
Knowledge
Graphs

Dieter Fensel · Umutcan Şimşek
Kevin Angele · Elwin Huaman
Elias Kärle · Oleksandra Panasiuk
Ioan Toma · Jürgen Umbrich
Alexander Wahler

Methodology, Tools and
Selected Use Cases

Knowledge Graphs

Dieter Fensel • Umutcan Şimşek • Kevin Angele •

Elwin Huaman • Elias Kärle •

Oleksandra Panasiuk • Ioan Toma •

Jürgen Umbrich • Alexander Wahler

Knowledge Graphs
Methodology, Tools and Selected Use Cases

Dieter Fensel
Semantic Technology Institute Innsbruck,
Department of Computer Science
University of Innsbruck
Innsbruck, Tirol, Austria

Umutcan Şimşek
Semantic Technology Institute Innsbruck,
Department of Computer Science
University of Innsbruck
Innsbruck, Tirol, Austria

Kevin Angele
Semantic Technology Institute Innsbruck,
Department of Computer Science,
University of Innsbruck,
Innsbruck, Tirol, Austria

Onlim GmbH
Telfs, Tirol, Austria

Elwin Huaman
Semantic Technology Institute Innsbruck,
Department of Computer Science
University of Innsbruck
Innsbruck, Tirol, Austria

Elias Kärle
Semantic Technology Institute Innsbruck,
Department of Computer Science
University of Innsbruck
Innsbruck, Tirol, Austria

Oleksandra Panasiuk
Semantic Technology Institute Innsbruck,
Department of Computer Science
University of Innsbruck
Innsbruck, Tirol, Austria

Ioan Toma
Onlim GmbH
Telfs, Tirol, Austria

Jürgen Umbrich
Onlim GmbH
Telfs, Tirol, Austria

Alexander Wahler
Onlim GmbH
Telfs, Tirol, Austria

ISBN 978-3-030-37438-9 ISBN 978-3-030-37439-6 (eBook)
https://doi.org/10.1007/978-3-030-37439-6

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-37439-6

Foreword

In 2005, Manuel Sahli became an active contributor to Wikipedia. He was particu-
larly interested in his hometown, the beautiful Swiss city of Winterthur. Over the
years, he edited and meticulously maintained the article on Winterthur. One of the
sections he worked on was the list of sister cities.

Around the same time, a contributor added Winterthur to the list of sister cities on
the article on Ontario, California, a city about an hour east of Los Angeles. Even
though sister cities are supposed to be reciprocal, the information never made it to
the article on Winterthur.

Manuel, although interested in all things Winterthur, did not learn about this
addition for almost a decade.

2012 saw the launch of Wikidata, a sister project of Wikipedia. It was a Knowl-
edge Graph that anyone could edit and use. As time went by, a contributor added the
list of sister cities of Ontario to Wikidata, using the Ontario article on Wikipedia.

Manuel Sahli had since been elected to the cantonal parliament of Winterthur.
Using Wikidata, he wanted to make a map of Winterthur’s sister cities and Wikidata
has a powerful query interface that allows creating ad hoc visualizations of query
results over its Knowledge Graph. To Manuel’s big surprise, the map contained one
place he was not familiar with yet: Ontario.

At first, Manuel thought that this was an act of vandalism that has remained
undiscovered for a while, but the fact came with a source: the official government
website of Ontario. When he went to that site, there he found Winterthur! As a
member of the cantonal parliament, he asked the Winterthur city administration and
archives if they knew anything about that claim. Both denied.

Manuel wrote an official letter to the city of Ontario to clarify the situation, and lo
and behold, they delivered documents, signed by both sides, establishing the sister
city relation in 1982. Given these documents and the precise dates, the Winterthur
city archives were now able to find the relevant documents. Thanks to Wikidata,
Winterthur discovered its long lost fifth sister city, and the two cities have since
rekindled their relationship.

v

No one was trying to hide that fact from Manuel or the world. The city archives
had the documents (but could not find them at first), Wikipedia was publishing the
fact for almost a decade, and it was on the official Ontario website, and yet Manuel,
although deeply invested in his hometown and Wikipedia, did not learn about it. It
was only when it was added to a Knowledge Graph, one that Manuel had access to
and knew how to query, that the fact was surfaced.

It is far too easy to bury knowledge in documents and heaps of natural language
and very hard to surface it at the right time. A Knowledge Graph makes facts easier
to index, process, and find.

However, that is only half the story. The other half is that it was sheer luck that
Manuel was not only interested enough to discover this fact but also capable of
querying Wikidata using the SPARQL query language. Most people do not know
how to do that.

We are witnessing a paradigm shift in how we use computers, as momentous as
the introduction of time-sharing systems, graphical user interfaces, the web, and
smartphones before: the nascent ability to interact with computers through natural
language. Conversational interfaces have been around for a long time just as any
novel technology has been preceded by various adoptions in niche areas. However,
so-called intelligent assistants are quickly spreading and evolving, and more and
more devices, from wristwatches to cars, from televisions to earbuds, are being
equipped with the capability to listen to your commands and questions and to
answer them.

The number of people who will gain access to knowledge through intelligent
assistants for their daily tasks is growing remarkably fast. In order to find answers to
burning questions, whether trivial or life-changing, we will not need the traditional
computer in the office or school or library anymore. No one will need to learn how to
use the newest smartphone features, how to use a mouse, or even how to read and
type, thus widely opening the door to a much more inclusive world.

This new paradigm needs new ways to allow people to join the new data space, to
give access to their data and their services to their prospective clients and consumers,
and to allow people to discover and enjoy what they have to offer. In a world where
more and more people do not use apps and websites to book a hotel room, rent a car,
buy a flight ticket, order their lunch, and ask for information, we need to make sure to
understand the users’ intents and offer our data and services in ways that allow their
integration and composition. This is not a vision of a future to come but the world we
already built. Tens of thousands of capabilities and services are already integrated
into the Google Assistant, Apple Siri, Amazon Alexa, the open source Mycroft,
Microsoft Cortana, Samsung Bixby, and others.

Bringing together the natural language technology required to understand users’
queries and the power of structuring facts in large Knowledge Graphs will allow us
to bring knowledge to the end user when they need it. People will become
empowered to explore and ask about the world, to follow their curiosity, to learn.
Businesses will be able to expand the reach of their services and products to many
new customers.

vi Foreword

This book offers a hands-on overview of the architecture and the steps to join the
world of intelligent assistants. It guides us through building, growing, and
maintaining our Knowledge Graph. It discusses how Knowledge Graphs represent
the facts that are important in your organization and how to make them available to
other providers.

Dieter Fensel was one of the people who have very early recognized the potential
of semantic technologies and the need to allow for the composition of services into
novel interfaces. He and his research groups were leading the field in the semantic
description of services, in linked data applications, and Ontology engineering and
learning methods and tools. This book by him and the researchers of his team is
distilling the experience of many years.

Enjoy going through the book! It will help you to better understand the novel field
of Knowledge Graphs and how to use them. It will allow you and your organization
to move to a world where the knowledge you already have in your archives and
systems does not remain so stubbornly hidden and where you and your customers
both will be enabled to work with the knowledge you already have, so that we can
empower users, discover new sources of revenue, and never lose a sister city again.

San Francisco, CA, USA
June 2019

Denny Vrandečić

Foreword vii

Preface

Smart speakers such as Alexa and Google Home introduced Artificial Intelligence
(AI) in millions soon billions of households, making AI an everyday experience. We
can now look for information, order products, and services without leaving the house
or touching a computer. We just talk to a box and this thing will conveniently
perform the desired tasks for us. These new communication channels define a new
challenge for successful e-marketing and e-commerce. Just running a traditional
website with many colorful pictures is no longer state of the art. Even the web is
currently reinventing itself by applying schema.org. Data, content, and services
become semantically annotated, allowing software agents, so-called bots, to search
through the web understanding its content. The times where humans were browsing
through large number of websites and manually extracting and interpreting their
information are passing by. The users nowadays consult their personal bot to find,
aggregate, and personalize information and to reserve, book, or buy products and
services. In consequence, it becomes increasingly important for providers of infor-
mation, products, and services to be highly hearable and visible in these new online
channels to ensure their future economic sustainability. In this book, we discuss
methods and tools helping to achieve these visibility goals. The core is the devel-
opment and application of machine-processable (semantic) annotations of content,
data, and services as well as their aggregation in large Knowledge Graphs. Only this
enables bots to not only understand a question but being able to answer a question in
a knowledgeable way.

These Knowledge Graphs, especially when based on schema.org, play an increas-
ingly important role in Internet-based information search. They become a significant
key technology for successful e-commerce and e-marketing and their influence on
the value distribution in economic sectors that interact with their customers online. It
is yet another approach for scalable data integration on a large scale and most likely
it will not be the last approach tackling this very hard problem. However, it is also
the first time that we approach this problem on a worldwide scale. In this book, we

ix

describe methods and tools that empower information providers to build and main-
tain such a Knowledge Graph. In particular, the following aspects will be introduced:

• Methods and tools for manual, semi-automatic, and automatic construction and
validation plus verification of semantic annotations and their integration into
Knowledge Graphs.

• Methods and tools for the implementation of Knowledge Graphs.
• Lifecycle-based approaches for semi-automatic and automatic curation of such

graphs. This includes approaches for assessment, error correction, and enrich-
ment of knowledge with other static and dynamic resources.

Knowledge is half the way. It must be made applicable as potential answers for
questions and as guidance for a dialog.

• e-marketing: with reasoning methods and tools, we can derive dialog-based bots
for specific tasks and domains from a Knowledge Graph.

• e-commerce: based on the semantic descriptions of services and products, a goal-
oriented dialog can be designed improving the process of reserving, renting,
booking, or buying goods and services.

To illustrate the practical usage of these approaches, we discuss several pilots
with a focus on e-tourism domain. Tourism is one of the largest verticals worldwide
with significant growth potential. Also, it is one of the verticals where Europe may
have a future, and the distribution of value critically depends on proper competence
in e-marketing and e-commerce. Potential customers are distributed worldwide, and
service providers are fragmented, mostly small business units (e.g., tens of thousands
of small family hotels in Tyrol). In general, we focus on the following aspects:

• Integration of content, data, and service descriptions from open, proprietary,
heterogeneous, and distributed sources.

• Efficient and effective maintenance of context of data (e.g., provenance, geo-
graphical and temporal validity).

• Using Knowledge Graphs for guiding dialogs.
• Integration of static and dynamic sources.
• Integration of Semantic Web services to facilitate actions and automatic service

invocation.

The structure of this book follows these arguments. Chapter 1 provides a defini-
tion for Knowledge Graphs. We do not aim for mathematical precision but rather try
to cover the various approaches regarding their impact. Chapter 2 details how
Knowledge Graphs are built, implemented, maintained, and deployed. Chapter 3
introduces relevant application layers that can be built with such Knowledge Graphs.
We explain how inference can be used to define views on such a graph, making it a
useful resource for open and service-oriented dialog systems. The proof of the
pudding is in the eating. Chapter 4 elaborates application of Knowledge Graph

x Preface

https://doi.org/10.1007/978-3-030-37439-6_1
https://doi.org/10.1007/978-3-030-37439-6_2
https://doi.org/10.1007/978-3-030-37439-6_3
https://doi.org/10.1007/978-3-030-37439-6_4

technologies for e-tourism and use cases and pilots for other verticals. Chapter 5
provides a summary and sketches directions for future work. In Appendix A we
introduce an abstract syntax and semantics for our domain specifications that are
used to adapt schema.org to specific domains and tasks.

Innsbruck, Austria Dieter Fensel
Innsbruck, Austria Umutcan Şimşek
Innsbruck, Austria Kevin Angele
Innsbruck, Austria Elwin Huaman
Innsbruck, Austria Elias Kärle
Innsbruck, Austria Oleksandra Panasiuk
Telfs, Austria Ioan Toma
Telfs, Austria Jürgen Umbrich
Telfs, Austria Alexander Wahler

Preface xi

https://doi.org/10.1007/978-3-030-37439-6_5

Acknowledgment

We would like to thank Andreas Harth and Aidan Hogan for the very fruitful and
helpful discussions and reviews of the book. Also, we would like to thank all
participants of the MindLab project as the book summarizes the essence of their
work.1 Additionally, the very fruitful discussions we had with the participants of the
2019 STI Summit on Knowledge Graphs (especially with Mark Musen, Juan
Sequeda, Rudi Studer, and Sung-Kook Han) helped significantly in sharping our
conclusions.2 Finally, we would like to thank Andreas Lackner for acting as a
pathfinder for us to find through the labyrinth of (Tyrolean) e-tourism.

1https://mindlab.ai/
2https://www.sti2.org/events/2019-sti2-semantic-summit

xiii

Contents

1 Introduction: What Is a Knowledge Graph? 1
1.1 Introduction . 1
1.2 A Conceptual Definition of Knowledge Graphs 2
1.3 An Empirical Definition of Knowledge Graphs 6

1.3.1 Open Knowledge Graphs . 6
1.3.2 Proprietary Knowledge Graphs . 9

2 How to Build a Knowledge Graph . 11
2.1 Introduction . 11
2.2 Knowledge Creation . 13

2.2.1 Knowledge Creation Methodology 14
2.2.2 Our Modelling Language . 15
2.2.3 Knowledge Generation Tools . 20

2.2.3.1 Manual Editing . 20
2.2.3.2 Semi-automatic Editing 23
2.2.3.3 Mapping . 23
2.2.3.4 Automatic Annotation Tools 24
2.2.3.5 Evaluation . 28

