry, and likely required a lot of proprietary training,
tuning and model engineering. Scalability efforts have tended to attract the attention
of the database community (by way of devising the problem as optimizing ‘soft
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joins’) and to a lesser extent, parallel and distributed systems. There is a tradeoff,
however, between automation and scalability, as we later discuss.

Our main focus in the discussion herein will be on automated solutions, with
some focus on heterogeneity. The reason is that automation continues to be the most
important issue, both in the broader AI community, but especially in problems like
ER where intensive effort is usually required to achieve good quality.

3.6.1 Automated ER Solutions

Since the early 2000s, machine learning has been actively applied to ER [57].
A machine learning-based ER system could adaptively learn good blocking and
similarity functions from both the labeled training data (for supervised approaches),
and the unlabeled data (for unsupervised, semi-supervised and clustering-based
approaches). On the other hand, systems that use a fixed set of heuristics on all data
sources are non-adaptive, and by any pragmatic definition, the issue of automation
trivially does not arise.

One of the earliest examples of an adaptive ER system, proposed by Winkler
[183], uses a variant of the Expectation Maximization (EM) algorithm [53]. The
Fellegi-Sunter model of record linkage is assumed [61]. In this model, candidate
entity pairs are partitioned into three classes (matches, non-matches and possible
matches) using two decision thresholds. The class of possible matches includes
entity pairs that are too ambiguous for the similarity function to resolve into a match
or non-match class. Such pairs require clerical review. A Bayesian argument shows
that using two decision thresholds is optimal in the sense of minimizing possible
matches for preset Type I and II error rates [61].

Unfortunately, Winkler [184] stipulated that the EM algorithm can only be
successfully applied to ER if at least five empirical conditions are met. Elmagarmid
et al. [57] succinctly list these conditions, some of which are problematic for Linked
Data. One such assumption is conditional independence of features. Another is that
the match class is well-separated from the non-match class. In systems were EM
was considered as a baseline, the empirical performance was found to be less than
ideal when some of the stated assumptions are violated [89].

Ravikumar and Cohen [150] use similar, but more robust, ideas by proposing
hierarchical graphical models as a way of modeling the similarity of features
through latent variables. The system is unsupervised, but assumes structural homo-
geneity and a serial architecture. A distance function1 is also assumed to be
provided. Empirically, the scope of the work was limited to Relational Database
deduplication applications.

On a similar note, Bhattacharya and Getoor [20] use Latent Dirichlet Allocation
(LDA) for modeling latent commonalities between entities [29]. The main appli-

1In the paper, Soft-TF-IDF was proposed as an excellent distance function [150].
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cation of their work is in collective classification [21]. A classic example arises
in the co-authorship domain. Given a set of bibliographic works, two authors (on
two independent works) are likely to be the same individual if they have similar
co-authors. By modeling such relational information through latent variables, pairs
of individuals can be collectively disambiguated. While promising, the work has
not been shown to be applicable to domains where relational issues don’t arise.
Similar to the work by Ravikumar and Cohen [150], structural homogeneity and
serial execution were both assumed in the original paper [20].

Christen [39] adopts a different approach. First, a strong weight-based heuristic is
used to sample training examples that are almost certainly matches or non-matches.
Intuitively, the feature weights in such examples are nearly all 1.0 for matches (or
0.0 for non-matches). The method is predicated on locating such extreme-weighted
samples to bootstrap the training process. A classifier (SVM) is trained on the
samples and used to label other feature vectors in the candidate set. The method,
along with other viable classifiers, a synthetic data generator and a user interface, is
available in the FEBRL toolkit [40]. FEBRL was originally designed for biomedical
record linkage (a much more constrained form of ER, pertaining primarily to the
database community), but can be applied to other domains. Heterogeneity is a
major issue, since FEBRL is designed for structurally homogeneous applications.
Empirically, only small benchmarks were used for evaluations.

Systems based on active learning have also been proposed, two good examples
being RAVEN and COALA [125, 128]. Such systems do not require as many
training examples as fully supervised systems such as MARLIN [23], and deliver
competitive performance. A major disadvantage is scalability, owing to the method
being iterative and requiring continuous user participation. On a positive front,
heterogeneity is less of an issue as these systems were designed for Linked
Data applications. In particular, RAVEN accommodates structural heterogeneity
by modeling type and property alignments as an application of the stable marriage
problem [72].

Genetic algorithms have also been extensively explored [126], both in supervised
and unsupervised versions. The unsupervised version relies on a measure known
as a pseudo F-Measure (PFM). PFMs are heuristics that aim to approximate the
actual F-Measure by analyzing the data, and are used as fitness functions in the
genetic algorithms. A PFM can also be used to guide the unsupervised learning of
a link specification function, as in the deterministic EUCLID algorithm, which uses
linear and Boolean classifiers [127]. Although promising, evaluations have shown
that the correlation between various proposed PFMs and the actual F-Measure
is tenuous [127]. With genetic approaches, the entire dataset has to be scanned
over multiple iterations, and results are non-deterministic. In the original papers,
EUCLID and the genetic algorithms also did not include solutions for type and
property alignments, and were evaluated on small benchmarks [126, 127]. Taken
together, these observations indicate that these algorithms may not be suitable for
large-scale Linked Data applications.

A promising solution that requires training data, but that can then be applied to
other datasets with minimal supervision through transfer learning was proposed by
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Rong et al. [159]. This solution is also one of the few to favor both automation and
heterogeneity, the latter by virtue of employing schema-free features. An example
of a schema-free technique that was earlier introduced in Chap. 2 was Canopies
[112]. Such techniques address heterogeneity in a brute-force fashion, by ignoring
all structural information. In the case of [159], features are extracted by jointly
considering the information set of all properties (of a candidate instance pair). For
example, a numeric parser is used to extract numeric information (e.g. dates) present
in the properties. A problem with using such features is that noise can be introduced
by extracting irrelevant information. Also, Rong et al. [159] do not directly address
type heterogeneity. Finally, while transfer learning has some advantages, it also
degrades occasional performance. Determining when to use transfer learning is an
ongoing area of research [136].

3.6.1.1 The Automation-Scalability Tradeoff

There is a queer tension between automation and scalability. Extremely scalable
ER systems, such as Dedoop, require user involvement in terms of specifying the
workflow, as described below. Broadly speaking, it has been found that scalable
systems tend to make strong assumptions. Locality Sensitive Hashing techniques,
for example, assume that appropriate hashing families exist for the distance
functions being approximated [52]. In literature covering both ER and ontology or
schema matching, the only functions for which LSH has been appropriately utilized
are Jaccard and a version of the cosine distance function [56]. An extension to LSH
techniques to accommodate the properties of machine learning classifiers is by no
means straightforward. Another example of an architecture amenable to parallel and
distributed algorithms, Swoosh, also imposes strong assumptions on the similarity
function [15].

It is also interesting to note that ER systems implemented in a shared-nothing
paradigm, such as MapReduce, tend to leave the burden of specification on the user.
We mentioned Dedoop earlier as an example that requires the user to completely
specify the workflow [94]. The same is true for LIMES and SILK [124, 172], which
are not implemented in MapReduce, but require the user to specify the appropriate
functions and parameters. Smart joins and soft joins, which have witnessed much
research in the database community, are not adaptive and generalizable in the way
proper ER systems are.

A promising approach that is potentially amenable to a fixed number of approxi-
mately linear-time MapReduce jobs is the SVM-based proposal by Christen [39]. In
its present form, the proposal accommodates neither scalability nor heterogeneity.
The latter problem can be dealt with, as described in the following section. It is less
obvious how the system can automatically and scalably locate good seed examples
to bootstrap the training process. Christen makes the assumption that seeds can be
unambiguously located by seeking feature vectors with weights that are nearly all 0
or 1. With noisy data, this is almost never guaranteed. In empirical findings, feature
vectors are often found to be sparse, even for duplicates. If a potential method can
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locate seeds from such data using a fixed number of MapReduce jobs automation
and scalability requirements can be reconciled. Once located, seeds can be used, in
principle, for training not just a machine learning similarity classifier, but also for
learning DNF blocking schemes and determining property alignments.

It is also possible to survey this issue from the opposite end of the spectrum.
Automated systems, which mainly tend to be EM-based algorithms that iteratively
refine a likelihood function by learning good parameters for latent variables, require
multiple scans over the dataset, copious amounts of data sharing and an unspecified
number of iterations before convergence [20, 150]. In general, they are non-
deterministic and may require multiple re-starts to avoid the pitfalls of local optima.
As Winkler (1993) observed [183], various empirical conditions have to hold for
such algorithms to be viable. Recent progress on this last issue has been promising,
but is, by no means, a settled matter [159].

Generalizing even further, the problem arises because automated systems yield
a similarity function that may be ‘opaque’ in that it is a black-box function that
cannot be further analyzed or optimized. In such cases, the only option is to rely
on a good blocking function, which may itself require manual intervention. We
subsequently describe some efforts in the direction of discovering good blocking
functions without manual supervision. There has been some work on this, but by
and large, there is no workflow that is both unsupervised and that is ultra-scalable.

3.6.2 Structural Heterogeneity

A traditional assumption in the ER community is that datasets have been homog-
enized prior to executing an ER workflow [96]. In the tabular community, schema
matching is assumed to have been performed a priori [41, 57]. In the Semantic Web
community, ontology matching is assumed to have been performed a priori [63].