2.3 Knowledge Hosting . 31
2.3.1 Collection, Storage, and Retrieval of Semantic

Annotations . 32
2.3.2 Collection, Storage, and Retrieval of Knowledge

Graphs . 34
2.4 Knowledge Curation . 35

2.4.1 A Maximal Simple Knowledge Representation
Formalism . 36

2.4.2 Knowledge Assessment . 37
2.4.2.1 Literature . 37
2.4.2.2 Task Types . 42
2.4.2.3 Methods and Tools . 43

xv

https://doi.org/10.1007/978-3-030-37439-6_1
https://doi.org/10.1007/978-3-030-37439-6_1
https://doi.org/10.1007/978-3-030-37439-6_1
https://doi.org/10.1007/978-3-030-37439-6_1
https://doi.org/10.1007/978-3-030-37439-6_1
https://doi.org/10.1007/978-3-030-37439-6_1
https://doi.org/10.1007/978-3-030-37439-6_1#Sec1
https://doi.org/10.1007/978-3-030-37439-6_1#Sec1
https://doi.org/10.1007/978-3-030-37439-6_1#Sec1
https://doi.org/10.1007/978-3-030-37439-6_1#Sec1
https://doi.org/10.1007/978-3-030-37439-6_1#Sec1
https://doi.org/10.1007/978-3-030-37439-6_1#Sec1
https://doi.org/10.1007/978-3-030-37439-6_1#Sec2
https://doi.org/10.1007/978-3-030-37439-6_1#Sec2
https://doi.org/10.1007/978-3-030-37439-6_1#Sec2
https://doi.org/10.1007/978-3-030-37439-6_1#Sec2
https://doi.org/10.1007/978-3-030-37439-6_1#Sec2
https://doi.org/10.1007/978-3-030-37439-6_1#Sec2
https://doi.org/10.1007/978-3-030-37439-6_1#Sec3
https://doi.org/10.1007/978-3-030-37439-6_1#Sec3
https://doi.org/10.1007/978-3-030-37439-6_1#Sec3
https://doi.org/10.1007/978-3-030-37439-6_1#Sec3
https://doi.org/10.1007/978-3-030-37439-6_1#Sec3
https://doi.org/10.1007/978-3-030-37439-6_1#Sec3
https://doi.org/10.1007/978-3-030-37439-6_1#Sec4
https://doi.org/10.1007/978-3-030-37439-6_1#Sec4
https://doi.org/10.1007/978-3-030-37439-6_1#Sec4
https://doi.org/10.1007/978-3-030-37439-6_1#Sec4
https://doi.org/10.1007/978-3-030-37439-6_1#Sec4
https://doi.org/10.1007/978-3-030-37439-6_1#Sec4
https://doi.org/10.1007/978-3-030-37439-6_1#Sec5
https://doi.org/10.1007/978-3-030-37439-6_1#Sec5
https://doi.org/10.1007/978-3-030-37439-6_1#Sec5
https://doi.org/10.1007/978-3-030-37439-6_1#Sec5
https://doi.org/10.1007/978-3-030-37439-6_1#Sec5
https://doi.org/10.1007/978-3-030-37439-6_1#Sec5
https://doi.org/10.1007/978-3-030-37439-6_2
https://doi.org/10.1007/978-3-030-37439-6_2
https://doi.org/10.1007/978-3-030-37439-6_2
https://doi.org/10.1007/978-3-030-37439-6_2
https://doi.org/10.1007/978-3-030-37439-6_2
https://doi.org/10.1007/978-3-030-37439-6_2
https://doi.org/10.1007/978-3-030-37439-6_2#Sec1
https://doi.org/10.1007/978-3-030-37439-6_2#Sec1
https://doi.org/10.1007/978-3-030-37439-6_2#Sec1
https://doi.org/10.1007/978-3-030-37439-6_2#Sec1
https://doi.org/10.1007/978-3-030-37439-6_2#Sec1
https://doi.org/10.1007/978-3-030-37439-6_2#Sec1
https://doi.org/10.1007/978-3-030-37439-6_2#Sec2
https://doi.org/10.1007/978-3-030-37439-6_2#Sec2
https://doi.org/10.1007/978-3-030-37439-6_2#Sec2
https://doi.org/10.1007/978-3-030-37439-6_2#Sec2
https://doi.org/10.1007/978-3-030-37439-6_2#Sec2
https://doi.org/10.1007/978-3-030-37439-6_2#Sec2
https://doi.org/10.1007/978-3-030-37439-6_2#Sec3
https://doi.org/10.1007/978-3-030-37439-6_2#Sec3
https://doi.org/10.1007/978-3-030-37439-6_2#Sec3
https://doi.org/10.1007/978-3-030-37439-6_2#Sec3
https://doi.org/10.1007/978-3-030-37439-6_2#Sec3
https://doi.org/10.1007/978-3-030-37439-6_2#Sec3
https://doi.org/10.1007/978-3-030-37439-6_2#Sec4
https://doi.org/10.1007/978-3-030-37439-6_2#Sec4
https://doi.org/10.1007/978-3-030-37439-6_2#Sec4
https://doi.org/10.1007/978-3-030-37439-6_2#Sec4
https://doi.org/10.1007/978-3-030-37439-6_2#Sec4
https://doi.org/10.1007/978-3-030-37439-6_2#Sec4
https://doi.org/10.1007/978-3-030-37439-6_2#Sec5
https://doi.org/10.1007/978-3-030-37439-6_2#Sec5
https://doi.org/10.1007/978-3-030-37439-6_2#Sec5
https://doi.org/10.1007/978-3-030-37439-6_2#Sec5
https://doi.org/10.1007/978-3-030-37439-6_2#Sec5
https://doi.org/10.1007/978-3-030-37439-6_2#Sec5
https://doi.org/10.1007/978-3-030-37439-6_2#Sec6
https://doi.org/10.1007/978-3-030-37439-6_2#Sec6
https://doi.org/10.1007/978-3-030-37439-6_2#Sec6
https://doi.org/10.1007/978-3-030-37439-6_2#Sec6
https://doi.org/10.1007/978-3-030-37439-6_2#Sec6
https://doi.org/10.1007/978-3-030-37439-6_2#Sec6
https://doi.org/10.1007/978-3-030-37439-6_2#Sec7
https://doi.org/10.1007/978-3-030-37439-6_2#Sec7
https://doi.org/10.1007/978-3-030-37439-6_2#Sec7
https://doi.org/10.1007/978-3-030-37439-6_2#Sec7
https://doi.org/10.1007/978-3-030-37439-6_2#Sec7
https://doi.org/10.1007/978-3-030-37439-6_2#Sec7
https://doi.org/10.1007/978-3-030-37439-6_2#Sec8
https://doi.org/10.1007/978-3-030-37439-6_2#Sec8
https://doi.org/10.1007/978-3-030-37439-6_2#Sec8
https://doi.org/10.1007/978-3-030-37439-6_2#Sec8
https://doi.org/10.1007/978-3-030-37439-6_2#Sec8
https://doi.org/10.1007/978-3-030-37439-6_2#Sec8
https://doi.org/10.1007/978-3-030-37439-6_2#Sec9
https://doi.org/10.1007/978-3-030-37439-6_2#Sec9
https://doi.org/10.1007/978-3-030-37439-6_2#Sec9
https://doi.org/10.1007/978-3-030-37439-6_2#Sec9
https://doi.org/10.1007/978-3-030-37439-6_2#Sec9
https://doi.org/10.1007/978-3-030-37439-6_2#Sec9
https://doi.org/10.1007/978-3-030-37439-6_2#Sec10
https://doi.org/10.1007/978-3-030-37439-6_2#Sec10
https://doi.org/10.1007/978-3-030-37439-6_2#Sec10
https://doi.org/10.1007/978-3-030-37439-6_2#Sec10
https://doi.org/10.1007/978-3-030-37439-6_2#Sec10
https://doi.org/10.1007/978-3-030-37439-6_2#Sec10
https://doi.org/10.1007/978-3-030-37439-6_2#Sec11
https://doi.org/10.1007/978-3-030-37439-6_2#Sec11
https://doi.org/10.1007/978-3-030-37439-6_2#Sec11
https://doi.org/10.1007/978-3-030-37439-6_2#Sec11
https://doi.org/10.1007/978-3-030-37439-6_2#Sec11
https://doi.org/10.1007/978-3-030-37439-6_2#Sec11
https://doi.org/10.1007/978-3-030-37439-6_2#Sec12
https://doi.org/10.1007/978-3-030-37439-6_2#Sec12
https://doi.org/10.1007/978-3-030-37439-6_2#Sec12
https://doi.org/10.1007/978-3-030-37439-6_2#Sec12
https://doi.org/10.1007/978-3-030-37439-6_2#Sec12
https://doi.org/10.1007/978-3-030-37439-6_2#Sec12
https://doi.org/10.1007/978-3-030-37439-6_2#Sec12
https://doi.org/10.1007/978-3-030-37439-6_2#Sec13
https://doi.org/10.1007/978-3-030-37439-6_2#Sec13
https://doi.org/10.1007/978-3-030-37439-6_2#Sec13
https://doi.org/10.1007/978-3-030-37439-6_2#Sec13
https://doi.org/10.1007/978-3-030-37439-6_2#Sec13
https://doi.org/10.1007/978-3-030-37439-6_2#Sec13
https://doi.org/10.1007/978-3-030-37439-6_2#Sec13
https://doi.org/10.1007/978-3-030-37439-6_2#Sec14
https://doi.org/10.1007/978-3-030-37439-6_2#Sec14
https://doi.org/10.1007/978-3-030-37439-6_2#Sec14
https://doi.org/10.1007/978-3-030-37439-6_2#Sec14
https://doi.org/10.1007/978-3-030-37439-6_2#Sec14
https://doi.org/10.1007/978-3-030-37439-6_2#Sec14
https://doi.org/10.1007/978-3-030-37439-6_2#Sec15
https://doi.org/10.1007/978-3-030-37439-6_2#Sec15
https://doi.org/10.1007/978-3-030-37439-6_2#Sec15
https://doi.org/10.1007/978-3-030-37439-6_2#Sec15
https://doi.org/10.1007/978-3-030-37439-6_2#Sec15
https://doi.org/10.1007/978-3-030-37439-6_2#Sec15
https://doi.org/10.1007/978-3-030-37439-6_2#Sec15
https://doi.org/10.1007/978-3-030-37439-6_2#Sec16
https://doi.org/10.1007/978-3-030-37439-6_2#Sec16
https://doi.org/10.1007/978-3-030-37439-6_2#Sec16
https://doi.org/10.1007/978-3-030-37439-6_2#Sec16
https://doi.org/10.1007/978-3-030-37439-6_2#Sec16
https://doi.org/10.1007/978-3-030-37439-6_2#Sec16
https://doi.org/10.1007/978-3-030-37439-6_2#Sec17
https://doi.org/10.1007/978-3-030-37439-6_2#Sec17
https://doi.org/10.1007/978-3-030-37439-6_2#Sec17
https://doi.org/10.1007/978-3-030-37439-6_2#Sec17
https://doi.org/10.1007/978-3-030-37439-6_2#Sec17
https://doi.org/10.1007/978-3-030-37439-6_2#Sec17
https://doi.org/10.1007/978-3-030-37439-6_2#Sec18
https://doi.org/10.1007/978-3-030-37439-6_2#Sec18
https://doi.org/10.1007/978-3-030-37439-6_2#Sec18
https://doi.org/10.1007/978-3-030-37439-6_2#Sec18
https://doi.org/10.1007/978-3-030-37439-6_2#Sec18
https://doi.org/10.1007/978-3-030-37439-6_2#Sec18
https://doi.org/10.1007/978-3-030-37439-6_2#Sec19
https://doi.org/10.1007/978-3-030-37439-6_2#Sec19
https://doi.org/10.1007/978-3-030-37439-6_2#Sec19
https://doi.org/10.1007/978-3-030-37439-6_2#Sec19
https://doi.org/10.1007/978-3-030-37439-6_2#Sec19
https://doi.org/10.1007/978-3-030-37439-6_2#Sec19

2.4.3 Knowledge Cleaning . 46
2.4.3.1 Literature . 47
2.4.3.2 Task Types . 47
2.4.3.3 Methods and Tools . 49
2.4.3.4 Summary . 51

2.4.4 Knowledge Enrichment . 52
2.4.4.1 Literature . 53
2.4.4.2 Task Types . 55
2.4.4.3 Methods and Tools . 55
2.4.4.4 Summary . 61

2.4.5 Summary on Knowledge Curation 61
2.5 Knowledge Deployment: The Use of the Pudding

Is in the Eating . 62

3 How to Use a Knowledge Graph . 69
3.1 Introduction . 69
3.2 Merging Artificial Intelligence and the Internet 70

3.2.1 60 Years of AI in a Glimpse . 70
3.2.2 The Web (for Bots) . 71
3.2.3 Summary . 78

3.3 Knowledge Access Layer . 78
3.3.1 Loosely Connected TBoxes Defining Logic-Based

Views on Knowledge Graphs . 79
3.3.2 Dynamic and Active Data: Semantic Web Services 83

3.4 Open and Service-Oriented Dialog Systems 85
3.4.1 Open Dialog Systems . 85
3.4.2 Service-Guided Dialogs . 91
3.4.3 Summary . 92

4 Why We Need Knowledge Graphs: Applications 95
4.1 Introduction . 95
4.2 The Market . 96
4.3 Motivation and Solution . 97
4.4 Touristic Use Cases . 101
4.5 Energy Use Cases . 107
4.6 Further Verticals . 110
4.7 Summary . 111

5 Conclusions . 113

Appendix . 117

References . 129

Index . 145

xvi Contents

https://doi.org/10.1007/978-3-030-37439-6_2#Sec20
https://doi.org/10.1007/978-3-030-37439-6_2#Sec20
https://doi.org/10.1007/978-3-030-37439-6_2#Sec20
https://doi.org/10.1007/978-3-030-37439-6_2#Sec20
https://doi.org/10.1007/978-3-030-37439-6_2#Sec20
https://doi.org/10.1007/978-3-030-37439-6_2#Sec20
https://doi.org/10.1007/978-3-030-37439-6_2#Sec21
https://doi.org/10.1007/978-3-030-37439-6_2#Sec21
https://doi.org/10.1007/978-3-030-37439-6_2#Sec21
https://doi.org/10.1007/978-3-030-37439-6_2#Sec21
https://doi.org/10.1007/978-3-030-37439-6_2#Sec21
https://doi.org/10.1007/978-3-030-37439-6_2#Sec21
https://doi.org/10.1007/978-3-030-37439-6_2#Sec22
https://doi.org/10.1007/978-3-030-37439-6_2#Sec22
https://doi.org/10.1007/978-3-030-37439-6_2#Sec22
https://doi.org/10.1007/978-3-030-37439-6_2#Sec22
https://doi.org/10.1007/978-3-030-37439-6_2#Sec22
https://doi.org/10.1007/978-3-030-37439-6_2#Sec22
https://doi.org/10.1007/978-3-030-37439-6_2#Sec23
https://doi.org/10.1007/978-3-030-37439-6_2#Sec23
https://doi.org/10.1007/978-3-030-37439-6_2#Sec23
https://doi.org/10.1007/978-3-030-37439-6_2#Sec23
https://doi.org/10.1007/978-3-030-37439-6_2#Sec23
https://doi.org/10.1007/978-3-030-37439-6_2#Sec23
https://doi.org/10.1007/978-3-030-37439-6_2#Sec24
https://doi.org/10.1007/978-3-030-37439-6_2#Sec24
https://doi.org/10.1007/978-3-030-37439-6_2#Sec24
https://doi.org/10.1007/978-3-030-37439-6_2#Sec24
https://doi.org/10.1007/978-3-030-37439-6_2#Sec24
https://doi.org/10.1007/978-3-030-37439-6_2#Sec24
https://doi.org/10.1007/978-3-030-37439-6_2#Sec25
https://doi.org/10.1007/978-3-030-37439-6_2#Sec25
https://doi.org/10.1007/978-3-030-37439-6_2#Sec25
https://doi.org/10.1007/978-3-030-37439-6_2#Sec25
https://doi.org/10.1007/978-3-030-37439-6_2#Sec25
https://doi.org/10.1007/978-3-030-37439-6_2#Sec25
https://doi.org/10.1007/978-3-030-37439-6_2#Sec26
https://doi.org/10.1007/978-3-030-37439-6_2#Sec26
https://doi.org/10.1007/978-3-030-37439-6_2#Sec26
https://doi.org/10.1007/978-3-030-37439-6_2#Sec26
https://doi.org/10.1007/978-3-030-37439-6_2#Sec26
https://doi.org/10.1007/978-3-030-37439-6_2#Sec26
https://doi.org/10.1007/978-3-030-37439-6_2#Sec27
https://doi.org/10.1007/978-3-030-37439-6_2#Sec27
https://doi.org/10.1007/978-3-030-37439-6_2#Sec27
https://doi.org/10.1007/978-3-030-37439-6_2#Sec27
https://doi.org/10.1007/978-3-030-37439-6_2#Sec27
https://doi.org/10.1007/978-3-030-37439-6_2#Sec27
https://doi.org/10.1007/978-3-030-37439-6_2#Sec28
https://doi.org/10.1007/978-3-030-37439-6_2#Sec28
https://doi.org/10.1007/978-3-030-37439-6_2#Sec28
https://doi.org/10.1007/978-3-030-37439-6_2#Sec28
https://doi.org/10.1007/978-3-030-37439-6_2#Sec28
https://doi.org/10.1007/978-3-030-37439-6_2#Sec28
https://doi.org/10.1007/978-3-030-37439-6_2#Sec29
https://doi.org/10.1007/978-3-030-37439-6_2#Sec29
https://doi.org/10.1007/978-3-030-37439-6_2#Sec29
https://doi.org/10.1007/978-3-030-37439-6_2#Sec29
https://doi.org/10.1007/978-3-030-37439-6_2#Sec29
https://doi.org/10.1007/978-3-030-37439-6_2#Sec29
https://doi.org/10.1007/978-3-030-37439-6_2#Sec30
https://doi.org/10.1007/978-3-030-37439-6_2#Sec30
https://doi.org/10.1007/978-3-030-37439-6_2#Sec30
https://doi.org/10.1007/978-3-030-37439-6_2#Sec30
https://doi.org/10.1007/978-3-030-37439-6_2#Sec30
https://doi.org/10.1007/978-3-030-37439-6_2#Sec30
https://doi.org/10.1007/978-3-030-37439-6_2#Sec31
https://doi.org/10.1007/978-3-030-37439-6_2#Sec31
https://doi.org/10.1007/978-3-030-37439-6_2#Sec31
https://doi.org/10.1007/978-3-030-37439-6_2#Sec31
https://doi.org/10.1007/978-3-030-37439-6_2#Sec31
https://doi.org/10.1007/978-3-030-37439-6_2#Sec31
https://doi.org/10.1007/978-3-030-37439-6_2#Sec31
https://doi.org/10.1007/978-3-030-37439-6_3
https://doi.org/10.1007/978-3-030-37439-6_3
https://doi.org/10.1007/978-3-030-37439-6_3
https://doi.org/10.1007/978-3-030-37439-6_3
https://doi.org/10.1007/978-3-030-37439-6_3
https://doi.org/10.1007/978-3-030-37439-6_3
https://doi.org/10.1007/978-3-030-37439-6_3#Sec1
https://doi.org/10.1007/978-3-030-37439-6_3#Sec1
https://doi.org/10.1007/978-3-030-37439-6_3#Sec1
https://doi.org/10.1007/978-3-030-37439-6_3#Sec1
https://doi.org/10.1007/978-3-030-37439-6_3#Sec1
https://doi.org/10.1007/978-3-030-37439-6_3#Sec1
https://doi.org/10.1007/978-3-030-37439-6_3#Sec2
https://doi.org/10.1007/978-3-030-37439-6_3#Sec2
https://doi.org/10.1007/978-3-030-37439-6_3#Sec2
https://doi.org/10.1007/978-3-030-37439-6_3#Sec2
https://doi.org/10.1007/978-3-030-37439-6_3#Sec2
https://doi.org/10.1007/978-3-030-37439-6_3#Sec2
https://doi.org/10.1007/978-3-030-37439-6_3#Sec3
https://doi.org/10.1007/978-3-030-37439-6_3#Sec3
https://doi.org/10.1007/978-3-030-37439-6_3#Sec3
https://doi.org/10.1007/978-3-030-37439-6_3#Sec3
https://doi.org/10.1007/978-3-030-37439-6_3#Sec3
https://doi.org/10.1007/978-3-030-37439-6_3#Sec3
https://doi.org/10.1007/978-3-030-37439-6_3#Sec4
https://doi.org/10.1007/978-3-030-37439-6_3#Sec4
https://doi.org/10.1007/978-3-030-37439-6_3#Sec4
https://doi.org/10.1007/978-3-030-37439-6_3#Sec4
https://doi.org/10.1007/978-3-030-37439-6_3#Sec4
https://doi.org/10.1007/978-3-030-37439-6_3#Sec4
https://doi.org/10.1007/978-3-030-37439-6_3#Sec5
https://doi.org/10.1007/978-3-030-37439-6_3#Sec5
https://doi.org/10.1007/978-3-030-37439-6_3#Sec5
https://doi.org/10.1007/978-3-030-37439-6_3#Sec5
https://doi.org/10.1007/978-3-030-37439-6_3#Sec5
https://doi.org/10.1007/978-3-030-37439-6_3#Sec5
https://doi.org/10.1007/978-3-030-37439-6_3#Sec6
https://doi.org/10.1007/978-3-030-37439-6_3#Sec6
https://doi.org/10.1007/978-3-030-37439-6_3#Sec6
https://doi.org/10.1007/978-3-030-37439-6_3#Sec6
https://doi.org/10.1007/978-3-030-37439-6_3#Sec6
https://doi.org/10.1007/978-3-030-37439-6_3#Sec6
https://doi.org/10.1007/978-3-030-37439-6_3#Sec7
https://doi.org/10.1007/978-3-030-37439-6_3#Sec7
https://doi.org/10.1007/978-3-030-37439-6_3#Sec7
https://doi.org/10.1007/978-3-030-37439-6_3#Sec7
https://doi.org/10.1007/978-3-030-37439-6_3#Sec7
https://doi.org/10.1007/978-3-030-37439-6_3#Sec7
https://doi.org/10.1007/978-3-030-37439-6_3#Sec7
https://doi.org/10.1007/978-3-030-37439-6_3#Sec8
https://doi.org/10.1007/978-3-030-37439-6_3#Sec8
https://doi.org/10.1007/978-3-030-37439-6_3#Sec8
https://doi.org/10.1007/978-3-030-37439-6_3#Sec8
https://doi.org/10.1007/978-3-030-37439-6_3#Sec8
https://doi.org/10.1007/978-3-030-37439-6_3#Sec8
https://doi.org/10.1007/978-3-030-37439-6_3#Sec9
https://doi.org/10.1007/978-3-030-37439-6_3#Sec9
https://doi.org/10.1007/978-3-030-37439-6_3#Sec9
https://doi.org/10.1007/978-3-030-37439-6_3#Sec9
https://doi.org/10.1007/978-3-030-37439-6_3#Sec9
https://doi.org/10.1007/978-3-030-37439-6_3#Sec9
https://doi.org/10.1007/978-3-030-37439-6_3#Sec10
https://doi.org/10.1007/978-3-030-37439-6_3#Sec10
https://doi.org/10.1007/978-3-030-37439-6_3#Sec10
https://doi.org/10.1007/978-3-030-37439-6_3#Sec10
https://doi.org/10.1007/978-3-030-37439-6_3#Sec10
https://doi.org/10.1007/978-3-030-37439-6_3#Sec10
https://doi.org/10.1007/978-3-030-37439-6_3#Sec11
https://doi.org/10.1007/978-3-030-37439-6_3#Sec11
https://doi.org/10.1007/978-3-030-37439-6_3#Sec11
https://doi.org/10.1007/978-3-030-37439-6_3#Sec11
https://doi.org/10.1007/978-3-030-37439-6_3#Sec11
https://doi.org/10.1007/978-3-030-37439-6_3#Sec11
https://doi.org/10.1007/978-3-030-37439-6_3#Sec12
https://doi.org/10.1007/978-3-030-37439-6_3#Sec12
https://doi.org/10.1007/978-3-030-37439-6_3#Sec12
https://doi.org/10.1007/978-3-030-37439-6_3#Sec12
https://doi.org/10.1007/978-3-030-37439-6_3#Sec12
https://doi.org/10.1007/978-3-030-37439-6_3#Sec12
https://doi.org/10.1007/978-3-030-37439-6_4
https://doi.org/10.1007/978-3-030-37439-6_4
https://doi.org/10.1007/978-3-030-37439-6_4
https://doi.org/10.1007/978-3-030-37439-6_4
https://doi.org/10.1007/978-3-030-37439-6_4
https://doi.org/10.1007/978-3-030-37439-6_4
https://doi.org/10.1007/978-3-030-37439-6_4#Sec1
https://doi.org/10.1007/978-3-030-37439-6_4#Sec1
https://doi.org/10.1007/978-3-030-37439-6_4#Sec1
https://doi.org/10.1007/978-3-030-37439-6_4#Sec1
https://doi.org/10.1007/978-3-030-37439-6_4#Sec1
https://doi.org/10.1007/978-3-030-37439-6_4#Sec1
https://doi.org/10.1007/978-3-030-37439-6_4#Sec2
https://doi.org/10.1007/978-3-030-37439-6_4#Sec2
https://doi.org/10.1007/978-3-030-37439-6_4#Sec2
https://doi.org/10.1007/978-3-030-37439-6_4#Sec2
https://doi.org/10.1007/978-3-030-37439-6_4#Sec2
https://doi.org/10.1007/978-3-030-37439-6_4#Sec2
https://doi.org/10.1007/978-3-030-37439-6_4#Sec3
https://doi.org/10.1007/978-3-030-37439-6_4#Sec3
https://doi.org/10.1007/978-3-030-37439-6_4#Sec3
https://doi.org/10.1007/978-3-030-37439-6_4#Sec3
https://doi.org/10.1007/978-3-030-37439-6_4#Sec3
https://doi.org/10.1007/978-3-030-37439-6_4#Sec3
https://doi.org/10.1007/978-3-030-37439-6_4#Sec4
https://doi.org/10.1007/978-3-030-37439-6_4#Sec4
https://doi.org/10.1007/978-3-030-37439-6_4#Sec4
https://doi.org/10.1007/978-3-030-37439-6_4#Sec4
https://doi.org/10.1007/978-3-030-37439-6_4#Sec4
https://doi.org/10.1007/978-3-030-37439-6_4#Sec4
https://doi.org/10.1007/978-3-030-37439-6_4#Sec5
https://doi.org/10.1007/978-3-030-37439-6_4#Sec5
https://doi.org/10.1007/978-3-030-37439-6_4#Sec5
https://doi.org/10.1007/978-3-030-37439-6_4#Sec5
https://doi.org/10.1007/978-3-030-37439-6_4#Sec5
https://doi.org/10.1007/978-3-030-37439-6_4#Sec5
https://doi.org/10.1007/978-3-030-37439-6_4#Sec6
https://doi.org/10.1007/978-3-030-37439-6_4#Sec6
https://doi.org/10.1007/978-3-030-37439-6_4#Sec6
https://doi.org/10.1007/978-3-030-37439-6_4#Sec6
https://doi.org/10.1007/978-3-030-37439-6_4#Sec6
https://doi.org/10.1007/978-3-030-37439-6_4#Sec6
https://doi.org/10.1007/978-3-030-37439-6_4#Sec7
https://doi.org/10.1007/978-3-030-37439-6_4#Sec7
https://doi.org/10.1007/978-3-030-37439-6_4#Sec7
https://doi.org/10.1007/978-3-030-37439-6_4#Sec7
https://doi.org/10.1007/978-3-030-37439-6_4#Sec7
https://doi.org/10.1007/978-3-030-37439-6_4#Sec7
https://doi.org/10.1007/978-3-030-37439-6_5
https://doi.org/10.1007/978-3-030-37439-6_5
https://doi.org/10.1007/978-3-030-37439-6_5
https://doi.org/10.1007/978-3-030-37439-6_5
https://doi.org/10.1007/978-3-030-37439-6_5
https://doi.org/10.1007/978-3-030-37439-6_5

Chapter 1
Introduction: What Is a Knowledge Graph?

Knowledge graphs are critical to many enterprises today:
They provide the structured data and factual knowledge that
drive many products and make them more intelligent and
magical. (Noy et al. 2019)

Abstract Since its inception by Google, Knowledge Graph has become a term that
is recently ubiquitously used yet does not have a well-established definition. This
section attempts to derive a definition for Knowledge Graphs by compiling existing
definitions made in the literature and considering the distinctive characteristics of
previous efforts for tackling the data integration challenge we are facing today. Our
attempt to make a conceptual definition is complemented with an empirical survey of
existing Knowledge Graphs. This section lays the foundation for the remainder of
the book, as it provides a common understanding on certain concepts and motivation
to build Knowledge Graphs in the first place.

1.1 Introduction

Smart speakers such as Alexa and Google Home introduced AI-based
(AI) communication means in millions soon billions of households. Even the web
is currently reinventing itself by applying schema.org1 (Guha et al. 2016). Data,
content, and services become semantically annotated, allowing a software agent,
so-called bots,2 to search through the web understanding its content. Therefore, it
becomes increasingly important for information, service, and product providers to be
highly hearable and visible in these new online channels to ensure their future
economic maturity.

1https://www.schema.org/
2https://en.wikipedia.org/wiki/Internet_bot

© Springer Nature Switzerland AG 2020
D. Fensel et al., Knowledge Graphs, https://doi.org/10.1007/978-3-030-37439-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37439-6_1&domain=pdf
https://www.schema.org/
https://en.wikipedia.org/wiki/Internet_bot
https://doi.org/10.1007/978-3-030-37439-6_1

The development of such automatic methods for speech recognition is an impor-
tant prerequisite for the development of automated dialog systems.3 Their break-
through in automatic language understanding is based on Big Data4 and machine
learning (Goodfellow et al. 2016). However, for answering a query or for running a
goal-oriented dialog, more is needed. For giving a meaningful answer, an agent
needs knowledge. Therefore, Google started in 2012 to develop a so-called Knowl-
edge Graph,5 which should contain significant aspects of human knowledge found
semantically annotated on the web or in other data sources. Meanwhile a kind of
hype has arisen around this technology.6 In consequence, it becomes necessary to
better understand what Knowledge Graphs are about. We approach this question
complementarily. First, we try to give a conceptual answer by analyzing the under-
lying principles of a Knowledge Graph. Second, we provide an empirical survey on
existing Knowledge Graphs.

1.2 A Conceptual Definition of Knowledge Graphs

Size matters (unknown author, most likely male)

Ehrlinger and Wöß (2016) provides a very useful and concise survey on potential
definitions of Knowledge Graphs illustrating their variations. They also add a new
definition which is centered on using Ontologies and reasoners deriving new knowl-
edge. From our point of view, this definition is too exclusive and too much focused
on specific methods. Let us start with a few thoughts on potential definitions of a
Knowledge Graph. Hermeneutically, we could first distinguish the two terms con-
stituting this concept since we have two quite different beasts.

A “graph is a structure amounting to a set of objects in which some pairs of the
objects are in some sense related”.7 Strictly spoken we need to slightly extend this
definition to multi-sets since the same object can syntactically and semantically
appear several times in our graph. Some normalization can get rid of this issue, but
this already implies certain specific processing techniques. This simple definition
can be extended in various directions and we end up with an entire zoo of graph
types: simple graphs, undirected versus directed graphs, oriented graphs, mixed
graphs, multigraphs, Quiver, weighted graphs, half-edges and loose-edges graphs,

3https://en.wikipedia.org/wiki/Dialogue_system
4https://en.wikipedia.org/wiki/Big_data
5A. Singhal: Introducing the Knowledge Graph, things, not strings. Blog post at http://googleblog.
blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html, 2012.
6Just to mention a few books (Chen et al. 2016; Croitoru et al. 2018; d’Amato and Theobald 2018;
Ehrig et al. 2015; Li et al. 2017; Pan et al. 2017a, b; Qi et al., 2020; Qi et al. 2013; Van Erp et al.
2017). See also Bonatti et al. (2019).
7https://en.wikipedia.org/wiki/Graph_(discrete_mathematics).

2 1 Introduction: What Is a Knowledge Graph?

https://en.wikipedia.org/wiki/Dialogue_system
https://en.wikipedia.org/wiki/Big_data
http://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html
http://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

finite versus infinite graphs, and more.8 This reminds on the situation in the infor-
mation system field in the last century when “every” new PhD introduced a new
variant for Petri-Nets9: labelled, colored, hierarchical, etc. Just quoting Wikipedia:
“There are many more extensions to Petri nets, however, it is important to keep in
mind, that as the complexity of the net increases in terms of extended properties, the
harder it is to use standard tools to evaluate certain properties of the net. For this
reason, it is a good idea to use the simplest net type possible for a given modelling
task.”10 In the Semantic Web community, the consensus is to use RDF as represen-
tation formalism for representing a Knowledge Graph.11 However, when looking
precisely, it is often the case that RDF12 is rather used syntactically than also
epistemologically or semantically. For example, RDF provides only global property
definitions and often one would like to use properties defined as attributes with
specific ranges for a concept for which they are defined.13 Similarly, RDF/OWL
semantics that interprets range restriction as a means to infer new knowledge instead
of using them to detect type errors is not necessarily the intended meaning of range
definitions in schema.org.14,15

The concept of knowledge is a bit fluffier. Let us go back to what (Newell 1982)
called the knowledge level. Based on the assumption that an agent follows the
principle of rationality (later refined to the concept of bounded rationality (Simon
1957) including the costs for “optimal” decision-making), we subscribe knowledge
to it perceiving the actions it takes to achieve certain goals. In this sense, knowledge
is externally assigned to this agent by an observer. Internally the “knowledge” is
coded at the symbol level.

Beneath the knowledge level resides the symbol level. Whereas the knowledge level is world
oriented, namely that it concerns the environment in which the agent operates, the symbol
level is system oriented, in that it includes the mechanisms the agent has available to operate.
The knowledge level rationalizes the agent’s behavior, while the symbol level mechanizes
the agent’s behavior (Newell 1982).