These assumptions would not be problematic if the schema and ontology
matching problems were solved. In fact, research on them has been ongoing for
many decades [60, 147]. In some cases, schema matching systems like Dumas
assume that ER has been solved a priori2 [24]. The argument is that, despite the
progress in both ER and schema matching, it is misleading to assume that either
problem has been solved perfectly.

The question is largely empirical. Is it sufficient to use classic, relatively simple,
approaches to address type and property heterogeneity in the broader context of ER?
Empirical results have shown that while type heterogeneity is amenable to classic
approaches [88], property heterogeneity is not [89]. Insofar as the related work is
concerned, only the RAVEN system properly3 deals with heterogeneity, although
empirical evaluations on this issue are limited [125]. Other systems, like the one

2Dumas relies on duplicates to match columns.
3That is, RAVEN addresses heterogeneity through alignments, as opposed to ignoring structure.



56 3 Entity Resolution

by Rong et al. [159], address heterogeneity by using schema-free features that
ignore structural properties altogether. There is an empirical argument against such
approaches, for well-structured RDF graphs, since one would be losing valuable
structural information by adopting a purely schema-free approach in devising
features (while simplistic, an analogy would be the process of ‘getting rid’ of
columns in a table by concatenating all columns into one column, which would
make the schema matching process trivial, since one would be matching records
between tables with only one column each).

Note that the barrier to adopting a heterogeneous solution is conceptually simple
to overcome, by pre-pending alignment modules to the basic two-step workflow
illustrated earlier. Recent progress on this issue has been promising, especially in
the context of blocking [137].

3.6.3 Blocking Without Supervision: Where Do We Stand?

We mentioned earlier that there has traditionally been a strong focus (in the ER
research community) on the similarity step. An unfortunate consequence of the
complexity of recent ER research is that researchers often ignore other aspects, such
as blocking, in their exclusive focus on similarity or scalability. For example, both
[150] and [20] use simple ad-hoc blocking keys in their experiments.4 Scalable
systems make more extreme assumptions. For example, Dedoop require both
blocking and similarity steps to be precisely specified by a user as part of an ER
workflow [94].

For the same reason that ignoring the effects of schema or ontology matching
prior to ER is dangerous, the effects of blocking on the overall workflow should not
be neglected. Before a contribution in 2013 [87], DNF blocking scheme learners
were, at best, semi-supervised [33]. Evaluations conducted in prior work by the
author show that clustering techniques such as Canopies do not work well on a
variety of datasets [112]. In the Semantic Web, the only unsupervised blocking
scheme learner, proposed by Song and Heflin in 2011 [166], was evaluated on small
datasets and is not as expressive as general-purpose DNF blocking schemes. Thus,
in real-world ER, unsupervised blocking cannot be assumed away, since it is not
completely solved yet. Whether the community addresses this issue in sufficient
detail, as opposed to a continuing skewed focus on the similarity step, will become
clearer in the decade to come.

4For example, all records sharing a 4-gram character sequence were placed in the same block
[150].
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3.7 Summary

Entity Resolution is an important second step in a knowledge graph construction
workflow following information extraction. The problem continues to be a difficult
one, and has taken on renewed importance with the advent of knowledge graph
ecosystems. Although the research has witnessed much progress, some issues are
still outstanding. Particularly glaring is the lack of an adaptive, unsupervised ER
system that learns from prior results, is amenable to domain adaptation and transfer
and is scalable enough to deal with Web-scale graphs. Also lacking is a systems-
level view of the problem, although in recent years, research has been catching up
to industry in building end-to-end ER infrastructures for specific problem domains
(such as products and geopolitical events).



Chapter 4
Advanced Topic: Knowledge Graph
Completion

4.1 Introduction

Information extraction and entity resolution are clearly both important steps in
domain-specific knowledge construction [66, 111]. However, even when done with
high accuracy, they are rarely enough. Knowledge graphs constructed over raw
data very often have missing and noisy information, including incorrect triples
and missing relations. Put simply, such knowledge graphs have to be refined or
‘completed’ before they can be deployed in a good application [139, 145]. An
example is illustrated in Fig. 4.1. The knowledge graph fragment in the figure
describes political figures and their affiliations, and is possibly extracted from
news articles. We assume for the moment that the entities and relations have been
correctly extracted and reconciled (i.e. the techniques in Chaps. 2 and 3 achieved
excellent performance). Given this KG, if we were to execute a query asking who
the first lady was under President Barack Obama’s presidency, we would not get
any answer. On the other hand, we would get a response from the system if we
replaced President Barack Obama in the query with President George Bush. This is
because the fact that Laura Bush was the first lady in the Bush administration has
been explicitly extracted from a source, perhaps because it was mentioned, while the
same is not true for First Lady Michelle Obama. In general, it is not reasonable to
assume that every possible fact or inference is ever going to be explicitly extracted
from a raw input data source. Sometimes (as in the case above), this is because the
‘missing’ fact is not mentioned in the source explicitly, but many times, it is also
because of noise in the extraction system. Similar reasoning can be applied to the
presence of ‘wrong’ links.

In its broadest form, knowledge graph completion would take a graph with
missing and wrong edges and nodes, and attempt to both correct and complete the
graph. In other words, knowledge graph correction is included within knowledge
graph completion. In the case of Fig. 4.1, a ‘good’ system would be able to take
the graph and infer the fact that Michelle Obama was first lady in the Obama
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Fig. 4.1 A simplified illustration of the knowledge graph completion problem

administration. A ‘bad’ system would add noisy links, or remove correct links by
incorrectly labeling them as noisy. Usually, the picture is much more nuanced and
the evaluation of a knowledge graph completion system involves assessing whether,
despite the potential introduction of some noise, the system ended up providing an
overall benefit to knowledge graph quality.

Why is there reason to believe that knowledge graph completion works? One
can intuitively see that the global graph exhibits some ‘semantic regularities’ that
could be exploited. For example, if we had observed ten presidents in the KG, and
found that 90% of their spouses were also explicitly designated first ladies in the
KG, it is reasonable to believe that the other 10% are also first ladies, despite no
explicit evidence. One can also see why this kind of inference can be a problem.
The question of when and where knowledge graph completion is useful, and when
it should be avoided has not been fully addressed by the research community. One
disadvantage of completion, and of any method that relies solely on inference, is
that state-of-the-art neural methods typically no provenance or ‘explanation’ of why
some link was predicted between two nodes, or why some link was declared as
noisy.

With these caveats in mind, we argue that knowledge graph completion is still a
very useful, and actively researched, area within the broader community of knowl-
edge graph construction. Multiple classes of methods have been proposed for the
problem over the years. Before the modern renaissance of deep learning and neural
networks, probabilistic graphical models constituted the primary line of attach for
such ‘relational’ problems. Markov logic networks were particularly popular in the
mid 2000s, but for various reasons, including scalability, were supplanted by models
like probabilistic soft logic that offered a good tradeoff between expressibility,
optimization and representation. Probabilistic soft logic and its variants have
continued to be popular for various tasks, but the dominant line of research in the
knowledge graph completion community (at the time of writing), and the one that
we subsequently describe, is knowledge graph embeddings (KGEs) [176].
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4.2 Knowledge Graph Embeddings

Knowledge Graph Embeddings (KGEs) are an applied offshoot of a broader
emergent research area called representation learning [14]. In the 2000s, as machine
learning systems continued to proliferate, it was realized (somewhat disquietingly)
that the performance of a machine learning system was usually dependent very
heavily on the features engineered over the datasets, as opposed to the virtues of the
machine learning algorithms themselves. Feature engineering tended to be manual
and ad-hoc, and in the general case, there was no good reason to suppose why
one feature would perform better than another. Researchers also realized that the
‘goodness’ of a feature set also had a lot to do with the dataset itself i.e. it was
quite possible for a particular set of features to perform well on one dataset but
not another, all else being the same. Clearly, a less manually intensive, data-driven
approach to learning good representations for data (whether it was natural language
data like words and sentences, or image data) was motivated.

In the natural language community, representation learning algorithms like
word2vec have become fairly standard and are widely used across the board for
a range of tasks [118], especially information extraction (relation extraction, event
extraction and named entity recognition). The key idea is to slide a window over text
and to embed each word into a dense, real-valued vector space (typically between
50–200 dimensions) that is low-dimensional compared to alternatives like tf-idf,
which require dimensionality in the range of 50,000–1 million, depending on the
size of the language’s vocabulary. The optimization function used for the embedding
takes into account the other words in the window, called a context. Intuitively, words
that have similar context would be embedded close together in the vector space. In
natural language, this generally leads to common-concept instances (such as cat
and dog) being embedded close together due to their similar context. This kind of
embedding is reminiscent of topic models like Latent Dirichlet Allocation (LDA)
[29], but LDA was a graphical (not neural) model designed to embed documents. In
contrast, algorithms like word2vec are designed to embed words, based on context,
rather than coarser-grained documents, although variants of word2vec can also be
used to embed sentences, paragraphs and documents [51].

Because of their semantic dependence on context, rather than ontology, embed-
dings based on statistical models have been found to capture some remarkable
analogical patterns in a completely unsupervised fashion (Fig. 4.2). Despite not
being given ontological information, the embedding is able to deduce that words
like ‘generator’ and ‘battery’ should be clustered closer together in a semantic space,
rather than (say) ‘teaching’ and ‘generator’. In the embedding space, one can also
carry out vector operations like King − Man + Woman with the resulting vector
being very close to Queen in the semantic space.