8https://en.wikipedia.org/wiki/Graph_(discrete_mathematics). See Angles and Gutiérrez (2005) for
a comprehensive survey on Graph and Models.
9http://www.scholarpedia.org/article/Petri_net. See also Reisig (2013).
10https://en.wikipedia.org/wiki/Petri_net
11See Angles and Gutiérrez (2008) for a survey on graph databases.
12https://www.w3.org/RDF/
13Hayes (1981) and Patel-Schneider (2014). Guha et al. (2016) already extend RDF by polymor-
phism, and the large number of sub-properties in schema.org tries to bypass this bottleneck of RDF.
See also Patel-Schneider (2014).
14https://schema.org /
15A note for informed readers: Assume the class human and the property birthplace with a range
city. If an RDF/OWL reasoner finds the statements {birthPlace(domain:Human,range:City, human
(Hans), birthPlace(Hans) ¼ “Austria”}, it infers that “Austria” is a city instead of identifying a
range error. See also Sect. 2.4.1. See also De Bruijn et al. (2005), Patel-Schneider and
Horrocks (2006).

1.2 A Conceptual Definition of Knowledge Graphs 3

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
http://www.scholarpedia.org/article/Petri_net
https://en.wikipedia.org/wiki/Petri_net
https://www.w3.org/RDF/
https://schema.org
https://doi.org/10.1007/978-3-030-37439-6_2

We could similarly interpret the Knowledge Graph. An agent has/generates
knowledge by interpreting a graph, i.e., relates its elements to so-called real-world
objects and actions. Moreover, a graph is a specific encoding formalism. To refine it
a bit more, we may want to put the graph at the logical or epistemological level rather
than at the implementational level (Brachman 1979). At the implementational level,
we have means such as graph-based databases.

On the one hand it is not straightforward to distinguish Knowledge Graphs from
semantic nets,16 a popular knowledge representation formalism in the 1960s and
1970s of the last century (Brachman 1990; Sowa 1992). On the other hand, the
obvious difference is their actual size and therefore the potential impact of Knowl-
edge Graphs. Size matters and quantity can generate new qualities even given the
fact that nobody can define the precise number from where on it happens (Hegel
1812). One related question is the distinction of knowledge bases and Knowledge
Graphs. According to Akerkar and Sajja (2010), a knowledge-based system consists
of two parts: a knowledge base containing the knowledge and an inference engine
that can be used to derive new facts or answering questions over the knowledge
base.17 A further important characteristic of a knowledge base is the distinction
between ABox and TBox; see Brachman and Schmolze (1985). An assertion box
(ABox) contains a set of assertions/factual statements. The strictly separated termi-
nological box (TBox) defines the terminology used by ABox statements and adds
more general logical formulas using this terminology. It provides an intensional
definition of potential infinitely many additional facts (derived by the inference
engine). Knowledge Graphs may have quite a different architecture and structure.
Logical formulas are missing, and the terminological knowledge is hosted at the
same layer as the assertions, i.e., it is just several additional assertions and some
graphs may even be working without them at all. This has two consequences:

• First, there is little to reason with a Knowledge Graph. In the case of schema.org-
based Knowledge Graphs, it is usually a simple tool like Google’s test tool for
structured data18 that enforces certain constraints on valid graphs.

• Second, a rigidly defined schema can be used to define user interfaces, to ensure
data quality (correctness and completeness), and to allow optimization of storage,
querying, maintenance, and transactions. These are the key success factors of
relational databases (Codd 1970). However, such a rigid schema definition also
introduces a severe bottleneck when it is about the need to integrate data from
various, semi-structured, heterogeneous, and dynamic sources. The assumption
of a rigidly defined structured, homogeneous, and stable schema breaks and make
such data integration ineffective and non-scalable. Therefore, it is not a bug but a
feature of Knowledge Graphs to be less strict in this respect than traditional data
or knowledge bases.

16https://en.wikipedia.org/wiki/Semantic_network
17These facts are not really “new” but rather derived from intensional definitions using logical
formulas that implicitly already contained them.
18https://search.google.com/structured-data/testing-tool

4 1 Introduction: What Is a Knowledge Graph?

https://en.wikipedia.org/wiki/Semantic_network
https://search.google.com/structured-data/testing-tool

Google coined the term Knowledge Graph in 2012 to build a model of the world.
Meanwhile, it has become a hype term in the product and service industry. Already
in tourism,19 not necessarily the most innovative area in general, every major player
has a Knowledge Graph and thousands of players (such as destination management
organizations) need or want one. The drive for this stems from the fact how
increasingly important successful e-marketing and e-commerce have become in
terms of the value distribution in tourism and other areas. In general, the current
dynamics around Knowledge Graphs comes from the economic sector and not from
the scientific community. So, a simple definition could be that it is a trendy term to
phrase and guide current data (and service) integration problems. It is not the first
and most likely not the last approach tackling this very hard problem. However, it is
also the first time that we approach this problem on a worldwide scale.

The knowledge acquisition bottleneck (cf. Feigenbaum 1984; Hoekstra 2010)
caused the AI winter20 around 40 years ago. Seeing it solved by millions of people
that hack billions of statements in the Knowledge Graph (i.e., Semantic Web) is an
interesting experience (Fensel and Musen 2001). If we would have proposed this as a
solution around 1980, people would have kicked us out of universities immediately.
Even Douglas Lenat’s vision (Lenat and Guha 1989) to generate the solution with
50 employees looks rather small compared to this solution. Meanwhile we have a
Semantic Web based on schema.org that is used by more than 1.2 billion web pages
hosting more than 38 billion semantic statements.21

What is especially amazing is that it is done at a factual level instead of using
some logical expressions as shortcuts for potential billions of statements. A knowl-
edge base is built by writing down billions of facts. Facts are enumerated like
describing a set extensionally instead of intensionally. Like one would replace the
proof by induction by proofs for 1, then for 2, then for 3, and so on. Maybe this is just
due to the early stage of the development of the Knowledge Graph? Maybe it will be
the machines that take over this task. Unfortunately, they may not use logic and may
produce shortcuts we are no longer able to understand. Similarly, machine and deep
learning methods will increasingly be used for the construction, refinement, and
enrichment of a Knowledge Graph (Paulheim 2018a). Various ways to combine
inductive and deductive techniques have already been deeply investigated in the
LarKC project which has been aiming to apply reasoning on the Semantic Web
given its size, heterogeneity, semi-structured character, and velocity; see Fensel and
van Harmelen (2007), Fensel et al. (2008). The underlying assumptions of traditional

19Note that tourism is one of the most important economical verticals on a worldwide scale,
accounting for around 10% of the global GDP and total employment in 2017 (WTTC 2018).
20https://en.wikipedia.org/wiki/AI_winter
21Web Data Commons—RDFa, Microdata, Embedded JSON-LD, and Microformats Data Sets,
November 2017. http://webdatacommons.org/structureddata/2017-12/stats/stats.html. Guha et al.
(2016) reports that 31% of all pages from a sample of 10 billion web pages are using schema.org.
The most recent crawl reports more than 30 billion quads finding more than 37% semantically
annotated web sites of around 32 pay-level domains. http://webdatacommons.org/structureddata/
2018-12/stats/stats.html

1.2 A Conceptual Definition of Knowledge Graphs 5

https://en.wikipedia.org/wiki/AI_winter
http://webdatacommons.org/structureddata/2017-12/stats/stats.html
http://webdatacommons.org/structureddata/2018-12/stats/stats.html
http://webdatacommons.org/structureddata/2018-12/stats/stats.html

logic with small axiom sets, 100% correctness and completeness, and static character
of the knowledge break at the scale of the web or large Knowledge Graphs. In fact,
Wahlster pointed out in one of his recent talks the proper combination of inductive
and deductive, knowledge-based approaches as a key challenge for future research
on Artificial Intelligence.22 This holds especially for work on the Internet of Things
which is a network of physical devices, vehicles, home appliances, and other items
embedded with electronics, software, sensors, actuators, and connectivity which
enables these things to connect, collect, and exchange data and start to act beyond
the virtual world.23

Summing up the discussion we could state that Knowledge Graphs are very large
semantic nets that integrate various and heterogeneous information sources to
represent knowledge about certain domains of discourse. How they can be built
and used will be discussed in the following sections.24

1.3 An Empirical Definition of Knowledge Graphs

Below we give a survey on open and proprietary Knowledge Graphs with their
definitions and important characteristics graphs (cf. Paulheim 2017 and furthers).25

We order these approaches by the years they were first released.

1.3.1 Open Knowledge Graphs

The research on Semantic Web and linked data led to many open datasets eventually
to comprise the Linked Open Data cloud (see Sect. 2.5). These datasets are now
mostly rebranded as Knowledge Graphs. These Knowledge Graphs are typically
cross-domain. Many open Knowledge Graphs are sourced from Wikipedia since it
contains a very large factual knowledge spread over multiple domains. Some
Knowledge Graphs also benefited from unstructured corpus, lexicon, Ontologies,
and crowdsourcing for their building process. In this section, we introduce some of
the prominent open Knowledge Graphs.

DBpedia26 (Auer et al. 2007; Lehmann et al. 2015) is a Knowledge Graph first
published in 2007. It is the de facto central dataset on the Semantic Web (also

22Professor Wahlster’s Keynote: 30 Jahre DFKI—Von der Idee zum Markterfolg, at the event “30
Jahre DFKI—KI für den Menschen”, Berlin, Oktober 17, 2018.
23https://en.wikipedia.org/wiki/Internet_of_things
24One could also call it Knowledge Web as proposed in Fensel et al. (1997).
25See Noy et al. (2019) for more details on the Knowledge Graphs of Bing (Microsoft), eBay,
Facebook, Google, and IBM Watson.
26http://dbpedia.org/

6 1 Introduction: What Is a Knowledge Graph?

https://doi.org/10.1007/978-3-030-37439-6_2
https://en.wikipedia.org/wiki/Internet_of_things
http://dbpedia.org/

referred to as “nucleus”) since it is linked to many other datasets. The Knowledge
Graph is predominantly extracted from the structured data on Wikipedia pages
(mostly infoboxes), via extractors that can be tuned for extracting different kinds
of data. The DBpedia Knowledge Graph is built on top of the crowd-maintained
DBpedia Ontology (specified in OWL) that is mapped from the infobox metadata of
Wikipedia. The Knowledge Graph is published following the Semantic Web stan-
dards as RDF dumps and SPARQL endpoints. DBpedia is released periodically but
also offers a live endpoint synchronized with Wikipedia.27 The October 2016 release
contains 13B RDF triples. The DBpedia Ontology contains 760 classes and about
3000 properties.28 DBpedia has many application areas such as Natural Language
Processing and knowledge exploration and enrichment.

Freebase29 (Bollacker et al. 2008) was a collaborative knowledge base launched
in 2007. The company that run Freebase was bought by Google in 2010, and since
then, the knowledge base has improved Google’s Knowledge Graph. Freebase was
shut down by Google in 2016 and its knowledge has been incrementally included in
Wikidata. The latest dump contained 1.9B facts.30 Freebase had its own custom data
model that supported local properties.

YAGO31 (Suchanek et al. 2007; Hoffart et al. 2013; Mahdisoltani et al. 2015) is
another Knowledge Graph built based on Wikipedia content, first released in 2008.
YAGO fuses entities extracted from Wikipedia articles with WordNet synsets to
enrich the type hierarchy. The main difference between YAGO and DBpedia is that
YAGOOntology only extracts a handful number of relations and focuses on keeping
the Knowledge Graph compact but highly accurate and consistent. YAGO uses an
extended version of RDFS as formalism. YAGO2 improves the initial knowledge
base with geospatial and temporal information and YAGO3 focuses on multilin-
gualism and integrates data from Wikidata. YAGO currently contains 120M facts
and 350K classes.32

NELL33 (Carlson et al. 2010; Mitchell et al. 2018) builds a cross-domain knowl-
edge base with machine learning methods based on 500 million web pages. It uses a
predefined initial Ontology to determine the types of relations that need to be
extracted from the web. NELL agents run continuously and keep improving the
knowledge base by creating new facts and delete obsolete and wrong ones. NELL

27https://wiki.dbpedia.org/online-access/DBpediaLive
28https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10
29http://www.freebase.com/
30https://developers.google.com/freebase/
31https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-
naga/yago/downloads/
32https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-
naga/yago/
33See http://rtw.ml.cmu.edu/rtw/resources and http://rtw.ml.cmu.edu/rtw/kbbrowser/

1.3 An Empirical Definition of Knowledge Graphs 7

https://wiki.dbpedia.org/online-access/DBpediaLive
https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10
http://www.freebase.com/
https://developers.google.com/freebase/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://rtw.ml.cmu.edu/rtw/resources
http://rtw.ml.cmu.edu/rtw/kbbrowser/

agents run since 2010 and the knowledge base currently contains over 2.7M facts.34

The NELL knowledge base uses a simple frame-based formalism, and the knowl-
edge base is provided as a big tab-separated value file. Some researchers mapped
NELL data model to RDF and OWL (Giménez-García et al. 2018).

Wikidata35 (Vrandečić and Krötzsch 2014) is a community curated Knowledge
Graph and a sister project of Wikipedia, launched in 2012. Like DBpedia, it is based
on the knowledge of Wikipedia but can be also edited by community members. In
fact, Wikidata and Wikipedia may have a two-way relationship, meaning the facts
from Wikidata can be used to enrich Wikipedia articles. The main characteristics of
Wikidata is that it focuses on provenance and context of the data. For instance,
population of a city is not given as a binary relation only, but also with context
information such as “according to the measurement done by a certain statistics
organization.” Wikidata has a customized data model that supports qualifiers and
context information, but they also provide mappings to RDF and OWL (Erxleben
et al. 2014). For accessing the Knowledge Graph, Wikidata provides RDF dumps
and SPARQL endpoints; however, querying is more complicated due to the data
model that supports n-ary relationships.36 The Knowledge Graph contains more than
65M entities.37 The RDF representation contains more than 7B triples in August
2019.38

KBpedia39 (Bergman 2018) is a knowledge base that contains mappings to
Wikipedia, Wikidata, schema.org, DBpedia, GeoNames, OpenCyc, and UMBEL.
Its main purpose is to support AI applications, for instance, through enabling training
set generation40 for machine learning. The knowledge base was launched in 2016
and made open source in 2018. KBpedia is published using OWL 2 formalism and
contains 55,000 concepts, 5000 properties, and 70 mostly disjoint typologies in its
base model to ease the modularization of the knowledge base. The knowledge base
claims to have 98% coverage of Wikidata and consequently to contain 45M
instances.41

Datacommons.org42 is an open Knowledge Graph launched by Google in 2018
that integrates several public sources and contains mainly knowledge about

34Last access: August 2019. NELL extracts millions of beliefs, but “facts” are only the beliefs with a
confidence value higher than 0.9.
35https://www.wikidata.org/wiki/Wikidata:Main_Page
36The complexity can be overcome by writing queries over the “truthy graph”; see the examples in
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries
37https://www.wikidata.org/wiki/Wikidata:News
38As the result of COUNT SPARQL query showed on https://query.wikidata.org. The statistics
regarding the number of statements shows that in April 2018, Wikidata contained more than 400M
statements (Malyshev et al. 2018). This big difference is because of the fact that a statement in
Wikidata can be represented with multiple RDF triples due to the need for reification.
39http://www.kbpedia.org/
40http://kbpedia.org/use-cases
412.10 release.
42http://datacommons.org/

8 1 Introduction: What Is a Knowledge Graph?

https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries
https://www.wikidata.org/wiki/Wikidata:News
https://query.wikidata.org
http://www.kbpedia.org/
http://kbpedia.org/use-cases
http://datacommons.org/

geographic and administrational areas, demographics, and other publicly available
data such as weather and real estate. There is no public information regarding the
formalism and size of the Knowledge Graph; however, the facts are represented in
forms of triples with a provenance value attached to each fact. Another indication
regarding the formalism is that it uses the schema.org vocabulary for describing
things and extends the vocabulary slightly. The Knowledge Graph does not provide
dumps, but it is accessible via a browser interface and a Python API.

1.3.2 Proprietary Knowledge Graphs

Various Knowledge Graphs have been developed by companies to enable their
customers’ applications. In this section, we will briefly introduce some of those
Knowledge Graphs and their purposes.