Primarily because of these semantic properties, and also (on a related note)
because of superior performance on downstream natural language processing
tasks like information extraction, the word2vec algorithm became so popular that
numerous variants have emerged, and the algorithm has even been adopted to embed
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Fig. 4.2 An illustration of word embeddings using algorithms like word2vec. Words that occur in
similar contexts (e.g., elections, campaigning) are clustered closer together in the vector space.
2D visualizations like these (from higher-dimensional vectors) can be rendered using neural
dimensionality reduction algorithms like t-SNE [108]. Note that dimensions do not have any
intrinsic meaning

nodes in networks and graphs (see e.g., the DeepWalk algorithm [141]). However,
its application or adoption to knowledge graphs is not clear, and has not been
usefully demonstrated. In part, the reason is that knowledge graphs are a richer,
more structured data set, since even the simplest definition of a KG assumes that is
a multi-relational, directed, labeled graph where entities are nodes and relations are
different types of edges. Motived by this additional structure, novel approaches were
proposed in the early 2010s to embed nodes (and often, but not always, relations)
in the KG into a continuous vector space while preserving certain key structural
properties.

In the rest of this section, it will be useful to think of a KG as a set of triples,
where each triple is of the form (h, r, t), where h and t are referred to as head and tail
entities respectively, and r is the relation. We do not assume constraints, although
models like RDF impose many requirements on how relations and head/tail entities
are actually represented. For example, the RDF model does not allow head entities
to be modeled as ‘literals’ like strings or numbers. One reason for ignoring such
constraints in the present discussion is that typical (and early) papers on knowledge
graph embeddings have mostly arisen in the NLP and general AI communities,
rather than the Semantic Web community, which is the major adopter of RDF.
Although some recent work has attempted to embed knowledge graphs modeled
specifically as RDF, even these models tend to be heavily inspired by the earlier
models that were proposed in ‘ontologically light’ communities.

Furthermore, although many embedding models exist at the time of writing,
almost all models represent h and t as points in the vector space, while relation r

usually has a more flexible representation, since it is modeled as an operation. Thus,
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it could be a vector, representing operations such as translation or projection, but in
some cases, it can also be a matrix. In contrast, representing an entity as a matrix is
far less common. The representations themselves are learned by minimizing a global
loss function involving all entities and relations. As a result, even the embedding
representation of a single entity or relation encodes global information from the
entire knowledge graph. Subsequently, we describe some of the more established
methods for achieving this kind of encoding.

4.2.1 TransE

TransE was one of the first KGE techniques proposed (shortly after the Structured
Embedding method [31]) [30], and has largely survived the test of time. It continues
to be widely used, and delivers extremely competitive performance. A range of
alternatives (commonly referred to as Trans*) have been built using the same fun-
damental principles as TransE, but with richer optimizations and information sets.
We present the TransE system in detail, and then briefly cover some alternatives.

First, TransE is an energy-based model for learning low-dimensional embed-
dings of entities; specifically, relationships are represented as translations in the
embedding space: if (h, r, t) holds, then the embedding of the tail entity t should
be close to the embedding of the head entity h plus some vector that depends on
the relationship r . Put more mathematically, the algorithm attempts to generate an
embedding for each h, r and t such that for triples observed in the knowledge
graph, the translation relationship h + r ≈ t should hold. Given enough triples,
the hope is that the embedding is general enough to yield new information i.e. in the
test phase, if we observe a relationship h′ + r′ ≈ t′ that was not observed during
training, there is a non-trivial probability that (h′, r ′, t ′) is a true triple (constituting
missing information in the original KG) and can be added to the KG to complete it.
A key strength of TransE is its reliance on a reduced set of parameters since it learns
only one low-dimensional vector for each entity and each relationship. The energy-
based optimization function (based on translation) is also simple and intuitive to
understand.

Why would translation be expected to be so successful? One motivation is that
hierarchical relationships are extremely common in KBs and translations are the
natural transformations for representing them. For example, a natural representation
of trees is to have the siblings be close to each other; in other words, with nodes at
a given height organized on the x-axis, the parent-child relationship corresponds to
a translation on the y-axis. Since a null translation vector corresponds to an equiva-
lence relationship between entities, the model can then represent the sibling relation-
ship as well. A secondary motivation arose from coincidental findings from the word
embedding literature, where some authors found that many relations (e.g., capital-
of, has-father) are represented by the model as translations in the embedding space.
This suggested the existence of embedding spaces in which 1-to-1 relationships
between entities of different types may potentially be represented by translations.
The intent of TransE was to enforce such a structure of the embedding space.
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4.2.2 TransE Extensions and Alternatives

The basic TransE model has been extended in numerous ways into a family
of Trans* algorithms such as TransH, TransR, and TransD, to name a few
[106, 176, 179]. The primary difference lies in the underlying assumptions about
the embedding space,, which impacts the optimization function used during both
training and testing. For example, to overcome limitations of TransE in dealing with
1-to-N, N-to-1, and N-to-N relations, an effective strategy is to allow an entity to
have distinct representations when involved in distinct relations. To take an example,
one could imagine learning a different embedding for the city ‘Tokyo’ in the context
of a relation such as ‘capital of’ than in the context of the relation ‘has population’.
Intuitively, the first embedding would put (the entity vector representation of) Tokyo
closer to other capital cities, while the second embedding may place it closer to
cities with similar populations. in theory, this kind of embedding permits richer
information sets to be captured, but at the cost of using more training data and
observing more triples.

TransH follows this general idea [179], by introducing relation-specific hyper-
planes. Similar to TransE, TransH models entities and relations as vectors, but
the relation vector r is considered to be specific to a hyperplane (defined by its
normal vector wr ). In other words, a relation is actually captured by two pieces
of information (a vector, and a hyperplane normal). Given a triple (h, r, t), the
entity representations of h and t are first projected onto the hyperplane, followed
by the translation operation. The projections are assumed to be connected by r on
the hyperplane with low error if (h, r, t) holds, with the scoring function being
similar to that used by TransE. It is both possible and expected that, for some
hyperplanes, the triple will have low error, while on other hyperplanes it won’t,
since h and t will not be connected through the relation underlying that hyperplane.
Mathematically, the optimization is richer since it has to perform the dual task of
hyperplane-specific translation (low error for true triples and high error for false
triples), and discovering hyperplanes that are expressive and separable enough to
accomplish such discrimination. As a consequence, TransH is slower than TransE,
and (all else being equal) does not generalize as well to smaller or sparser graphs
than TransE.

TransR is a similar variant [106], the difference being that it introduces relation-
specific spaces, rather than (the more constrained) hyperplanes. In TransR, entities
are represented as vectors in an entity space Rd , and each relation is modeled as a
translation vector in k-dimensional space Rk that doesn’t necessarily have to be a
hyperplane. More details on these operations are provided in the original paper.
Herein, we note that, although powerful in modeling complex relations, TransR
introduces a projection matrix for each relation, hence requiring O(dk) parameters
per relation. It ends up losing both the simplicity and efficiency of TransE and
TransH, both of which require only O(d) parameters per relation, d being the
embedding dimensionality. More complicated versions of the same approach were
also later proposed. We do not cover these here, but provide a list of some models
(and their embedding spaces) published at the time of writing, in Fig. 4.3.
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Fig. 4.3 Embedding spaces of TransE and its alternatives. N is the normal distribution with the
usual mean μ and standard deviation σ parameters. d is the embedding dimensionality (set by
the user, and generally in the range of tens to hundreds), n and m are the numbers of entities and
relations respectively in the KG to be embedded. Other symbols are algorithm- or system-specific,
although some (such as k) can be specified by the user. For example, in TranSparse θ is the average
sparseness degree of projection matrices. For more formal definitions of parameters, we refer the
reader to the individual papers or to a recent condensed survey
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Fig. 4.4 Time and space complexity of selected KGE models. For details on notation, see caption
of Fig. 4.3

4.2.3 Limitations and Alternatives

Recently, it was shown that KGEs can suffer from problems of generalization,
reflected in poor performance, when the KG is either too sparse or noisy (or both)
[144]. In such situations, alternate, more established methods such as Probabilistic
Soft Logic (PSL) were found to work better [92]. Another issue is the time taken
to train an embedding, and the tuning of hyperparameters. While an efficient
implementation of TransE (and some of its extensions) exists at the time of writing,
the original implementation was time consuming requiring on the order of hours to
train medium-sized knowledge graphs. This makes trial-and-error-style training and
tuning, problematic. Over time, the models have become steadily more complicated,
in fact (Fig. 4.4).

4.2.4 Research Frontiers and Recent Work

Many of the models that have been proposed for knowledge graph embeddings
are based on using assertions in a given KG as observations in the training data.
However, this imposes a degree of locality on the embedding model, since there
are other potential information sets that can be considered in the embedding
optimization. Some possibilities (as alternate information sets) that have been
recently proposed in addition to, or even instead of, assertions in the KG are
covered below. These information sets can be used to augment and improve KGE
training [176].
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4.2.4.1 Ontological Information

Knowledge graphs do not just contain entities, since (as we described in detail in
both Chaps. 1 and 2) many of the nodes are typed according to some ontology,
whether implicit, explicit or shallow. Some ontologies, such as YAGO [167], can
be extremely detailed containing full hierarchies of classes and sub-classes. For
example, Sharon Stone is a person, but also an actor. Thus, all else the same, we
would give higher weight to a triple that declares Sharon Stone to have starred in
a movie, than if we had not known that Sharon Stone is an actress. Many similar
examples can be formulated along these lines.

Modeling this intuition in a computational way is less straightforward. A possible
avenue is to not treat the ‘is-a’ relation as special (recall that is-a was one of the
few, and often the only, relations that serves as a ‘glue’ between the KG and the
ontology) but to declare all is-a triples, and possibly other ontological triples, in
the same vein as other KG triples e.g., < SharonStone, is − a,Actor >, <

SharonStone, is−a, P erson >. In this formulation, we are essentially augmenting
the original training set (the assertions in the KG) with additional triples (the
ontology, and the glue between KG and ontology). The effectiveness of this strategy
is not completely clear at the time of writing, especially with respect to the relative
sizes of ontologies and KGs. An advantage of the method is that it is simple. A
disadvantage is that it may be simplistic e.g., is Sharon Stone is an actress, an actress
is an entertainer, and an entertainer is a person, the embedding is not really capturing
the fact that Sharon Stone is a person. Intuitively, the special semantics of is-a (and
other) relations is not being taken into account by the embedding.

This has motivated more complex approaches that take into account the special
nature of is-a triples. For example, as proposed in [70] using a method called
semantically smooth embedding (SSE), one could explicitly design the optimization
to require entities of the same type to stay close to each other in the embedding space
e.g., Sharon Stone would be closer to Sylvester Stallone than to Roger Penrose, since
Stallone is also an actor, while Penrose is a scientist. Technically, SSE employs
two manifold learning algorithms, i.e., Laplacian eigenmaps and locally linear
embedding to model such a ‘smoothness assumption’. More specific details can
be found in the original paper [70].

A second approach, proposed in [186], is type-embodied knowledge representa-
tion learning (TKRL), which can handle hierarchical entity categories and multiple
category labels. TKRL is a translational distance model with type-specific entity
projections. Given an assertion (h, r, t), TKRL first projects h and t with type-
specific projection matrices, and then models r as a translation between the two
projected entities. Because of the matrices, TKRL can have a high space complexity,
and would likely not generalize well unless it had access to enough data. When it
does, however, it has been found to have better performance in tasks and applications
such as link prediction and triples classification. Whether this tradeoff makes
sense for an application designer depends on the application and the size (and
trustworthiness) of the KG to be embedded.
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Currently, there continues to be ongoing interest in utilizing ontological infor-
mation sets in knowledge graph embeddings, whether directly or indirectly. Most
likely, there is still much work to be done in this area. What is clear, however, is
that this information should not be ignored by the embedding model and can serve
a useful purpose, whether in terms of boosting performance or (more abstractly)
modeling human intuition more closely.

4.2.4.2 Text

Researchers have also explored incorporating textual descriptions of entities into
the KGE model. This is motivated by the observation that, in many KGs, concise
descriptions for entities are available, containing important semantic information
about the entities. Even when this is not the case, one can always find and crawl
sources such as news releases and Wikipedia articles to enrich entities with context.

Embedding KGs with text information dates back to the NTN model [165], which
was proposed fairly early on. In NTN, text information is used in a fairly naive way
since it is simply used to initialize entity embeddings. Namely, NTN first learns
word vectors from a news corpus, and then initializes the representation of each
entity by averaging the vectors of words contained in the entity’s label. By way of
example, the representation for ‘Sharon Stone’ would be initialized by averaging
the word vectors for ‘Sharon’ and ‘Stone’. This example also shows why the utility
of text information is naive in this model, since Sharon and Stone individually show
up in other contexts as well. This is also true for locations (‘New York’ vs. ‘New
Orleans’, or ‘Los Angeles’ vs. ‘Los Alomos’), and for other entity types as well.
Later, another similar method was proposed, in which entities were represented
as average word vectors of their descriptions rather than just their names. More
generally, these kinds of methods are problematic because they do not take into
account joint contexts of assertions and text but instead model textual information
distinctly from assertions, and in the process, fail to leverage the potentially rich
interactions between such information sets.

To the best of our knowledge, the first such joint model was proposed in [178].
The main idea was to align the KG with the text corpus, and then train both KG
embedding and word embedding jointly, with the hope that both embeddings will
be informed and improved by each other since the embeddings for entities, relations
and words are all represented in the same vector space. Operations like inner
product and similarity between these different elements become meaningful and
insightful. The joint model has three ‘sub-models’: knowledge, text, and alignment.
The knowledge sub-model simply embeds entities and relations in the KG and is
actually a variant of TransE, with a special loss function for measuring fitness of the
embeddings to KG facts. The text sub-model embeds words, and is a variant of the
famous skip-gram word embedding model. Similar to the knowledge sub-model, it
comes with a loss function that measures the fitness of the sub-model embedding
to co-occurring word pairs. Finally, the alignment sub-model is designed to ensure
that the embeddings of the two other sub-models lie in the same space. Different
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such alignment mechanisms are introduced in their work and others that followed
it, including by entity names, Wikipedia anchors, entity descriptions etc. with more
such mechanisms continuing to be proposed in current research. Similar to the
other sub-models, the alignment sub-model’s loss function is defined to measure
the quality (‘fitness’) of alignment. We highlight that one of the major contributions
in using such joint models is the prediction of out-of-KG entities, i.e., phrases
appearing in web text but not included in the KG yet.

Yet another approach along these lines is the description-embodied knowledge
representation learning (DKRL) [185], which seeks to extend TransE to incorporate
entity descriptions. DKRL associates each entity with two vector representations,
one of which is structure-based and the other of which is description-based. The
former captures structural information (just like the original TransE), while the
latter captures textual information in the entity description. The description-based
representation is constructed using word embeddings. Entity, relation, and word
embeddings can all be learned simultaneously by minimizing a ranking loss function
when training. Experimental results demonstrated the superiority of DKRL over
TransE, particularly in the zero-shot scenario with out-of-KG entities.

Generally, incorporating text into the optimization tends to lead to empirical
improvements. However, we are not aware of a full-scale empirical study that
attempts to measure the extent of these improvements, and to assess the sensitivity
of such improvements with respect to important parameters such as the size and
quality of a KG, the relevance of the text corpus, and the noise in the text corpus.
Beyond normal performance benefits, a primary benefit of the joint model, as we
highlighted earlier, was its ability to gracefully handle entities that may not have
been observed in the actual KG.

4.2.4.3 Other Extrinsic Information Sets

Incorporating text and ontological information into KGEs continue to be important
directions of research, especially for improving KGEs using more context. However,
these information sets are by no means the only ones. Below, we briefly cover some
others.

Rules Ontologies are not just sets of inter-related concepts and properties. They
can also contain constraints and rules to further express the domain. Can rules, as
understood in this sense, be used to further influence KGEs in a positive direction?
Wang et al. [177] proposed an approach utilizing rules to refine embedding
models during KG completion. In their work, KG completion is formulated as an
ILP (integer linear programming) problem. Specifically, the objective function is
generated from embedding models, and the ILP constraints from pre-specified rules.
Assertions inferred in this way will be the most preferred by the embedding models
but would also comply with all the rules. A similar work that combines rules and
embedding models via graphical models such as Markov logic networks was later
introduced in [181]. However, in both the papers above, rules are modeled separately
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from embedding models, serving as post-processing modules. They do not directly
influence embeddings, and hence cannot be used to obtain ‘better’ embeddings.

A later approach that tried to influence embeddings in a joint model that
leveraged rules directly in the embedding optimization was KALE [71], wherein
a model was proposed that simultaneously embeds assertions and rules. In this
framework, an assertion was modeled as a ground atom, with a well-defined truth
value. Also, logical rules are first instantiated into ground rules, with ground rules
then interpreted as complex formulae constructed by combining ground atoms with
logical connectives (e.g., ∨), and modeled by t-norm fuzzy logics [93]. The truth
value of a ground rule is a composition of the truth values of the constituent ground
atoms, via specific t-norm based logical connectives.

The values of these connectives lie within the range of [0,1], indicating to
what degree the ground rule is satisfied. In this way, KALE represents facts and
rules in a unified framework, as atomic and complex formulae respectively. After
unifying assertions and rules in this way, KALE minimizes a global loss involving
both to learn both entity and relation embeddings. These learned embeddings are
compatible not only with assertions in the training corpus but also with rules, which
is hoped to lead to better performance of embeddings in downstream applications.

KALE has inspired other variants. For example, in [157], the overall approach
is similar to KALE, but vector embeddings are introduced for entity pairs rather
than individual entities, making it particularly useful for relation extraction. This
is an example of an embedding which is (a priori) optimized keeping a target
application in mind. However, since entities do not have their own embeddings,
relations between unpaired entities cannot be effectively discovered.

Both KALE and the variant described above have the limitation that they have
to instantiate universally quantified rules into ground rules before learning the
embedding models. This grounding procedure is known to be time- and space-
inefficient, especially when there are many entities in the KG or the rules are too
complex. Some recent work has recognized this drawback, and proposed solutions
to address it.

Generally speaking, the ongoing research shows that rules will continue to find
more applications and uses in KGEs. The good performance of rule-supplemented
KGEs, and the researchers investing in this approach, both show that there is an
interesting synergy to be had between methods that were traditionally seen as
disparate (statistical and logical), though by no means incompatible. Future research
will show till what extent this synergy can be exploited, both in KGEs and other
similar areas.