Cyc43 (Lenat and Guha 1989; Lenat 1995) is one of the longest-living AI projects
and a common-sense knowledge base. Its initial release dates to 1984. Cyc knowl-
edge base contains 1.5M concepts, 20M general axioms, and domain-specific
extensions for various areas such as healthcare, transportation, and financial services.
Cyc’s content is curated by Cyccorp, but it adopts tools and methods to retrieve
knowledge from external sources when necessary. The knowledge base is
represented with the CycL language, a frame-based language that is expressive
beyond first-order logic.44 Cyc benefits from microtheories (Guha 1991) for efficient
reasoning and avoiding inconsistencies that may otherwise occur in a large knowl-
edge base. The knowledge base contains a variety of knowledge from general
knowledge such as “Causes start at or before the time that their effects start” to
highly domain-specific knowledge such as stock prices. Cyc knowledge base and
supporting applications are proprietary; however, a research license for
noncommercial use can be obtained. A fragment of Cyc was published in RDF
format for public use as OpenCyc until 2017, but it is no longer released.

Facebook’s Entities Graph45 is maintained by Facebook and used internally to
support the graph search functionality. It was initially launched in 2010 and contains
knowledge about the Facebook users, namely, their profile information, interests,
and connections. The Knowledge Graph is accessible via the Facebook Graph API.
The Knowledge Graph contains 500M facts (Noy et al. 2019).

Google’s Knowledge Graph46 was launched in 2012 initially to improve
Google’s search engine results, effectively converting Google to a question-
answering engine. In October 2016, Google announced that the Knowledge Graph

43http://www.cyc.com/
44Technical report from February 2019: https://cyc.com/cyc-technology-overview
45http://www.facebook.com/notes/facebook-engineering/under-the-hood-the-entities-graph/
10151490531588920
46https://developers.google.com/knowledge-graph/

1.3 An Empirical Definition of Knowledge Graphs 9

http://www.cyc.com/
https://cyc.com/cyc-technology-overview
http://www.facebook.com/notes/facebook-engineering/under-the-hood-the-entities-graph/10151490531588920
http://www.facebook.com/notes/facebook-engineering/under-the-hood-the-entities-graph/10151490531588920
https://developers.google.com/knowledge-graph/

holds over 70B facts (Noy et al. 2019).47 There is no public documentation regarding
the underlying technology and formalism of the Knowledge Graph, but it is known
that the standard schema.org types are used to describe the things in the graph.
Google integrates data from several sources in their Knowledge Graph, such as
Wikipedia, World Bank, Eurostat, etc. Additionally, they utilize schema.org anno-
tations and data from the web. The Google Knowledge Graph currently also powers
the Google Assistant (see Footnote 47). The Knowledge Graph is accessible via the
Google Knowledge Graph API.

Yahoo!’s Knowledge Graph48 (Blanco et al. 2013) was launched in 2013. The
Knowledge Graph acquires data from heterogenous sources and fuses them under a
common OWL Ontology. The fusing process includes reconciliation and cleaning of
knowledge. The core of the Knowledge Graph is the data from Wikipedia. It is then
enriched with sources like MusicBrainz and some commercial data providers.
During the Knowledge Graph building process, machine learning methods and
template-based methods are utilized. The common Ontology contains 300 classes
and 1300 properties (see Footnote 48). Yahoo! utilizes the Knowledge Graph to
solve tasks like search, relationship discovery, and natural language processing
tasks.

Knowledge Vault49 (Dong et al. 2014a) is a research project acquired by Google
that aims to create a large probabilistic knowledge base extracted from different
kinds of web content and data. They fuse knowledge from four different sources,
such as unstructured text, HTML DOM trees, HTML tables, and schema.org anno-
tations. The extracted triples are validated against existing Knowledge Graphs (e.g.,
Freebase) in order to increase the reliability of the facts. At the time the work (Dong
et al. 2014a) was published (2014), the Knowledge Vault contained over 270M facts.

47https://www.businessinsider.de/why-google-assistant-will-win-the-ai-race-2016-10?r¼US&
IR¼T
48https://www.slideshare.net/NicolasTorzec/the-yahoo-knowledge-graph
49https://ai.google/research/pubs/pub45634

10 1 Introduction: What Is a Knowledge Graph?

http://schema.org
https://www.businessinsider.de/why-google-assistant-will-win-the-ai-race-2016-10?r=US&IR=T
https://www.businessinsider.de/why-google-assistant-will-win-the-ai-race-2016-10?r=US&IR=T
https://www.businessinsider.de/why-google-assistant-will-win-the-ai-race-2016-10?r=US&IR=T
https://www.businessinsider.de/why-google-assistant-will-win-the-ai-race-2016-10?r=US&IR=T
https://www.slideshare.net/NicolasTorzec/the-yahoo-knowledge-graph
https://ai.google/research/pubs/pub45634

Chapter 2
How to Build a Knowledge Graph

Abstract This chapter outlines the state of the art of Knowledge Graph technolo-
gies by introducing the process of building a Knowledge Graph. We define the
following major steps of an overall process model: (1) knowledge creation,
(2) knowledge hosting, (3) knowledge curation, and (4) knowledge deployment.
We demonstrate the methodology for the knowledge creation process that creates,
extracts, and structures the fact base for a Knowledge Graph. We describe the
process of knowledge collection, storage, and retrieval that implements established
knowledge in a graph-based storage system. We analyze existing methods and tools
to improve the quality of a large Knowledge Graph. For the Knowledge Curation
process, we establish sub-steps, such as knowledge assessment, cleaning, and
enrichment. For each of them, we determine various categories and dimensions
that have been developed and described in the literature and identify tasks which
can be applied (e.g., Knowledge Graph completion and correctness, error detection
and correction, identifying and resolving duplicates). Finally, we describe the
deployment process of a Knowledge Graph based on the following principles:
findability, accessibility, interoperability, and reusability.

2.1 Introduction

According to Gómez-Pérez et al. (2017), Knowledge Graph technologies consist of:

• Knowledge representation and reasoning (languages, schema, and standard
vocabularies)

• Knowledge storage (graph databases and repositories)
• Knowledge engineering (methodologies, editors and design patterns)
• Knowledge learning, including schema learning and population

This is true for knowledge-based systems. Knowledge Graph methods and
techniques must additionally reflect the specific focus on vast amounts of instance
data beyond any traditional knowledge base; see Schultz et al. (2012). We identify
the following major steps (see Fig. 2.1) in an overall process model. A more detailed
task model is provided in Fig. 2.2.

© Springer Nature Switzerland AG 2020
D. Fensel et al., Knowledge Graphs, https://doi.org/10.1007/978-3-030-37439-6_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37439-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-37439-6_2

• A traditional knowledge acquisition (or maybe better-called knowledge engineer-
ing)1 phase that establishes the core data for a Knowledge Graph (see Sect. 2.2).

• The process to implement this knowledge in a proper storage system such as a
document or graph-based repository (see Sect. 2.3).

• The knowledge curation process (cf. Paulheim 2017) establishes large Knowl-
edge Graphs of significant coverage and quality. As sub-steps of this curation
process, we identify the following activities: knowledge assessment, cleaning,
and enrichment (see Sect. 2.4).

• Finally, we need to deploy and apply such a Knowledge Graph (see Sect. 2.5).

Each of the mentioned steps is discussed in detail during the following sub-
sections. Similar models can be found, for example, in Gawriljuk et al. (2016),
Kejriwal et al. (2017), and Villazón-Terrazas et al. (2017).2

Fig. 2.1 A process model for Knowledge Graph generation

1A forgotten debate on whether knowledge is elicited or constructed.
2A framework for the large-scale integration of publicly available information on points of interest
(POI)—that is highly relevant for the touristic area—is described in Athanasiou et al. (2019a, b).
See more details on the data integration work bench at the SLIPO website http://slipo.eu/

12 2 How to Build a Knowledge Graph

http://slipo.eu/

2.2 Knowledge Creation

Knowledge acquisition describes the process of extracting information from differ-
ent sources, structuring it, and creating useful knowledge; see Schreiber et al. (2000).
Knowledge could be represented differently among systems, such as text documents,
web pages, relation databases, and databases. A way to overcome this data repre-
sentation discrepancy and provide the data in a structured way is provided by
semantic data. In this section, we introduce our methodology, our modeling lan-
guage, and an extensive collection of tools that support the generation of formalized
knowledge.

Fig. 2.2 A task model for Knowledge Graph generation

2.2 Knowledge Creation 13

2.2.1 Knowledge Creation Methodology

In Fig. 2.3 our methodology for semantic annotation is shown. The methodology
consists of three main parts:

1. The bottom-up part, which describes the steps of a first annotation process
2. The domain specification modeling that reflects these results
3. The top-down part, which applies the constructed models to further knowledge

acquisition

The bottom-up part of the methodology describes the annotation process in a new
domain and includes the following steps:

1. Analysis of domain entities and their online representation: First, to start the
process of knowledge acquisition, we define a domain area (e.g., tourism) that
needs to be covered. The study of the domain includes the analysis of the touristic
real-world entities and extraction of the existing relevant service types. Second,
we identify the types of web pages, databases, or APIs and detect the format and
type of data they provide. With domain analysis, we find out what data are
suitable and essential for the annotation process.

2. Definition of a vocabulary based on restricting and extending semantic vocabu-
laries: A vital element of a Knowledge Graph is the Ontology (see Studer et al.
1998; Staab and Studer 2010) it uses. It allows us to describe and represent all the
information in semantic annotations. For our purpose, we use schema.org as a de
facto standard for semantic annotations, launched in 2011 by Google, Yahoo!,
Bing, and Yandex (Guha 2011).

3. Domain specifications and mapping to the semantic vocabularies: For selected
service types, we determine the best way to map them to schema.org vocabulary
correctly, i.e., to choose the right type with properties and ranges. If there are no
suitable types or properties, then we define a list of extensions (Guha et al. 2016).

4. Annotation development and deployment: To annotate content from a source, we
use the content data structure. If the content is arranged with a structured data

Fig. 2.3 Methodology for semantic annotation (Panasiuk et al. 2018a)

14 2 How to Build a Knowledge Graph

http://schema.org
http://schema.org

format, then the annotation can be performed automatically (given that the
mappings are defined). If not, then a manual or semi-automatic annotation
needs to be done. This step must be supported by tools, such as annotation
editors, wrappers, mapping tools, and an evaluator.

5. Evaluation and analysis of the annotations: After the annotations are deployed,
we regularly monitor their impact on search engine results, especially rich results3

on Google Search. For quantitative evaluations, it is good to use Google’s Search
Console, with which it is possible to measure how much time was required to
detect the annotated pages, how often the annotated pages were crawled, and how
many errors were detected. For qualitative evaluations, the monitoring of
Google’s search engine results is suitable, especially the appearances of rich
results.

The domain specifications modeling focuses on developing domain-specific
patterns which we call domain specifications (DS) (Şimşek et al. 2018a). We will
elaborate on them in the following subsection.

The top-down part of the methodology describes the annotation process in case
the modeling effort for a specific domain has already been done and includes the
following steps:

1. Mapping according to domain specifications: In this step, we can map incoming
data to developed domain specifications using predefined mapping rules.

2. Annotation development according to domain specifications: This step is based
on these predefined domain specifications that are translated into a form interface
fostering manual and semi-automatic knowledge acquisition process.

2.2.2 Our Modelling Language

The use of semantic annotations has experienced a tremendous surge since the
introduction of schema.org (Guha 2011). Schema.org was launched by major search
engines Bing, Google, Yahoo!, and Yandex in 2011 as an Ontology (Studer et al.
1998; Staab and Studer 2010) to empower web search on a global scale. The schema.
org vocabulary, along with the Microdata, RDFa, or JSON-LD formats, is used to
mark up website content. Schema.org relies on a flexible and cross-domain data
model and is organized hierarchically. Schema.org initially contained 297 classes
and 187 relations, which over the time have grown to 598 types, 862 properties, and
114 enumeration values (Guha et al. 2016). The provided corpus of types (e.g.,
LocalBusiness, SkiResort, Restaurant), properties (e.g., name, description, address),
range definitions (e.g., Text, URL, PostalAddress), and enumeration values (e.g.,
DayOfWeek, EventStatusType, ItemAvailability) cover a large number of different
domains, including the tourism area. The data model of schema.org defines a

3For example, rich snippets, https://en.wikipedia.org/wiki/Google_Searchology. See also Sect. 3.2.

2.2 Knowledge Creation 15

http://schema.org
http://schema.org
http://schema.org
http://schema.org
http://schema.org
http://schema.org
http://schema.org
https://en.wikipedia.org/wiki/Google_Searchology
https://doi.org/10.1007/978-3-030-37439-6_3

multiple inheritance hierarchy for properties and types. Also, instances can be
elements of several types. The domain and range of properties are not formally
defined. There is no type definition based on axioms but only some subclass
hierarchy.

Schema.org has become a de facto standard for annotating data (Mika 2015).
Such markup can be recognized by search engines and different automated agents
(e.g., chatbots or personal assistant systems) and improve information access.
Schema.org is the broadest vocabulary, which is used by more than a quarter of
the web pages (Guha et al. 2016). Schema.org annotations are an apparent basis for
building a Knowledge Graph.

A domain specification, i.e., our design patterns for semantic annotations, is an
extended subset of types, properties, and ranges from schema.org (Şimşek et al.
2018a); see Fig. 2.4. We restrict schema.org to proper subsets as it is an approach for
covering any type of resource, and we need a specific focus. We may need to extend
schema.org as it mostly aims at web search and covers many domains in a shallow
way, whereas we may need more details for specific tasks and domains. Through the
restricted focus, we can make stronger conceptual commitments. This is also in sync
with schema.org that “can at best hope to provide the core for the most common
topics” (Guha et al. 2016). Also, it provides the notion of external extensions to add
more domain and task-specific details.4

The goal of a domain specification is to give a model of how a domain should be
represented in a semantically structured way. It will help to improve the complete-
ness and correctness of the annotation process for a given domain. In the end,
domain specifications are design patterns (Gamma et al. 1995) for developing proper
semantic annotations, either with pure schema.org or together with its extensions. A
formal definition of domain specification (abstract syntax and formal semantics) are
provided in Appendix.

Fig. 2.4 The relationship
between schema.org and
domain specifications

4https://schema.org/docs/extension.html

16 2 How to Build a Knowledge Graph

http://schema.org
http://schema.org
http://schema.org
http://schema.org
http://schema.org
http://schema.org
http://schema.org
http://schema.org
http://schema.org
https://schema.org/docs/extension.html

To annotate, for example, a hotel, we need to select a collection of properties and
ranges to cover the content of a hotel web page. Schema.org (see Fig. 2.5) gives a list
of possible properties and ranges for hotel annotation. We need to analyze hotel
content, locate all relevant information presented on a page, and then according to
this, define types, properties, and ranges from schema.org to represent available
information. The following list describes properties and ranges for annotating a hotel
with the type Hotel from schema.org:

1. aggregateRating describes the overall rating of a hotel and is essential for rich
snippet representation. It is based on a collection of reviews or ratings of the
hotel. The property has AggregateRating type in its range.

2. availableLanguage shows the information about which languages are spoken by
hotel service staff. The range of the property is Text, but the text information
should be presented in the form of language codes from the IETF BCP
47 standard.5

3. checkinTime shows the earliest time when someone may check into a hotel.
4. checkoutTime shows the latest time when someone may check out of a hotel.
5. contactPoint describes the contact information of a hotel, based on specific

contact types. The range of this property is the type ContactPoint.
6. containsPlace shows what other places are included in the hotel, e.g., bar,

restaurant, or spa. The range of this property is the types Place and Accommo-
dation as well as their subtypes.

7. currenciesAccepted shows what currencies are accepted by the hotel. The range
of the property is Text, but the text information should be presented in ISO 4217
currency format.6

8. description contains information that describes the hotel and its facilities. The
range of the property is Text.

9. email shows the email of the hotel. The range of the property is Text.
10. faxNumber gives the fax number of the hotel. The range of the property is Text.
11. founder gives the name of the person who founded the hotel. The range of the

property is Person.
12. name presents the name of the hotel. The range of the property is Text.
13. foundingDate shows the information as to when the hotel was founded. The

range of the property is Date.
14. geo gives the geo-coordinates of the hotel. The range GeoCoordinates specifies

the latitude and longitude of the location.
15. hasMap gives a URL to a map of the place.
16. image describes the available images on the web page. This can be a URL or a

fully described ImageObject with information about the size and caption of the
image.