Temporal information In [82], the critical observation was made that KG asser-
tions may often be time-sensitive, e.g., (Sharon Stone, ReceivedAward, Golden
Globe) happened in 1995. Based on this observation, a time-aware embedding
model was proposed, the idea being to impose temporal order constraints on time-
sensitive relation pairs, e.g., StarredIn and ReceivedAward. Given such a pair
(ri, rj ), the prior relation is supposed to lie close to the subsequent relation after
a temporal transition, i.e., Mri ≈ rj where M is a transition matrix capturing the
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temporal order information between relations. After imposing such constraints, the
authors in [82] are able to learn temporally consistent relation embeddings. In other
work, [58] tried to model the temporal evolution of KGs. That is, changes in a KG
always arrive as events, represented by labeled quadruples such as (h, r, t, s; T rue)

or (h, r, t, s;False), indicating that the assertion (h, r, t) appears or vanishes at
time s, respectively. Each quadruple is then modeled as a four-way interaction
among h, r, t, and s, where s is the vector representation of the time stamp. This
model was shown to perform well in dynamic domains such as sensors or medicine.
Overall, research has continued to intensify in this domain, and the link prediction
problem that we study later has been extended to temporal link prediction i.e. the
problem of predicting not just a link, but when it becomes stale (or active).

Paths and structures Relation paths may be understood as multi-hop relationships
between entities. A relation path is typically defined as a sequence of relations r1 →
. . . → rl through which two entities can be connected on the graph. For example,
StarredIn → ShotIn is a path linking Sharon Stone to Nevada, via an intermediate
movie node such as Casino. Relation paths contain semantic cues not otherwise
found in the node itself and can useful for KG completion.

More generally, it is possible to learn such ‘graph-aware embedding models’ by
leveraging different types of graph structures. In [62], such a model was proposed,
leveraging three types of graph structures: neighbor context (equivalent to triples
observed in a KG), path context (similar to relation paths just described) and edge
context (defined as the relations linking to and from that entity). The last is primarily
ontological e.g., the edge context of Sharon Stone might include relations such as
StarredIn, LivesIn, ReceivedAward etc. Intuitively, all of these relations indicate
collectively that Sharon Stone is a person, and more specifically, an entertainer.
Experimental results have demonstrated the effectiveness of incorporating these
graph structures in an embedding model. In other work, [83] suggested that the
plausibility of a triple tr = (h, r, t) could be estimated from its immediate context,
defined as the set of triples sharing the same head as tr , the set of triples sharing
the same tail, the set of triples with h as tail, the set of triples with t as head, and
triples with arbitrary relations but where the two entities are h and t . By using such
contexts, a system was found to perform better at the link prediction task (described
subsequently) on multi-relational data, such as KGs.

Other Entity Attributes When introducing KGs in Chap. 1, we argued that
relations in KGs can indicate both relationships between entities (e.g., StarredIn
indicates a relationship between Movie and Actor entities) or be used to define
entity attributes (e.g., the gender or birthdate of a person). Unfortunately, most
KG embedding techniques such as TransE do not explicitly distinguish between
these semantics. In [131], this distinction was made. Namely, entity-entity relations
were encoded in a tensor, while entity-attribute relations in a separate entity-
attribute matrix. The matrix and tensor are jointly factorized to learn representations
simultaneously for entities, and both types of relations. Similar ideas have since
been studied by other authors [105].
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4.2.5 Applications of KGEs

Since a knowledge graph embedding is essentially just a mapping from nodes and
edges to real-valued vectors, how can we tell when one embedding is better than
another? An uncontroversial approach is an ablation-style evaluation [182] where,
in the context of a given application, we evaluate an embedding against another
embedding keeping all else constant (including datasets and metrics). Although
such an evaluation is not without flaws, the biases (particularly, dataset bias [170])
are reduced if the benchmarks are large and real-world, and the applications have
relevance. Below, we describe several viable applications. Note that one such
application, Entity Resolution (ER) [66], has already been covered in detail in the
previous chapter. There are two contexts in which we can use KGEs for ER. First,
recall that there was a feature generation step whereby we attempted to extract a fea-
ture vector for each pair of entities that were consumed in the similarity step of ER.
Feature engineering is a labor intensive process and there is always the possibility
of missing something. By concatenating the embedding vectors of the two nodes,
we can get an alternate feature representation that could potentially be used for
better ER performance. Early results have been promising, though the hypothetical
utility of embeddings over engineered features is still in the preliminary stages of
ER research. A second possibility for utilizing embeddings for ER is to frame ER as
a special, supervised case of a relation or link prediction problem (described below).

ER is a good example of an in-KG application, which is conducted within the
scope of the KG where entity and relation embeddings are learned. Three other
examples of in-KG applications are link prediction, triple classification and entity
classification [176], all of which have been well-studied in the literature. It is not
atypical to assume that all of these applications can be cast as special cases of
knowledge graph refinement, with different definitions of refinement.

Link Prediction Link prediction is the problem of predicting whether a given entity
has a specific relation with another ‘hypothetical’ entity, i.e., predicting h given
(r, t) or conversely, t given (h, r), with the former task denoted as head entity
prediction (?, r, t), and the latter as tail entity prediction (h, r, ?). Link prediction
is a general problem that can be ‘fed into’ multiple out-of-KG applications e.g.,
question answering or even conversational AI [65, 168]. For example, (?, StarringIn,
Terminator) is to predict the stars of the film Terminator, while (Sharon Stone,
StarringIn, ?) amounts to predicting films that Sharon Stone has starred in. This
example also shows that prediction can be a many-many problem i.e. there are
multiple correct predictions for both cases. Link prediction is a quintessential KG
completion task, i.e., adding missing knowledge to the graph, and has been tested
extensively in previous literature. An alternate name for the problem (among others)
is entity ranking. A similar idea can also be used to predict relations between two
given entities, i.e., (h, ?, t), which is usually referred to as relation prediction. In the
social network community, link prediction has a much more specific meaning than
in the KGE community; it is usually the problem of predicting future links (e.g.,
friendship) that might be formed between actors in the social network [110].
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With entity and relation representations learned during training, link prediction
can be done using ranking, similar to procedures developed over decades in the
Information Retrieval community. Take the prediction task (?, r, t) as an example, a
ranking system can ‘predict’ the head entity by taking every entity h′ in the KG as a
candidate answer and calculating a score for each (h′, r, t), using a scoring function.
In descending order of scores, this yields a ranked list of candidate answers. If the
embedding is ‘good’, the hope is that correct predictions will be ranked nearer to
the top of the list than incorrect predictions.

Similar to IR, the common way to evaluate such rankings is to use metrics such
as mean rank (the average of predicted ranks), mean reciprocal rank (the average of
reciprocal ranks), Hits@n (the proportion of ranks no larger than n), and AUC-PR
(the area under the precision-recall curve). Different metrics have different tradeoffs.
AUC-PR takes a balanced view of precision and recall, for example, while Hitsn is
oriented more towards recall than precision. For example, considering the Hits10
metric, and assuming there is only one correct prediction, a ranking where the
correct entity is at rank 1 will have the same Hits10 (=1.0) as one where the correct
entity is at rank 10. Similarly, if the correct entity is not in the top 10, but is at
rank 11 vs. rank 100, both would receive a Hits10 of 0.0. Note that, for individual
‘queries’, Hits10 can only be 0 or 1, but when averaged over many such queries,
ranges from 0 to 1 and can be used to assess the performance of an embedding on a
test set, on average.

Entity Classification Entity classification is the problem of classing entities under
different semantic categories, e.g., Sharon Stone is an Actor, Terminator is a
Movie and so on [129]. Generally, the relation that is considered for classification
purposes is the is-a relation. If the is-a relation has already been included in the
embedding process (so an embedding for the is-a relation exists after training),
entity classification can simply be treated as a special case of link prediction, and
the same evaluation procedures can be applied for it. This similarity between link
prediction, and both entity classification and entity resolution, highlights what was
noted earlier, namely, that they can all be thought of as very specialized cases of the
broader knowledge graph refinement (or completion) problem.

Triple Classification Triple classification can be thought of as a binary classifica-
tion problem [129]: given an arbitrary triple (h, r, t), is the triple true? A trivial case
is when the triple belongs in the training set, in which case it is clearly true. If this is
not the case, then it is not necessary that the triple is untrue, since the training data
was incomplete to begin with. One non-trivial issue with framing triple classification
as binary classification is the consistent combination of the individual head, tail and
relation embeddings in a way that can be used to predict the probability of truth. In
systems like the Trans* KGEs (but also others), a density function is used to make
such a prediction. The correct metric to use is accuracy, if the test data is balanced.
In most benchmarks that have been released so far for triple classification, this has
been the case. If the evaluation data is skewed, computing precision, recall or ROC
curves may be more appropriate.
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We conclude by noting that there are also out-of-KG applications, which are
generally less controlled since they are designed to scale to broader domains.
Such applications include relation extraction, question answering and recommender
systems. We do not explore out-of-KG applications in this book, but focus on in-KG
applications. More details on out-of-KG applications can be found in an overview
of KGEs in [176].

4.3 Summary

Knowledge Graph Embeddings (KGEs) are a powerful set of techniques for
representing entities, relations and even descriptions in a KG in a continuous real-
valued vector space. Although some of the reasoning capabilities permitted by
symbolic representations are lost in the process, the real-valued representations are
much less brittle than discrete symbols, and hence, more robust to noise and missing
information. Furthermore, recent efforts in the field have tried, with varying success,
to reconcile the benefits of continuous and discrete KG representations. Research in
this area is still ongoing, but it has become clear that KGEs are vital for the broader
problem of knowledge graph completion (or identification). Other applications of
KGEs include link prediction and entity classification.



Chapter 5
Ecosystems

5.1 Introduction

Much of this book has described knowledge graphs and their construction at a
fairly technical level. In the introduction, we argued that domain-specific knowledge
graphs have started to come into their own, using examples such as publications and
academia, products and e-commerce, and social causes such as disaster relief. In
this chapter, we take a much broader view of knowledge graphs and their impact.
Specifically, we attempt an answer to questions such as, how high has adoption
of knowledge graphs been, and in what contexts? What bodes for the future of
knowledge graphs? Although there is a lot more still to come in knowledge graph
research, some crystallization has occurred over the last few years (in some cases,
decades), which will be the focus of this chapter.

5.2 Web of Linked Data

The Web has provided inarguable benefits but until recently, the same principles
that enabled the Web of documents to emerge and succeed have not been applied
to a hypothetical Web of data. Traditionally, data published on the Web was
made available as raw CSV or XML dumps, marked up as HTML tables, thereby
sacrificing much of its structure and semantics, or in other structured or semi-
structured formats that were not intuitive for humans to read or understand (in
their raw form). On the conventional Web, driven by hypertext, the nature of the
relationship between two linked documents is implicit, as the data format, i.e.
HTML, is not sufficiently expressive to enable richer semantics and modalities
e.g., determining that individual entities described in a particular document are
connected by typed links to related entities in the same (or other) documents. In
the real world, in contrast, such relationships (between entities) form the basis for
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knowledge and interaction. A guiding question has been, can knowledge graphs
provide the backbone for enabling such rich, real-world like semantics on the
Web?

There are multiple strands of evidence to indicate that the answer may be yes,
although the power of knowledge graphs in enabling semantics on the Web is not
limitless [18, 163]. Nevertheless, knowledge graphs published in recent years have
contributed greatly to an evolution of the Web from a global information space of
linked documents to one where both documents and data are interlinked. Underpin-
ning this evolution is a set of best practices, called Linked Data [25, 26, 75], for
publishing and connecting structured data on the Web. The adoption of the Linked
Data best practices has lead to the extension of the Web with a global data space
connecting data from diverse domains such as people, books, scientific publications,
music, proteins, drugs, statistical and scientific data, and reviews to only name a few.
Such a Web enables new application types. There are generic Linked Data browsers
which allow users to start browsing in one data source and then navigate along links
into related data sources, analogous to how one could start on an HTML webpage
on the conventional Web and then use it to browse to completely different webpages,
hosted on servers across the world. There are Linked Data search engines that crawl
the Web of Data by following links between data sources and provide expressive
query capabilities over aggregated data, similar to queries posed over databases.
The Web of Data also opens up new possibilities for domain-specific applications.
Unlike Web 2.0 mashups, which work against a fixed set of data sources, Linked
Data applications operate on top of an unbound, global data space. This enables
them to adapt and deliver more complete answers as new data sources appear on the
Web.

In its simplest form, Linked Data is about using the Web to create typed links
between multi-source data elements such as concepts, entities and properties. These
multiple sources may be as diverse as databases maintained by two organizations in
different geographical locations, or simply heterogeneous systems within a single
umbrella organization that have not traditionally been interoperable at the data level
because of problems such as varying schemas, data types etc. Technically, Linked
Data refers to data published on the Web in such a way that it is not only machine-
readable, but its meaning is explicitly defined (‘semantics’) [163], it is linked to
other external data sets, and can be linked to from external data sets.

While the primary units of the hypertext Web are HTML (HyperText Markup
Language) documents connected by untyped hyperlinks, Linked Data relies on RDF
(Resource Description Framework) documents [135]. However, rather than simply
connecting these documents, Linked Data uses RDF to make typed statements
that link arbitrary things in the world. The result, referred to as the Web of Data
throughout this chapter, may more accurately be cast as a Web of things in the
world, described by data on the Web.
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5.2.1 Linked Data Principles

In the introduction we stated that Linked Data is a set of four best practices for
publishing structured data on the Web [26]. Below, we state these four principles.
The technology stack used for implementing these principles and publishing the data
is described next, followed by the impact of the Linking Open Data (LOD) project
[11], a direct consequence of the widespread adoption of these four principles.

1. Use Uniform Resource Identifiers (URIs) as names for things. Even though
we primarily think of them as ‘web addresses’, URIs1 are much more than
just Uniform Resource Locators (URLs). In the broadest sense, a URI imposes
constraints on, and sets a standard for [17], naming entities and units of data that
people want to publish on the Web. In the case of HTML webpages, a URL serves
nicely as the ‘name’ of the page. By using similar, albeit broader, standards for
naming things, the first principle essentially ensures that we do not invent a new
naming system from scratch. There are other benefits associated as well, as the
second and third principles illustrate.

2. Use Hypertext Transfer Protocol (HTTP) URIs so that the names can be
looked up. By associating HTTP lookup with URIs, the second principle ensures
that the name of a thing is dereferencable. One simple way to do so is to ensure
that URIs are also URLs. However, recall that the goal of Linked Data is to
describe actual things, not just the description of things. By using techniques such
as re-direction in conjunction with the first and second principles, it is possible
to maintain this distinction. Intuitively, one could use a URI (not a URL) to name
the thing itself, but when dereferenced, a re-direction could be used to direct
the user to a URL which describes the thing. This is an elegant, rigorous way
of ensuring that the names of things, as well as the descriptions of those things,
could co-exist as separate artifacts on the Web.

3. When a URI is looked up, provide useful information by using established
standards such as RDF and SPARQL to publish and access information.
Resource Description Framework (RDF) and the SPARQL query language are
important standards that have been developed over more than a decade by long-
time researchers in the Semantic Web and Description Logics communities. The
third principle ensures that when a URI is looked up, the data is not delivered
in some ad-hoc format (e.g., as an Excel file), but instead conforms to well-
established, open standards that can be consumed in a predictable way by a
machine. Because the first and second principles ensure the use of HTTP and
URIs, it is easier than it would be otherwise to implement the third principle.
This also illustrates that the rules are not necessarily independent but build upon
each other for effectiveness.

1In actuality, the first principle if even broader, allowing the use of internationalized resource
identifiers rather than just URIs for naming things.
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4. Include links to other URIs, so that more relevant things can be discovered
through navigation. In a previous chapter, we covered the problem of Entity
Resolution, which was a step designed to ensure that two or more entity
‘mentions’ referring to the same underlying entity would get ‘resolved’. The
mechanics on how such a resolution would happen, once the co-referent entities
have been identified, were not described, since there is no one best practice.
In the Linked Data scenario, a practitioner could simply publish an additional
triple linking an entity in their dataset to equivalent entities in other datasets
already existing as Linked Data. For example, as we cover later, DBpedia has
emerged as a nexus for the openly published Linked Data on the Web, and since
most entities in Wikipedia are included in DBpedia [8], linking entities in a
dataset to DBpedia can often productively fulfill the fourth Linked Data principle.
However, we also note that, while ER can be an important and well-defined
mechanism for establishing links between entities in two different datasets, other
relations can also be used. The knowledge graph embedding (KGE) techniques
that we covered in the previous chapter could be a potent tool in this direction.

5.2.2 Technology Stack

The principles above illustrate that Linked Data is dependent on two technologies
fundamental to the Web itself [27]: Uniform Resource Identifiers (URIs) and the
Hypertext Transfer Protocol (HTTP). As we described earlier in the context of the
first Linked Data principle, while Uniform Resource Locators (URLs) have become
familiar as addresses for documents that can be located on the Web, Uniform
Resource Identifiers provide a more generic means to identify any entity that exists
in the world.

In the context of the second principle, where entities are identified by URIs using
schemes such as http:// and https://, they can be looked up by dereferencing the
URI leveraging the HTTP protocol. Thus, the HTTP protocol provides a simple,
yet universal, mechanism either for retrieving resources that can be serialized as
bytes, or retrieving (e.g., by using re-direction) descriptions of entities that cannot
physically be uploaded and sent across networks.2

URIs and HTTP are supplemented by the RDF model, which is critical to
implementing the vision of the Semantic Web and Linked Data. The use of RDF, and
other technologies like SPARQL that execute on top of RDF triplestores to enable
access to the data, is in response to the third Linked Data principle which requires
information retrieved to be useful (importantly, both to humans and machines).

2For example, one could use the protocol for retrieving the description of a book, since the protocol
cannot be used for sending the book itself across a network.

http://
https://
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Although HTML allows us to structure and link documents on the Web, RDF
provides a generic, graph-based data model with which to structure and link data that
describes things (i.e. entities) in the world and the varied properties (typed links) that
exist between entities. These typed links can have pre-defined semantics, such as
owl:sameAs, since they come from a standard (widely used) upper-level vocabulary
like SKOS, Dublin Core or RDFS [5]. These higher-level vocabularies are especially
useful in facilitating the re-use of ontological terms and properties, ensuring more
homogeneity than might be found. For example, properties like owl:sameAs are
overwhelmingly used to capture, and publish, the results of Entity Resolution [96]
and fulfill requirements such as the fourth Linked Data principle.

5.2.3 Linking Open Data

Because the Linked Data principles are recommended best practices, their success
can only be measured in terms of impact and adoption. Perhaps the most visible
evidence of impact has been an on-going, decentralized and international effort
called the Linking Open Data (LOD) project (Fig. 5.1),3 which has been described
as ‘a grassroots community effort founded in January 2007 and supported by the
W3C Semantic Web Education and Outreach Group4’. The main goal of the effort
is to bootstrap the Web of Data, and the adoption of the Linked Data principles,
by identifying existing, open-license datasets, converting these datasets to RDF
in accordance with Linked Data principles, and publishing them on the Web. An
auxiliary goal is to facilitate more publishing of such datasets, with the hope
that they become discoverable and usable by virtue of following the principles
(especially the fourth principle, which encourages inter-linking).