5https://tools.ietf.org/html/bcp47
6https://en.wikipedia.org/wiki/ISO_4217

2.2 Knowledge Creation 17

http://schema.org
http://schema.org
http://schema.org
http://schema.org/URL
http://schema.org/ImageObject
https://tools.ietf.org/html/bcp47
https://en.wikipedia.org/wiki/ISO_4217

Fig. 2.5 Properties and ranges for the schema.org type Hotel

18 2 How to Build a Knowledge Graph

http://schema.org

17. makesOffer describes the items, such asHotelRoom, Suite, and Accommodation,
offered by a hotel. The type rangeOffer shows information about the availability
of itemOffered and its name, price, and so forth.

18. openingHoursSpecification shows the opening hours of the hotel. The property
has type range OpeningHoursSpecification with its properties, e.g., closes,
dayOfWeek, and opens.

19. paymentAccepted shows what kind of payment is accepted by the hotel, e.g.,
cash, credit card, etc.

20. petsAllowed indicates whether pets are allowed to enter the hotel. The property
has the ranges Text or Boolean.

21. photo represents some photos of the hotel. The property has type ImageObject
as range.

22. priceRange specifies the price range of the hotel, for example, “$$$”. The
property has the type Text as its range.

23. review describes the reviews of the selected hotel. The property has the type
Review as range.

24. sameAs shows the URL of external reference web pages. For example, the URL
of the hotels’ Wikipedia page, social media page, or official website.

25. starRating presents an official rating for a hotel, e.g., from national associations
or standards bodies. The property has the type range Rating.

26. telephone is the telephone number of a hotel. The property has range Text, but
the text should be in the appropriate format.

27. url shows the URL of the hotel.

Throughout this section, we pointed out that schema.org covers many domains in
a generic manner and we create extended subsets (i.e., domain-specific patterns) to
make it more suitable for specific domains and tasks. The community has already
been acting toward providing external extensions for schema.org, and these exten-
sions can be adopted alongside core schema.org to create domain-specific patterns.
Two prominent examples come from the retail domain. Schema.org contains types
and properties for product descriptions and offers, however, only very generically. In
fact, there are only two types, namely, product and service, that do not have any
subtypes for more specific products and services and their properties. There are
however product classification standards already established that provide a relatively
deep taxonomy and a rich set of properties. Stolz and Hepp propose a generic and
elegant way to incorporate such taxonomies with schema.org in order to make it
more suitable for describing product and services (Stolz and Hepp 2018). They
provide a deterministic way to create URNs based on the internal type and property
identifiers of widely adopted product classification standards such as eCl@ss7 and
UNSPC.8 They provide additionalType and additionalProperty properties to attach
external type and property identifiers to entities annotated with schema.org. This

7https://eclass.eu
8United Nations Standard Products and Services Code—https://unspc.org

2.2 Knowledge Creation 19

http://schema.org
http://schema.org
http://schema.org
http://schema.org
http://schema.org
https://eclass.eu
https://unspc.org

way, for instance, in the case of retail, product, and service descriptions can be
enriched with types and properties from eCl@ss which contains over 45K product
classes and 19K properties,9 as well as from UNSPC which contains over 150K
classes in its taxonomy. An example of using PCS classes and properties with
schema.org is the annotation of a notebook computer. Schema.org does neither
have a specific notebook type nor a property for, let us say, battery capacity. A
URN (urn:pcs:eclass:11.0.0:c:AEI956008) based on the internal identifier of note-
book class in eCl@ss standard (AEI956008) is generated and attached to the Product
annotation with additionalType property. In the same fashion, a URN (urn:pcs:
eclass:11.0.0:c:02-AAR570) for “battery capacity” property is generated and
attached to the same annotation via additionalProperty property.10

Similarly, GS1, a nonprofit organization that maintains many business standards
including the widely adopted barcode standard, provides a rich vocabulary11 to
improve product search on the web. Unlike the aforementioned extension method,
they provide a complete external vocabulary integrated with the schema.org hierar-
chy.12 They extend schema.org with 43 types and 358 properties. For example, they
extend the Product type with a subtype WearableProduct which itself has Footwear
as subtype. A footwear retailer can use these new types to describe its products in a
more domain-specific way than by the core schema.org.

2.2.3 Knowledge Generation Tools

The properties and ranges described in Sect. 2.2.2 give an overview of what
properties and ranges users need to annotate a hotel. Figure 2.6 demonstrates the
output file of the hotel annotation process. In order to support the semantic annota-
tion process, tools are required for manual and semi-automatic editing, mappings of
external schemas, automatic annotation, and finally, evaluation (validation and
verification).13

2.2.3.1 Manual Editing

The annotation process of web content can be done manually via the semantify.it14

Annotation Editor (Kärle et al. 2017). The interface will be generated automatically
based on the domain specifications; see Fig. 2.7. In order to start a new manual

9Release v11.0—https://wiki.eclass.eu/wiki/Category:Products
10See Stolz and Hepp (2018) for a full JSON-LD example based on a previous version of eCl@ss.
11https://gs1.org/standards/gs1-smartsearch
12The integration is realized through the mechanisms provided by SKOS and RDFS.
13See also Uren et al. (2006) and Gómez-Pérez et al. (2010).
14https://semantify.it/

20 2 How to Build a Knowledge Graph

http://schema.org
http://schema.org
http://schema.org
http://schema.org
http://schema.org
https://wiki.eclass.eu/wiki/Category:Products
https://gs1.org/standards/gs1-smartsearch
https://semantify.it/

annotation, the user selects a domain specification, on which the annotation will be
based, and gets the corresponding editing interface. If all required fields are filled in,
the user gets presented with the annotation source code in JSON-LD format. This
source code can then either be copy-pasted or stored on the semantify.it platform for
further usage. The Annotation Editor can be used by users to annotate their web
content and make the semantic annotation process easier, complete, and consistent.

Fig. 2.6 Example of hotel annotation in JSON-LD format

2.2 Knowledge Creation 21

Fig. 2.7 semantify.it Annotation Editor

22 2 How to Build a Knowledge Graph

2.2.3.2 Semi-automatic Editing

Semi-automatic support helps users to fill in the fields in the editor by extracting
information from the given URI or source file. The user will need to select a domain
specification and enter the URL of a web page or attach the source file, which he
wants to annotate. If a source file is semi-structured, then the editor will suggest the
mapping to JSON-LD by using the mappings as an approximation based on the
training data. If the content is unstructured, some approaches to extract information
from a web page can be applied. The information can be extracted from the source
web page by tracking the appropriate HTML tags, such as title, sub-title, bold, italic,
underlined, big character, keywords, lists, images, URLs, paragraph tags, and the
associated full text. Some Ontology discovery techniques for the tourism domain are
discussed in Karoui et al. (2004). The tree-based technique using the document
object model (DOM)15 of a web page is described in Gupta et al. (2003). Also,
semantic types and properties can be automatically inferred through trained machine
learning models (Gupta et al. 2012).

2.2.3.3 Mapping

Manual and semi-automatic editing only scales for small sets of static data. Large
and fast-changing datasets require other methods to generate annotations effectively
and continuously. The data are often provided by different institutions and might be
in different formats and using different conceptual structures. To make this data
accessible in a Knowledge Graph, we need to transfer it into the format and schema
of our knowledge representation formalism. The conversation process is called data
lifting (Villazón-Terrazas et al. 2017). There are many approaches and tools which
cover data lifting from structured or semi-structured formats. The XLWrap approach
generates graphs triples from specific cells of a spreadsheet (Langegger and Wöß
2009). The SLIPO toolkit supports lifting, interlinking, crawling, and fusing of
geospatial datasets and will make their workbench open source available in the
future (Athanasiou et al. 2019b). Mapping Master (M2) is a mapping language for
converting spreadsheets to OWL (O’Connor et al. 2010). The XMLtoRDF tool
provides a mapping document (XML document) that has a link between an XML
Schema and an OWL Ontology (Van Deursen et al. 2008). Tripliser16 is a Java
library and command-line tool for creating triple graphs from XML. Also,
GRDDL17 translates the XML data into RDF. Virtuoso Sponger18 generates Linked
Data from a variety of data sources and supports a wide variety of data representation

15https://www.w3.org/DOM/
16http://daverog.github.io/tripliser/
17https://www.w3.org/TR/grddl/
18http://vos.openlinksw.com/owiki/wiki/VOS/VirtSponger

2.2 Knowledge Creation 23

https://www.w3.org/DOM/
http://daverog.github.io/tripliser/
https://www.w3.org/TR/grddl/
http://vos.openlinksw.com/owiki/wiki/VOS/VirtSponger

and serialization formats. R2RML19 specifies how to translate relational data into the
RDF format. RML (Dimou et al. 2014) extends R2RML’s applicability to define
mappings of data in other formats. With RML, rules can be expressed that map data
with different structures and serializations (e.g., databases, XML or JSON data
sources) to the domain-specific schema.org data model (cf. Şimşek et al. 2019a).

The semantify.it platform features a wrapper API where mappings can be stored
and applied to corresponding data sources. The wrapper translates the data according
to the mappings and stores it as JSON-LD in a MongoDB. From there, the data can
be published on websites as annotations and optionally transferred to a Knowledge
Graph. The platform offers an extension framework to store RML mappings. To
store annotations for web services in the Knowledge Graph, the semantify.it plat-
form provides a mapper/wrapper interface to translate the communication between
an agent and an API (Şimşek et al. 2018b). This feature stores the respective
information annotated with schema.org actions.20 Semantify.it-actions takes into
account the provenance of a data source and compares it with existing action
mappings. If the data source already has an action mapping, the respective
schema.org action description is attached to the instances mapped from the data
source.

In Fig. 2.8 the Logical Source determines the input source that contains the data to
be mapped. It consists of the reference to the input source, reference formulation, and
iterator. The Subject Map describes how each triple’s subject is generated and its
type, in our case, schema.org types Person and PostalAddress. The Predicate-Object
Map specifies how the triple’s predicates and objects are generated. Figure 2.9 shows
the input file in JSON format and Fig. 2.10 shows how the output will look after the
mapping to schema.org by using RML mapping rules (Şimşek et al. 2019a).21

2.2.3.4 Automatic Annotation Tools

Automatic annotation tools extract data from the web using natural language
processing (NLP) and machine learning (ML); see Cimiano et al. (2004). To extract
knowledge from text and web pages, there exist various approaches, such as named
entity recognition (Mohit 2014), information extraction (Chang et al. 2006), concept
mining (Shehata et al. 2010), and text mining (Inzalkar and Sharma 2015). There are
many tools or libraries available, such as GATE22 for text analysis and language
processing, OpenNLP23 that supports the most common NLP tasks, and RapidMiner

19https://www.w3.org/TR/r2rml/
20Schema.org Actions provide means for describing web services.
21A special mapper implementation that can handle nested structures without joins. See Şimşek
et al. (2019a) for details. See a new implementation that supports joins at https://github.com/
semantifyit/RocketRML
22https://gate.ac.uk/
23https://opennlp.apache.org/

24 2 How to Build a Knowledge Graph

http://schema.org
http://schema.org
https://www.w3.org/TR/r2rml/
http://schema.org
https://github.com/semantifyit/RocketRML
https://github.com/semantifyit/RocketRML
https://gate.ac.uk/
https://opennlp.apache.org/

@prefix rr: <http://www.w3.org/ns/r2rml#> .
@prefix rml: <http://semweb.mmlab.be/ns/rml#> .
@prefix schema: <http://schema.org/> .
@prefix ql: <http://semweb.mmlab.be/ns/ql#> .
@base <http://sti2.at/> .

<#LOGICALSOURCE>
rml:source "…/exampleJSONtoSDO/input.json";
rml:referenceFormulation ql:JSONPath;
rml:baseSource <#Mapping>;
rml:iterator "$.*".
<#Mapping>
rml:logicalSource <#LOGICALSOURCE>;
 rr:subjectMap [
 rr:termType rr:BlankNode;
 rr:class schema:Person;
];
rr:predicateObjectMap [
 rr:predicate schema:name;
 rr:objectMap [rml:reference "name"];
];
rr:predicateObjectMap [
 rr:predicate schema:age;
 rr:objectMap [rml:reference "age"];
];
rr:predicateObjectMap [
 rr:predicate schema:address;
 rr:objectMap [
 rr:parentTriplesMap <#ADDRESSmapping>;
];
].
<#ADDRESSmapping>
rml:logicalSource <#LOGICALSOURCE>;
 rr:subjectMap [
 rr:termType rr:BlankNode;
 rr:class schema:PostalAddress;
];
rr:predicateObjectMap [
 rr:predicate schema:addressCountry;
 rr:objectMap [rml:reference "livesIn.country"];
];
rr:predicateObjectMap [
 rr:predicate schema:addressLocality;
 rr:objectMap [rml:reference "livesIn.city"];
].

Fig. 2.8 Example of RML mapping for type Person (with its properties name, age, and address)
and type PostalAddress (with its properties addressCountry and addressLocality)

2.2 Knowledge Creation 25

for data preparation, machine learning, deep learning, text mining, and predictive
analytics; see Villazón-Terrazas et al. (2017). The typical tasks of NLP are Moschitti
et al. (2017):

1. Tokenization is the process of transforming text into individual elements called
tokens (e.g., words, keywords, phrases, or symbols).

2. Stemming is the process of reducing words into common to all its inflected
variants called stems.

3. Lemmatization is the process of matching words with their canonical forms or
dictionary forms called lemmas.

4. Sentence boundary disambiguation is the process of defining the beginning and
end of a sentence in the text.

5. Named entity recognition (NER) or entity extraction is a subtask of information
extraction that locates, classifies, and extracts named entities of a given type
from an unstructured text. The NER task is domain dependent, and recognizers
must be trained on the specific domains to recognize specific kinds of entities.

6. Part-of-speech (POS) tagging is the process of assigning parts of speech to
words in a text, taking into account the characteristics and roles of the different
parts of speech and the context around words.

7. Chunking is a process of attaching to POS tags additional information of the
constituents of the sentence.

[

 { "name":"Tom A.",
 "age":1 5,
 "livesIn":{
 "country":"Austria",
 "city":"Innsbruck" }
 },
 { "name":"Ralph S.",
 "age":25,
 "livesIn":{
 "country":"Austria",
 "city":"Vienna" }
 },
 { "name":"Anngelika B.",
 "age":77,
 "livesIn":{
 "country":"Germany",
 "city":"Munich" }
 }

]

Fig. 2.9 Example of input
(JSON)

26 2 How to Build a Knowledge Graph

8. Syntactic parsing is the process of detecting if the sentence is correct and
provides the syntactic parse tree of the sentence, i.e., the syntactic structure of
the sentence.

9. Relation extraction is a subtask of information extraction that discovers con-
nections between entities in the text.

10. Semantic role labeling is the process of identifying the semantic roles in the
sentence and assigning labels to words and phrases.

11. Co-reference resolution is the process of finding the expressions in a text
referring to the same entities or things.

Automated annotation comes with a high training effort to adapt generic methods
for specific domain and tasks. Only then a certain level of quality can be achieved. In
general, if automated annotations would work, such annotations would no longer be
needed as a machine could on the fly read and understand textual representations.

[

{ "@type": "http://schema.org/Person",
"http://schema.org/name": "Tom A.",
"http://schema.org/age": 1 5,
"http://schema.org/address": {

"@type": "http://schema.org/PostalAddress",
"http://schema.org/addressCountry": "Austria",
"http://schema.org/addressLocality": "Innsbruck" }

},
{ "@type": "http://schema.org/Person",

"http://schema.org/name": "Ralph S.",
"http://schema.org/age": 25,
"http://schema.org/address": {

"@type": "http://schema.org/PostalAddress",
"http://schema.org/addressCountry": "Austria",

"http://schema.org/addressLocality": "Vienna" }
},
{ "@type": "http://schema.org/Person",

"http://schema.org/name": "Anngelika B.",
"http://schema.org/age": 77,
"http://schema.org/address": {
"@type": "http://schema.org/PostalAddress",
"http://schema.org/addressCountry": "Germany",
"http://schema.org/addressLocality": "Munich" }

}

]

Fig. 2.10 Example of output (JSON-LD)

2.2 Knowledge Creation 27

2.2.3.5 Evaluation

The work in Zaveri et al. (2016) introduces a quality assessment methodology to
“evaluate the results of the knowledge engineering process.” Criteria need to be
introduced that define quality (e.g., accuracy, completeness, consistency, correct-
ness, reliability, reusability) of these data. It helps to provide complete and correct
knowledge representation of the entities to which it refers. More details are provided
in Sect. 2.4, where we discuss this in the general context of knowledge cleaning.