Historically, the earliest participants (still accounting for a major portion of
activity on LOD) were university academics, and small companies looking to gain a
competitive advantage with high-risk technology. However, LOD has since become
considerably more diverse, with significant current involvement from major players
in media, government and tech such as the BBC, Thomson Reuters, New York
Times and the Library of Congress. We posit that this growth is enabled by the
open nature of the project, where anyone can participate simply by publishing a
dataset according to the Linked Data principles and by interlinking it with existing
datasets (a special case of the fourth principle). Although the growth is not as super-
linear anymore as it was in the early stages of LOD, the ecosystem has remained
popular. In the next section, we describe one of the success cases (DBpedia), which
has found adopters across the spectrum in natural language processing, Semantic
Web, and knowledge discovery.

3http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
4http://www.w3.org/2001/sw/sweo/

http:/owl:sameAs
http:/owl:sameAs
http://esw.w3.org/topic/SweoIG/TaskForces/ CommunityProjects/LinkingOpenData
http://www.w3.org/2001/sw/sweo/
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Fig. 5.1 A visualization of LOD datasets. Each node is a dataset and links represent connections
between datasets in accordance with the fourth Linked Data principle. Colors represent domains
e.g., social networking datasets are in grey. (Image courtesy of lod-cloud.net)

5.2.4 Example: DBpedia

The best example, and most well-known outcome of LOD, has been the DBpedia
knowledge graph [8]. DBpedia was an early effort that sought to leverage the
structured information on Wikipedia, which is itself a community-powered and
crowdsourced encyclopedia. Figure 5.2 provides some intuition on how DBpedia
would represent the entity ‘Bob Marley’ by extracting information from Bob
Marley’s infobox on his Wikipedia page, ontologizing it with respect to the DBpedia
ontology, and rendering it as RDF. All four Linked Data principles are obeyed in
this transformation process. DBpedia is available both as RDF dumps, and as a
queryable SPARQL endpoint.



5.2 Web of Linked Data 81

Fig. 5.2 An example DBpedia dashboard fragment describing Bob Marley
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DBpedia generally occupies the central position in LOD diagrams because of
two inter-related characteristics: (1) it is open-world and contains many entities,
concepts and properties of interest, since it is ultimately described from Wikipedia
infoboxes, and (2) for various reasons, many publishers on LOD have chosen to link
to DBpedia entities to fulfill the fourth Linked Data principle. Although DBpedia is
not dynamically fresh in the same vein as Wikipedia, which is constantly maintained
by a community-enforced system of edits, revisions and additions, DBpedia is
periodically derived from Wikipedia by executing extractors on Wikipedia dumps.
Thus it is relatively fresh compared to more static datasets on LOD.

Overall, DBpedia continues to be well-maintained and widely used. In part, this
is because of its dependence on Wikipedia, which has continued to be popular, but
also because numerous applications across the Semantic Web, knowledge discovery
and NLP communities now leverage it for weak supervision and distant supervision-
style problems. Just like Wikipedia, DBpedia is also multi-lingual, which opens up
even more applications.

5.3 Google Knowledge Vault

The Google Knowledge Vault, which indirectly populates some of the search
features in Google, is a Web-scale probabilistic knowledge base that combines
extractions from Web content (obtained via analytics over text, tabular data, page
structure, and even human annotations) with prior knowledge derived from exist-
ing knowledge repositories [55]. Because these are distinct information sources,
supervised machine learning methods have to be used for knowledge fusion. At the
time of publication, this Knowledge Vault (KV) was assumed to be substantially
bigger than any previously published structured knowledge repository, and featured
a probabilistic inference system that could compute calibrated probabilities of
assertion correctness. The authors of the Knowledge Vault paper report results from
several studies and experiments illustrating the utility of the method [55].

Fundamentally, the KV was no different at an architectural level (see Fig. 5.3
for the architectural description of the KV) than the workflow proposed in this
book. That is, there were three main components. The first component was a layer
of extractors. Recall that, in an earlier chapter, we provided extensive details on
information extraction, which is among the first steps in constructing a domain-
specific knowledge graph from raw data. The KV is no different, although it is
not single-domain. Extraction methods include text (including relation extraction,
although the authors run standard methods at much larger scale), and Web IE
methods like parsing the DOM trees of HTML pages, and also tables extracted from
HTML. The KV also contains data from pages annotated manually with elements
from ontologies like schema.org and openGraphProtocol.org [67, 69]. Schema.org
is described in more detail in the following section.

However, rather than learn all its knowledge about the world from just IE,
the KV also relied on prior knowledge by using graph-based priors. In essence,
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Fig. 5.3 A schematic showing the construction and workflow of the Google Knowledge Vault

these systems would learn the prior probability of each possible triple, based on
triples stored in an existing KB. Technically, the procedure was different from the
KGEs that we covered in the previous chapter; however, the concept was similar.
For example, one of the applications of knowledge graph embeddings was triples
classification, namely, the task of determining the probability of correctness of
a hypothetical triple, given all the triples observed during training. Incorporating
graph-based priors into the KV relied on a similar intuition.

Finally, the third key innovation in the KV architecture was an information or
knowledge fusion box that would take the outputs of extractors, as well as those
based on graph-based priors, and reconcile the facts based on supervised machine
learning. Knowledge fusion was like the test phase in a triples classification system.
In the actual paper, the authors consider several principled supervised machine
learning methods.

Although it is not known whether the KV constitutes the core technology pow-
ering the current iteration of the Google Knowledge Graph [164], its influence on
the construction of Web-scale knowledge graphs from heterogeneous structured and
unstructured data sources is undeniable. The effort has proven difficult to replicate
in non-industrial settings, however. Some of the components, like information
fusion, have also been superseded by recent innovations such as knowledge graph
embeddings. However, the role of extractors and the leverage of prior knowledge
in reconciling contradictions continue to be important in existing KG construction
pipelines.
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5.4 Schema.org

Schema.org is a shared vocabulary that webmasters can use to structure metadata on
their websites and to help search engines understand the content being published
[69]. Although the term schema.org would seem to suggest a website (which
it is, leading to the project’s homepage) it is contextually used to refer to the
vocabulary itself, the markup on the webpages as well as the overall project, which is
described as ‘a collaborative, community activity with a mission to create, maintain,
and promote schemas for structured data on the Internet, on web pages, in email
messages, and beyond’.

As an example, consider the movie ‘Bohemian Rhapsody’ as described by
Rotten Tomatoes, a popular movie and review aggregation website. Many of the
dynamic elements on the page (such as the reviews and the Tomatometer rating)
have semantics associated with them according to the concepts and properties in the
schema.org vocabulary. We highlight some example snippets in Fig. 5.4, with the
aggregate rating being one example of an element that is visually rendered on the
screen. When a search engine like Google scrapes this data, it is able to make use
of this information to provide users with a better search experience (e.g., providing
better answers to queries like ‘rotten tomatoes top movies’, see Fig. 5.5).

In fact, the initiative itself was launched on 2 June 2011 by Bing, Google and
Yahoo! to create, support and develop a common set of schemas for structured

Fig. 5.4 Example of schema.org snippets embedded in Rotten Tomato’s HTML webpages
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Fig. 5.5 Example of dynamic, enhanced search by commercial search providers using extracted
schema.org information

markup on webpages. This would indicate that enhanced search has been one of
the primary goals for the initiative. Later that year, Yandex joined the initiative. The
main motivation behind using schema.org is that the markup can be recognized by
search engine spiders and other parsers, which enables a layer of semantics to be
incorporated into search engine optimization. Recall that the Semantic Web (which
includes Linked Data [26]) vision was similar [18], but the principles of Linked Data
do not necessarily apply to schema.org. As one example, much of the published
schema.org markup does not even attempt to link to other schema.org markup.
Consequently, the schema.org ecosystem is less like KGs in the LOD universe
[11], and more like isolated knowledge fragments that provide local context to the
webpages in which they are embedded. However, there have been efforts to try and
integrate LOD and schema.org with some recent papers proposing to find and add
schema.org fragments to the LOD. The work is still in its early stages, however. At
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the very least, viable solutions to Entity Resolution will be required to facilitate such
a vision successfully, since without ER, the fourth principle of Linked Data cannot
be fulfilled.

Much of the vocabulary on Schema.org was inspired by earlier formats, such
as microformats, FOAF, and OpenCyc. Microformats, with its most dominant
representative hCard, continue (as of 2015) to be published widely on the web,
where the deployment of Schema.org has strongly increased between 2012 and
2014. In 2015, Google began supporting the JSON-LD format, and as of September,
2017 recommended using JSON-LD for structured data whenever possible. Tools
are also widely available to validate schema.org markup on published webpages.
For example, tools such as the Google Structured Data Testing Tool, Yandex
Microformat validator, and Bing Markup Validator can be used to test the validity
of published or scraped schema.org data. In documentation released by Google,5

it could be reasonably inferred that certain schema.org classes and properties,
particularly people and organizations, influence the results of Google’s Knowledge
Graph.

5.5 Where is the Future Going?

Even the brief examples illustrated in this chapter show that KG ecosystems are
continuing to flourish and come into their own, powering a full range of applications
across communities as diverse as NLP, semantic search and conversational AI [65].
These ecosystems are different enough that, at first sight, one might be tempted to
think that they are evolving independently of each other. Yet there are connections,
some of which are only starting to materialize. For example, some authors have
started publishing work on how to reconcile decentralized, highly disconnected
schema.org knowledge fragments with the larger Linked Data ecosystem. Freebase,
which was used to power the KV and has since been taken over by Google, was an
essential part of the Linking Open Data project in its initial phase, and has since
been replaced with Wikidata [174]. Nevertheless, despite all these connections, the
question remains: is there some way to reconcile all of these different KGs under a
single umbrella, one that is open and accessible to all?

An example of one such initiative, still in a seedling stage, is the Open
Knowledge Network6 (OKN), which is attempting to jumpstart and realize the long-
held vision of a common semantic information infrastructure for the future [116].
Recognizing the motivation that natural interfaces to large knowledge structures
have the potential to impact science, education and business to an extent comparable
to the WWW, the OKN initiative argues that KG-centric services like Alexa and

5https://developers.google.com/search/docs/guides/enhance-site#add-your-sites-name-logo-and-
social-links
6https://okfn.org/network/

https://developers.google.com/search/docs/guides/enhance-site#add-your-sites-name-logo-and-social-links
https://developers.google.com/search/docs/guides/enhance-site#add-your-sites-name-logo-and-social-links
https://okfn.org/network/
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Cortana, or the Google search engine, are limited in their scope of knowledge, not
open to direct access or contributors beyond their corporate firewalls, and can only
answer relatively limited questions in their business areas. OKN wants to pioneer
an architecture that will allow stakeholders to encode knowledge for their topics
of interest and be able to hook them into the larger network, without having to go
through gatekeepers (such as Google or Apple). Furthermore, once the knowledge
is encoded, access to this should not be restricted to a small priesthood of SQL
or other programmatic interface users. There will be a wide range of interfaces,
including natural language interfaces, graphical interfaces and visualizations which
no one has even invented yet. Developers will be able to independently create
more sophisticated programs for answering queries, providing summaries that help
regular people make decisions in their lives.

In order to realize the vision of an open Web-scale knowledge network, an
attempt like the Google Knowledge Vault is required but at a scale that (arguably)
is even more extensive. As ambitious as this may sound, the steering members
of OKN argue that the technologies for realizing such a network already exist.
However, it is also undeniable that there are many hurdles in realizing such an
ambition, including obvious issues of cost, incentives and maintenance. From a
purely research standpoint however, the OKN would be far more comprehensive
than any existing KG ecosystem, and would likely trigger revolutionary advances in
KG-centric applications.

While the OKN is likely a longer-term initiative that will require the coalescing of
multiple research communities, there are several medium-term research challenges
that researchers have already started focusing on. Entity Resolution continues to be a
vital area of research, especially considering our arguments in the earlier chapter on
how existing systems continue to fall short on several requirements that are essential
for conducting ER on large KGs. Information extraction (IE) also continues to
advance each year, though some kinds of IE are witnessing more attention than
others. NER research, for example, seems to have plateaued, but relation and event
extraction systems continue to be presented, even at the time of writing. Low-
supervision IE has also seen a surge of interest. Finally, IE for languages other than
English, and particularly for ‘low-resource’ languages for which good translation
services are not available, has seen an increased surge in research interest due to
programs funded by agencies like DARPA.
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Knowledge Graph A knowledge graph (KG) is a directed, labeled multi-relational
graph where nodes typically represent either entities or the attributes of entities,
and (labeled) edges represent either relationships between entity-entity pairs or
properties of entities. The simplest way to serialize a KG is as a set of triples,
where each triple is of the form (h, r, t) and represents an edge in the graph.

Ontology Although open-world KGs like Wikidata and Freebase have existed for
a while, domain-specific KGs often derive their semantics and constraints from
an underlying ontology. Although a deep definition of an ontology is not within
the scope of this book, a simple definition is that an ontology is a set of terms
defining the domain of interest. In the KG community, this amounts to a graph-
like structure that contains concepts and relationships. A special relationship,
is-a, serves as the glue relationship between the KG and the ontology. Evaluating
when one ontology is ‘better’ than another continues to be a hotly debated issue,
since it is not clear how to measure the goodness of an ontology using purely
objective metrics.

Information Extraction When constructing domain-specific KGs, information
extraction (IE) is the first set of algorithms that must be applied. IE refers
to a set of techniques for ingesting natural language or HTML (and also
other heterogeneous data that are neither structured nor natural language) and
extracting useful information from them, usually with reference to an underlying
ontology. IE today is often broken up into at least three sub-problems, each of
which is important enough and challenging enough in its own right: Named
Entity Recognition, Relation Extraction and Event Extraction.

Named Entity Recognition Named Entity Recognition (NER) is the best known
sub-problem in Information Extraction. Although ‘anything’ in principle could
be a named entity, in practice, named entities constitute instances of ontological
types like persons, locations, organizations, facilities etc. In domain-specific
applications, named entities can be esoteric and highly dependent on the domain
e.g., physical attributes may be more common in the e-commerce domain than in
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domains like politics, academia or medicine. Pre-trained NER systems are useful
for extracting generic types, but IE techniques have to be applied to the domain-
specific cases. Supervised, semi-supervised and unsupervised methods for IE
currently exist, and more recently, deep learning and representation learning have
become very popular for achieving state-of-the-art performance.

Word Embedding Feature engineering has always been a bottleneck in traditional
machine learning pipelines, especially for natural language processing (NLP)
applications like NER. In recent times however, word embedding models have
emerged as an efficient and powerful means of vectorizing words, documents
and even graphs into low-dimensional, continuous spaces. These vectors, when
optimized using a relatively simple notion of context, yield remarkable insights
in the vector space, such as analogies and semantic clustering. Multiple word
embedding algorithms now exist, although the original innovations are still
widely used. Word embeddings have generally been adopted in favor of heavily
engineered feature pipelines across multiple application-oriented communities in
machine learning and knowledge discovery.

Relation Extraction After NER, Relation Extraction (RE) is the next most impor-
tant step in an IE pipeline, and is essential for knowledge graph construction.
It is uncommon to extract n-ary relations with n greater than 2; even for binary
relations, performance is relatively poor compared to NER. Relation Extraction
can be framed as a classification problem assuming the entities have been
correctly extracted. Other ways of framing the problem also exist. Similar to
NER, deep learning has emerged as an important technique for tackling RE.

Event Extraction Event extraction is yet another IE sub-problem, but one that
tends to be limited to certain domains and ontologies. Events are typically
identified by ‘triggers’ e.g., the word ‘hit’ might trigger an ‘attack’ event type,
and tend to involve multiple arguments and relations. It is not unreasonable to
think of an event as a ‘second-order’ entity for that reason. It is generally believed
that much more research is required on event extraction before performance will
reach acceptable levels for broader consumption. Most event extraction papers
still tend to focus on ontologies like ACE and CAMEO, which are broad but,
by no means, complete. It is unknown whether any of the current techniques,
including the state-of-the-art, would be able to adapt with relatively low overhead
if a new (domain) ontology were to be introduced.

Entity Resolution Entity Resolution (ER) is the problem of algorithmically deter-
mining when two instances (‘entities’) in the KG are the same underlying entity.
The problem has been around for more than 50 years, with patient linking and
census being the earliest applications. ER has been studied under many guises,
including record linkage, instance matching and deduplication. Just like many of
the other techniques in this book, supervised, semi-supervised and unsupervised
solutions exist. Performance of ER systems can vary widely depending both
on the training regime, the amount of data available and the domain. On some
domains, such as geopolitical events, ER continues to suffer from performance
issues compared to more traditional domains like census and publications.
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Blocking Blocking refers to an important class of algorithmic techniques that are
almost always included as the first step in a typical two-step ER workflow.
Blocking is defined (in the most general case) as inexpensive clustering of
approximately similar entities. By doing such clustering in sub-quadratic time,
exhaustive pairwise comparisons can be avoided, leading to significant savings
even for moderately sized datasets. Blocking has been explored for many decades
now, and more recently, the automatic learning of blocking keys has become an
important topic of research. Blocking for KGs is not as well-studied as blocking
for relational databases.

Knowledge Graph Embedding Similar to a word embedding, a knowledge graph
embedding (KGE) can be used to embed entities and relationships in a KG
into a low-dimensional continuous space. Most successful KGE models are
translational models, such as TransE and TransD, and rely on the same kinds of
analogical intuitions as traditional word embedding algorithms. Recently, a lot
of research has been going into how to incorporate ‘extra’ information into the
KGE models, be it external text corpora, ontologies, rules, temporal information
etc. In general, there are empirical benefits to including more information into the
KGE model, but one has to be careful about diluting the domain-specific value
of the KG itself when bringing in generic external sources.

Linked Data Linked Data is a set of four principles that guide the publication of
(structured) data on the Web. Linked Data has continued to become popular,
leading to the Linking Open Data (LOD) project, which contains datasets
published openly on the Web using Linked Data standards. LOD now includes
hundreds of datasets, including DBpedia, which is derived from Wikipedia, as
its central hub. It is also the backbone for the broader Semantic Web ecosystem.
Several rich applications are powered by LOD.

Knowledge Graph Ecosystem In the broadest sense, a knowledge graph ecosys-
tem is a community, rather than a collection of datasets. Like any community,
such an ecosystem is guided by its own social norms and incentive structures.
As the name suggests, a KG ecosystem is centered around using KGs as a
prominent technology, but the definition of a KG, and even a domain, will differ
slightly based on the ecosystem. Norms can be radically different, even for
Web-based ecosystems. For example, schema.org, launched by search engines
in the earlier part of this decade, encourages isolated knowledge fragments that
can be embedded in HTML and easily found by search engines, while Linked
Data emphasizes connectivity and is agnostic to search as a specific application.
Lately, there have been efforts to map and possibly reconcile such ecosystems.
Whether this is really possible will depend on both social and technological
factors.
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