Unlike most literature in the Knowledge Graph area, we have to define a severe
distinction of the validation and the verification process (Panasiuk et al. 2019). The
latter evaluates semantic annotations against a formal specification (e.g., schema
definitions, integrity constraints). It is an internal check whether the semantic
annotations conform with the formal requirements that define the golden standard
for this evaluation. The former, i.e., validation, compares the semantic annotations
with the web resource they annotate. Here the content, data, and services on the web
provide the golden standard that is used to evaluate the quality of the semantic
annotations. That is, we do not validate the correctness of the human-readable
content of a web page but whether the found semantic annotations accurately
describe them. For example, our evaluator does not make a robocall to find out
whether the phone number of a hotel works and is the right one but only checks
whether the semantic annotation and the content are consistent.24

The semantify.it evaluator is a web tool that offers the possibility to validate and
verify schema.org annotations that are scraped from websites; see Fig. 2.11. The
scraped annotations are verified against the schema.org vocabulary and domain
specifications (Şimşek et al. 2018a) and for the compliance of annotations with
integrity constraints. The domain specifications for the verification process can be
selected by the user or semi-automatically provided by the tool based on the schema.
org types of the evaluated annotation.

The verification process is executed in the backend, where irregularities are
detected and presented through a formalized and structured report. It consists of:

1. The translation/normalization of the input annotation into a compacted JSON-LD
document serialization, which is the format of choice for the verification process

2. The general verification of the annotation based on the Schema.org vocabulary
3. The domain-specific verification of the annotation based on the input domain

specification
4. The creation of a verification report based on the detected errors

The first step ensures that the entities described by the schema.org annotation are
represented as nested JSON objects in a syntactically correct way. By doing this, the
following steps can rely on a recursive algorithm that checks every entity (nested
JSON object) of the input annotations. During the general verification of the
annotations, each entity is checked: the type(s), properties, and value types (ranges)

24https://techcrunch.com/2018/06/27/a-closer-look-at-google-duplex/?guccounter¼1

28 2 How to Build a Knowledge Graph

http://schema.org
http://schema.org
http://schema.org
http://schema.org
https://techcrunch.com/2018/06/27/a-closer-look-at-google-duplex/?guccounter=1
https://techcrunch.com/2018/06/27/a-closer-look-at-google-duplex/?guccounter=1

of the nested JSON object must conform to the schema.org vocabulary. As for the
domain-specific verification, the tree-like structures (data model of JSON) of the
input domain specification and the input schema.org annotation make it easy to
identify which nested JSON object of the domain specification belongs to which
nested JSON object of the annotation. Each constraint defined by a domain speci-
fication node (represented by specific keywords and their values) is checked inde-
pendently on its own. For this reason, the domain-specific verification algorithm is a
recursive assertion of syntactic and semantic constraints for each entity (nested
JSON object) of the input annotation. Any encountered irregularities are processed
into a report.

The report contains detailed information about the detected errors; see Fig. 2.12
including error codes (ID of the error type), error titles, error severity, error paths
(where within the annotation the error occurred), and textual descriptions of the
errors. The validation of semantic annotations is the process of checking whether the
semantic annotation corresponds to the content of the web page that it represents and
if it is consistent with it. Semantic annotations should mark up the actual and visible
information of a web page, correct links, images, and literal values without redun-
dancy. The inaccurate representation of the resources can make semantic annotations
useless for automated agents, cause an incorrect appearance in the search results, or
make crawling and reasoning less useful for building applications on top of semantic
annotations.

Fig. 2.11 semantify.it Verifier

2.2 Knowledge Creation 29

http://schema.org
http://schema.org

The errors during the annotation process may be caused by not following
recommended guidelines,25 e.g., structured data guidelines, insufficient expertise,
technical or human errors (some of the issues can be detected by Google search

Fig. 2.12 semantify.it Verification Report

25https://developers.google.com/search/docs/guides/sd-policies

30 2 How to Build a Knowledge Graph

https://developers.google.com/search/docs/guides/sd-policies

console26), or annotations not being in accordance with the content of web pages,
so-called spammy structured markup.27 The validation framework helps to detect
inconsistencies between a web page and its annotations.

The validation of semantic annotations prevents the problem of penalizing the
publisher of structured data by search engines for providing irrelevant information in
the annotations and helps to get accurate information from automated agents and
applications that use semantic annotations. The penalties may have undesired effects
on a website (e.g., bad positioning of the website in search results) or even lead to a
non-integration of the structured data (e.g., no generation of rich snippets).

Our framework ensures that all typical inconsistencies that can appear between
schema.org annotations and content of a web page are discovered (e.g., a mismatch
between URLs, text description in the annotation, and description on the web page).
We provide a checking algorithm that compares extracted values from the annota-
tions of a given web page to the content of this web page, taken from HTML source.
The information from web pages can be extracted from the source of a web page by
tracking the appropriate HTML tags, keywords, images, URLs, and the associated
text. Some natural language processing and machine learning techniques are applied
to the extraction process from the textual description (e.g., price, email, and tele-
phone). As mentioned before, there are techniques as named entity recognition
(Mohit 2014), web information extraction systems (Chang et al. 2006), and text
mining techniques (Vijayarani et al. 2015).

2.3 Knowledge Hosting

In our context knowledge is represented in the form of semantically enriched data.
Semantically enriched means that metadata is added to describe the data (annotation
of data), by using a standard (or de facto standard) vocabulary, according to the
principles of RDF (Decker et al. 2000). In the current case, we use the schema.org28

vocabulary, but the same methods also apply for other Ontologies. We discuss
methods to populate, store, and retrieve data either from semantic annotations of
web sites or directly from a Knowledge Graph.

26https://search.google.com/search-console/about
27https://support.google.com/webmasters/answer/9044175?hl¼en&visit_
id¼636862521420978682-2839371720&rd¼1\#spammy-structured-markup
28https://schema.org/

2.3 Knowledge Hosting 31

https://search.google.com/search-console/about
https://support.google.com/webmasters/answer/9044175?hl=en&visit_id=636862521420978682-2839371720&rd=1%5C#spammy-structured-markup
https://support.google.com/webmasters/answer/9044175?hl=en&visit_id=636862521420978682-2839371720&rd=1%5C#spammy-structured-markup
https://support.google.com/webmasters/answer/9044175?hl=en&visit_id=636862521420978682-2839371720&rd=1%5C#spammy-structured-markup
https://support.google.com/webmasters/answer/9044175?hl=en&visit_id=636862521420978682-2839371720&rd=1%5C#spammy-structured-markup
https://support.google.com/webmasters/answer/9044175?hl=en&visit_id=636862521420978682-2839371720&rd=1%5C#spammy-structured-markup
https://schema.org/

2.3.1 Collection, Storage, and Retrieval of Semantic
Annotations

Let us start with the collection, storage, and retrieval of semantic annotations.
Collection. Annotation collection can be established either by manual or semi-

automatic editing, automatic annotation generation, or through mappings. For man-
ual annotation, the SaaS annotation platform semantify.it provides an annotation
editor with which annotations can be created via a form-like interface (see Sect. 2.2).
Similarly, there also exist annotation plugins for WordPress and Typo3 that are
called “semantify.it instant annotation” (see also the following paragraph on
retrieval). If annotations already exist, they can be uploaded to the semantify.it
platform via the upload functionality or through the API. If annotation should be
automated, for big datasets based on classical data structures, then mappings can be
defined, which are passed to the semantify.it wrapper. The wrapper then, periodi-
cally, translates the classical data sources according to the defined mapping.

Storage. To store semantically annotated data, a JSON-based document database
works very well but comes with restrictions. A very convenient database for that
purpose is the document store MongoDB. It is JSON based and hence supports
JSON-LD (Sporny et al. 2014). Storing and retrieving data works, due to advanced
indexing mechanisms, seamlessly, but reasoning over JSON-LD files inside a
MongoDB29 is not supported natively and requires extensive programming and
processing power overhead. Even though MongoDB is not considered as a founda-
tion for a Knowledge Graph, it still is a lightweight and cost-effective solution for
storing a collection of schema.org-annotated information. We use it to store JSON-
LD files of web annotations and replicate the data periodically or on demand into a
graph database to populate the Knowledge Graph. Reasoning and data integration
are solely done on the graph database. Data retrieval fromMongoDB is done over an
API. String- and index search is extremely performant, also on document stores
containing several million JSON-LD files.

Retrieval. Annotations stored in semantify.it can be accessed directly through a
shortened URL.30 Requests sent to this URL, including the required parameter,
respond with the pure JSON-LD file for the corresponding request. An example of
such a query and its result can be found in Fig. 2.13. This request method was
predominantly designed for on-the-fly integration of annotation files in websites.
This means that when a specific website is loaded, it requests an annotation file and
injects it into the website’s source code on the fly. The server response time to
retrieve annotations from semantify.it allows on the fly integration that works well
with the general server response time of websites.

29https://www.mongodb.com/
30https://smtfy.it/

32 2 How to Build a Knowledge Graph

https://www.mongodb.com/
https://smtfy.it/

GET
https://smtfy.it/BJgn06IHNb

{
"@context": "http://schema.org",
"@type": "LodgingBusiness",
"name": "Haus Olmarausch",
"disambiguatingDescription": "Unser Haus liegt in schöner,

sonniger Lage inmitten von Leutasch. Wir bieten ein gut
ausgestattetes heimeliges Haus und herzliche Gastfreundschaft. Wir
wollen vor allem eines: Dass Sie sich von Anfang an wie zu Hause
fühlen. \nDer Loipeneinstieg und befestigte Winterwanderwage
sind direckt vis a vis vom Haus. \nIm Sommer Ausgangspunkt für
herrliche Wanderungen und Radtouren auf schönen und sicheren
Wander - und Radwegen in den Bergen von Leutasch. Das
Ortszentrum, Gasthöfe und Bäckerei sind in kurzer Zeit
erreichbar.",
"@description": "<p>Unser Haus liegt in schöner, sonniger Lage

inmitten von Leutasch. Wir bieten ein gut ausgestattetes heimeliges
Haus und herzliche Gastfreundschaft. Wir wollen vor allem eines:
Dass Sie sich von Anfang an wie zu Hause fühlen.
Der
Loipeneinstieg und befestigte Winterwanderwage sind direckt vis a
vis vom Haus.
Im Sommer Ausgangspunkt für herrliche
Wanderungen und Radtouren auf schönen und sicheren Wander -
und Radwegen in den Bergen von Leutasch. Das Ortszentrum,
Gasthöfe und Bäckerei sind in kurzer Zeit erreichbar.</p>",
"url": "https://www.tirol.at/urlaub-buchen/ferienwohnungen/a-

haus-olmarausch",
"image": {

"@type": "ImageObject",
"name": "https://resc.deskline.net/images/SEE/1/472d237a-c4e5-

470e-a8d3-51be428bb746/99/image.jpg",
"contentUrl": "https://resc.deskline.net/images/SEE/1/472d237a-

c4e5-470e-a8d3-51be428bb746/99/image.jpg",
"url": "https://resc.deskline.net/images/SEE/1/472d237a-c4e5-

470e-a8d3-51be428bb746/99/image.jpg",
"uploadDate": "2017-01-01"
},

"address": {
"@type": "PostalAddress",

},
}

Fig. 2.13 The result of a query to semantify.it is a JSON-LD file

2.3 Knowledge Hosting 33

2.3.2 Collection, Storage, and Retrieval of Knowledge Graphs

Again, we discuss here collection, storing, and retrieval of facts, however, captured
by a Knowledge Graph.

Collection. In order to collect and store data in the Knowledge Graph, there are
two different possibilities in our framework:

1. Crawling: the semantify.it platform provides a crawling interface as part of the
broker framework.31 The broker crawler takes a list of URLs as input and crawls
the websites and the corresponding web pages to a specific, predefined, depth.
Semantic annotations are extracted and directly stored in a Knowledge Graph.
Thereby, the serialization formats that should be considered (Microdata, RDFa,
JSON-LD) can be defined, and schema.org classes to be ignored can be specified.

2. Mapping: the abovementioned semantify.it wrapper maps data sources to
schema.org and stores it in the MongoDB database of semantify.it. Data produced
by that wrapper can be exported to the Knowledge Graph. This functionality can
either be called once or periodically or on demand—e.g., automatically whenever
the dataset is changed.

The crawling of websites is a rather tedious task and can take up to hours or even
days, depending on the size of the website, the depth of the crawl, and the number of
websites given to the crawler. However, the average duration of transferring datasets
(8 million facts per day in case of the touristic use case described in Sect. 2.5) to the
Knowledge Graph is about 15 min.

Storage. Due to the RDF-nature of semantic data, a graph database is the most
traditional way to store information in a Knowledge Graph. In order to store
information in a Knowledge Graph, the aspects of data provenance, historical data,
and data duplication have to be considered. In our touristic Knowledge Graph
(TKG), historical data is kept in named graphs. To perform temporal reasoning,
the identifier regex functionality is mandatory. Our Knowledge Graph currently
includes around 5 billion facts (see Sect. 2.5).32 Centralizing the storage of a
Knowledge Graph could be viewed as a violation of the Linked Open Data principle
of decentralized hosting of various data sources that get integrated through a query at
run time (Bizer et al. 2008). However, this is not scalable in realistic settings
(Fernández et al. 2017). The graph database GraphDB hosts the Knowledge Graph
we build.33 GraphDB features a SPARQL API over which the data is stored in the

31https://broker.semantify.it
32It is stored inside a GraphDB installation (Version: GraphDB GRAPHDB_ENTERPRISE v8.4.1
+sha.9a7a246c). The GraphDB installation is hosted on a Dell PowerEdge R430 Server running
Linux Ubuntu, 16.04.5 LTS with 128 GB RAM, 2 Intel Xeon E5-2640 v4 processors with 10 cores
and 2.40 GHz each. The data is stored on four 1.6 TB SSD (6 Gbit/s) disks, running on a hardware
RAID 10.
33http://graphdb.ontotext.com/

34 2 How to Build a Knowledge Graph

http://schema.org
http://schema.org
https://broker.semantify.it
http://graphdb.ontotext.com/

graph (see Harris et al. 2013). Besides RDF, serialization formats such as Turtle34

and JSON-LD also non-RDF formats like XML, CSV, and others can be converted
into RDF and stored in GraphDB.35

Retrieval. Data retrieval from an RDF-based graph database works with
SPARQL. The SPARQL API of GraphDB works effectively and supports the
current SPARQL version 1.1 (Harris et al. 2013). SPARQL is an RDF query
language that can be casually explained as “SQL for graph databases.” SPARQL
can retrieve and maintain data stored in RDF format. The query’s triple pattern
syntax is compatible with Turtle. If, for example, all names and URLs (if exists) of
ski resorts in the graph should be retrieved, the query looks like the one in Fig. 2.14.

More information on RDF storage technology can be found in Ma et al. (2004),
Angles and Gutiérrez (2005), Stegmaier et al. (2009), and Faye et al. (2012).

2.4 Knowledge Curation

Building and hosting a Knowledge Graph is one thing. Turning it into a useful
resource for problem-solving requires additional effort. The overall goal of knowl-
edge curation is to provide cost-sensitive methods to improve the quality of large
Knowledge Graphs ensuring their usefulness for envisaged applications: “There are
two main goals of Knowledge Graph refinement: (a) adding missing knowledge to
the graph, i.e., completion, and (b) identifying wrong information in the graph, i.e.,
error detection” (Paulheim 2017). We slightly extend this definition operationally by
separating a general knowledge assessment task that guides further the knowledge
cleaning and enrichment tasks. In analogy to data curation,36 we refer to this overall
process as knowledge curation.

Figure 2.1 already defines it as a loop of knowledge assessment, cleaning, and
enrichment. During the following, we will discuss these three tasks in more detail.
Our assumptions are:

PREFIX schema: <http://schema.org/>

SELECT DISTINCT ?name ?url WHERE {

 ?s a schema:SkiResort;

 schema:name ?name;

 OPTIONAL {?s schema:url ?url}

}

LIMIT 100

Fig. 2.14 SPARQL query
to retrieve names of ski
resorts

34https://www.w3.org/TR/turtle/
35See Angles and Gutiérrez (2008) for a survey on graph database models.
36https://en.wikipedia.org/wiki/Data_curation

2.4 Knowledge Curation 35

https://www.w3.org/TR/turtle/
https://en.wikipedia.org/wiki/Data_curation

• A large Knowledge Graph has already been constructed (see Sect. 2.2).
• A large Knowledge Graph is properly hosted by a knowledge repository (see

Sect. 2.3).

We first define a very simple knowledge representation formalism aiming to
formalize schema.org and to refine our discussions on the knowledge curation
subtasks. We conclude this section with some necessary future steps.

2.4.1 A Maximal Simple Knowledge Representation
Formalism

We define our representation formalism in sync with schema.org to further structure
and refine the developed definitions of knowledge curation. We distinguish schema
definitions (TBox) and assertional statements over this vocabulary (ABox). The
TBox defines types and their hierarchy as well as properties with their domains
and ranges.37 The ABox adds assertions over this terminology. First, we define the
TBox. We have:

• Two disjoint and finite sets of type and property names T and P.
• A finite number of type definitions isA (t1,t2) with t1 and t2 are elements of T. isA

is reflexive and transitive.
• A finite number of property definitions:
• hasDomain (p,t) with p is an element of P and t an element of T.
• Range definition for a property p with p is an element of P, t1 and t2 are Elements

of T. Already (Hayes 1981) sketched out both options38:

– Simple definition: Global property definition (Hayes 2004): hasRange(p,t2)
– Refined definition: Local property definition (Kifer et al. 1995): hasRange(p,

t2) for domain t1, short: hasLocalRange(p,t1,t2)

An ABox is based on:

• A countable set of instance identifiers I. i, i1, and i2 are elements of I.
• Instance assertions: isElementOf(i,t). isElementOf is a special property with built-

in semantics. If isA (t1,t2) AND isElementOf (i,t1) THEN isElementOf(i,t2).

37For the moment, we ignore the sub-property mechanism of schema.org as it seems to be a
cumbersome workaround of the global property assumption of RDF. See our definition of locally
defined ranges for properties.
38
“One technicality is worth mentioning. In KRL, the same slot-name can be used in different

frames to mean different relations. For example, the age of a person is a number, but his age as an
airline passenger (i.e. in the traveler frame) is one of {infant, child, adult}. We could not allow this
conflation and would have to use different names for the different relations. It is an interesting
exercise to extend the usual first-order syntax with a notion of name-scope in order to allow such
pleasantries” (Hayes 1981). See also Patel-Schneider (2014).

36 2 How to Build a Knowledge Graph

http://schema.org
http://schema.org
http://schema.org

• Property value assertions: p(i1,i2).
• Equality assertions: isSameAs(i1,i2). We allow another built-in property to

express identity of instances. It is symmetric, reflexive, and transitive. Every
statement remains true or false when replacing i1 by i2 (and vice versa).

For the three phases, knowledge assessment, cleaning, and enrichment, we
assume that the TBox is the golden standard and it is the ABox that needs to be
reworked. This may not always be true but would require a manual extension of
schema.org as described in Sect. 2.2. A full-fledged definition of the semantics of
schema.org is provided in Patel-Schneider (2014).39

2.4.2 Knowledge Assessment

Knowledge assessment describes and defines the process of assessing the quality of a
Knowledge Graph. The goal is to measure the usefulness of a Knowledge Graph
considering two major quality dimensions, namely, its correctness and complete-
ness. In this section, we first provide a literature survey on data/knowledge assess-
ment, which includes an extended list of categories and quality dimensions shown
below. Then we identify error sources according to the maximal simple Knowledge
Representation Formalism defined in Sect. 2.4.1 and introduce specific tasks to
address knowledge assessment. Finally, we investigate relevant methods and tools.

2.4.2.1 Literature

The literature on data quality is overwhelmingly extensive, indicating that it is a
complex problem. Various categories and dimensions have been developed to
measure and improve the quality of data such as Wang (1998), Wang and Strong
(1996), Wang et al. (2001), Pipino et al. (2002), Batini and Scannapieco (2006),
Zaveri et al. (2016), and Färber et al. (2018):

1. Accessibility implies that data or part of it must be available and retrievable
(Färber et al. 2018); must contain a license and must be interlinked, secure, and
high performance (Zaveri et al. 2016); and must be up-to-date of the data for a
particular use case or consumers (Wang and Strong 1996). It is usually measured
in terms of availability of the server, SPARQL endpoint, structured data, a
license of data reuse, interlinks, and secure and high-performance access. For
instance, let us suppose that a user searches for an event in Innsbruck and the
event search engine returns an error response like 404 not found, which means
the resource is unavailable. Therefore, it is not accessible (Zaveri et al. 2016).

39For a discussion on these types and property definition as inference rules or constraints, see De
Bruijn et al. (2005) and Patel-Schneider and Horrocks (2006).

2.4 Knowledge Curation 37

http://schema.org
http://schema.org

2. Accuracy (veracity) defines the reliability, correctness (Wang and Strong 1996)
[syntactically and semantically (Färber et al. 2018)], and truthfulness of the data
with regard to external objects. In other words, a value is syntactically accurate if
it does not violate syntactic rules (Fürber and Hepp 2011) or conforms a
specification (e.g., valid schema.org types and properties used) and the value
is semantically correct, that is, the value represents the correct state of an object
(Fürber and Hepp 2011). For instance, let us suppose a user is searching for an
event, and the event has the following identifier: https://www.mayrhofen.at/en/
events/details/event/zillertal-krapfen-food-festival/, which represents the
Zillertal Krapfen Food Festival. If in a Knowledge Graph the same identifier
represents another event, this implies semantic inaccuracy, since the data is
inconsistent with the actual event.40

3. Appropriate amount, also considered as part of the Relevancy dimension (Zaveri
et al. 2016), defines the quantity of data that is appropriate for a specific task or
use case. This metric can be measured in terms of the number of triples, classes,
instances, and properties contained in a dataset (Flemming 2011). As an exam-
ple, let us suppose a user is searching for events in Munich; to answer this query,
the events search engine must contain an appropriate amount of data to cover
various kinds of events (e.g., concerts, seminars, charity events). Besides, the
data might cover transportation, accommodations, etc., that can help the user in
planning his or her travel.

4. Believability, also part of Trustworthiness (Färber et al. 2018), defines the
degree to which the data is regarded as true, credible, correct, real, trustable,
unbiased, and verifiable (Färber et al. 2018; Pipino et al. 2002; Wang and Strong
1996; Zaveri et al. 2016). Usually, it is measured by checking the trust values or
credibility of the data source (Pipino et al. 2002), the use of trust Ontologies
(Färber et al. 2018), and trust annotations (Dezani-Ciancaglini et al. 2012). In
addition, it can also consider user-based ratings as a relevant metric (Mendes
et al. 2012). For instance, let us suppose a user is searching for events in Vienna;
the events search engine shows a list of events and some of the results are
provided by a well-known company. The user may be more inclined to select the
events shown by this company since it is well-known. Alternatively, ratings
given by other users may affect his or her decision.

5. Completeness of data refers to the data in a Knowledge Graph being complete
[schema and instance level (Fürber and Hepp 2011)] given a specific use case.
For instance, it can be measured by comparing the total number of classes,
properties, values, and interlinks (Zaveri et al. 2016) of a knowledge base in
comparison to a gold standard knowledge base.41 Let us suppose a user is
searching for events in Innsbruck; the events search engine contains all kinds
of events of Innsbruck, and these events were described properly using a

40Here the real world is assumed to be the website where the event is published. See Sect. 2.2.3.5.
41In this case, “users should assume a closed-world assumption where a gold standard dataset is
available and can be used to compare against the converted dataset” (Zaveri et al. 2016).

38 2 How to Build a Knowledge Graph

http://schema.org
https://www.mayrhofen.at/en/events/details/event/zillertal-krapfen-food-festival/
https://www.mayrhofen.at/en/events/details/event/zillertal-krapfen-food-festival/

standard vocabulary. If a dialog system can answer all the questions about the
events in Innsbruck, we can say that for this specific use case, the Knowledge
Graph is complete.

6. Concise representation refers to how compactly [schema and instance level
(Mendes et al. 2012; Zaveri et al. 2016)] the data are represented (Wang and
Strong 1996). For instance, we can compare the total number of unique prop-
erties and instances with the overall number of properties and instances present
in the knowledge base (Mendes et al. 2012). Let us suppose a user is searching
for an event called Kinderolympiade and the events search engine shows two
representations for Kinderolympiade value using different properties in the same
knowledge base, e.g., eventName¼Kinderolympiade and
name¼Kinderolympiade which introduces redundancy.

7. Consistent representation is the dimension referring to the consistency in terms
of format (Wang and Strong 1996), formal descriptions (Zaveri et al. 2016), and
other data stored in the Knowledge Graph (Mendes et al. 2012). It can be
measured by checking if data is compatible with previous data (Wang and
Strong 1996), whether there are disjoint classes’ violations (Färber et al. 2018)
and wrong usage of classes and properties; see more (Zaveri et al. 2016). For
instance, having two different social security numbers for a person can cause
inconsistency.

8. Cost-effectiveness measures the total cost of collecting a proper amount of
accurate data to support the desired usefulness (Wang and Strong 1996). For
example, calculation of the cost per triple with regard to how crucial the data is
for a specific use case.

9. Ease of manipulation (a sub-dimension of Ease of operation) (Wang and Strong
1996) refers to how easy it is to manipulate and apply the data to different tasks
(Pipino et al. 2002). For instance, whether there is a complete and precise
documentation for tasks such as modification, classification, and aggregation
(Mahanti 2019). Let us suppose a company want to integrate data from different
sources to power their applications. If there is not a documentation of the
classes, properties, and instances provided by an external knowledge source,
the integration process can be very tough. This harms the data quality in the ease
of manipulation dimension.

10. Ease of operation, refers to how easily data can be joined, changed, updated,
downloaded, uploaded, reproduced, integrated, and customized for a specific
task or purpose. This dimension may be also covered by the Ease of manipula-
tion dimension (Wang and Strong 1996).42

11. Ease of understanding refers to how easy it is for humans to understand the data
(Färber et al. 2018), clear and without ambiguity (Wang and Strong 1996). This

42It was described in Wang and Strong (1996) but then eliminated. This dimension is no longer
considered in the following papers (Färber et al. 2018; Pipino et al. 2002; Zaveri et al. 2016) for the
field of data quality.

2.4 Knowledge Curation 39

quality dimension is covered by Understandability dimension (Zaveri et al.
2016; Färber et al. 2018).

12. Flexibility refers to how flexible, adaptable, extendable, expandable, and easily
applied to different tasks (Wang and Strong 1996). This dimension is highly
related to ease of manipulation dimension.

13. Free-of-error also refers to accuracy (Wang and Strong 1996). It refers to the
degree to which data is correct (Pipino et al. 2002). The correctness can be
measured by counting the number of errors like wrong and missing instance
assertions, and property value assertions divided by the total number of state-
ments in a knowledge base. For instance, let us suppose a user searches for
events in Innsbruck. The event search engine shows a list of events with missing
information (e.g., the time or place is missing) and wrong information (e.g., the
wrong name of a place or misspelling). Those are indications that the data is not
free-of-errors.

14. Interoperability refers to the level of re-using well-known standards, Ontol-
ogies, or vocabularies to describe the resources in a Knowledge Graph (Zaveri
et al. 2016), increasing their machine-readability (Färber et al. 2018). Using a
vocabulary such as schema.org is good example for measures that can be taken
to increase interoperability.

15. Objectivity is also considered as part of the Trustworthiness dimension (Zaveri
et al. 2016; Färber et al. 2018). It is used to measure how unbiased, objective
(Wang and Strong 1996), unprejudiced, and impartial (Pipino et al. 2002) is the
data. As objectivity of a Knowledge Graph, it is measured by experts and it
depends on the type of information and also depends on whether the information
can be confirmed by independent sources or providers. Let us suppose a user is
searching for events and she is paying attention to the reviews regarding the
prices, the comfort of the place, and so on. However, it may happen that a
sponsor of the event search engine is ranked higher in the list of results.
Therefore, this could be an indication of bias.

16. Relevancy refers to the level of applicability (Pipino et al. 2002) and relevancy
of the data given a specific task (Zaveri et al. 2016). Let us suppose a user is
searching for an event. The event search engine shows a list of events, but not
only them, also historical information about the cities where the events are
taking place, which may not be highly relevant for the task at hand.

17. Reputation can be considered as a part of Trustworthiness dimension (Färber
et al. 2018), “refers to the degree to which data is highly regarded in terms of its
source or content” (Wang and Strong 1996). For instance, it can be measured
considering user’s reputation score, via a survey in a community or page ranks
(Mendes et al. 2012). Let us suppose a user searches for events with the best
price. The event search engine returns a list of events with prices and so
on. However, it might happen at the backend that some data sources have
conflicting prices for an event. In that case, the event search engine takes the
values from the source with a higher reputation for showing it to the user.

18. Security is considered as part of the Accessibility dimension (Zaveri et al. 2016).
It refers how is the access to data is restricted (Wang and Strong 1996) in order

40 2 How to Build a Knowledge Graph

to maintain its integrity and prevent its misuse (Zaveri et al. 2016). It can be
measured by checking whether standard security and privacy protection mea-
sures have been applied. For instance, let us suppose a user is paying for
attending an event. The event search engine must ensure a secure payment
transaction since personal data is highly sensitive (Färber et al. 2018).

19. Timeliness (velocity) is measured in terms of the freshness of data for a specific
task (Pipino et al. 2002; Wang and Strong 1996; Zaveri et al. 2016). It measures
the freshness of dataset based on currency and volatility, where volatility is the
time needs to be passed before the data is invalid and currency is the time passed
between the time data was refreshed and the time the data is delivered to the user
(Zaveri et al. 2016). Timeliness is an important dimension, for instance, in
accommodation and flight services where the prices are dynamically
determined.

20. Traceability is also considered as verifiability (Wang and Strong 1996) and as
part of the Trustworthiness quality dimension (Färber et al. 2018). Traceability
refers to the degree to “which data is well documented, verifiable, and easily
attributed to a source” (Wang and Strong 1996). This dimension is highly
related to provenance metadata. For instance, data has metadata of the source,
of the changes made, etc. Let us suppose the event search engine crawls data
from different knowledge sources and it receives incorrect information that is
shown to the users. In this case, the event search engine needs to be able to
attribute the information to a source for verifying its trustworthiness.

21. Understandability, also called ease of understanding (Färber et al. 2018), refers
to how easy it is for a human to comprehend the data unambiguously (Färber
et al. 2018; Zaveri et al. 2016). It might be checked by detecting whether human-
readable metadata, labels for classes, properties, and entities are available in a
dataset (Flemming 2011). For instance, let us suppose a user searches for an
event in Innsbruck. The data should contain clear human-readable labels, say,
for the event location. Using “Innsbruck” instead of “IBK” would be more
beneficial in terms of understandability.

22. Value-added refers to “the extent to which data are beneficial and provide
advantages from their use” (Wang and Strong 1996). That is, data adds value
to your operations (Wang and Strong 1996). Also, value-added is considered as
part of the Completeness quality dimension by Färber et al. (2018). One simple
metric can be to compute the ratio between total number of operations not using
the data and the total number of operations using it. Suppose a user searches for
hiking trails in Innsbruck at 1000 m of elevation. If the knowledge base contains
elevation information, the application can return a list of hiking trails around
Nordkette mountain (which might increase the chances of booking). Otherwise,
it may just return all hiking trails in Innsbruck. In this case, elevation informa-
tion is value-added.

2.4 Knowledge Curation 41

23. Variety refers to a number of different sources from which the data is obtained.
Let us suppose a user searches for events in Innsbruck. The event search engine
returns a list of events from a variety of event knowledge sources such as
Eventbrite,43 feratel,44 or Outdooractive45 and instead of using a single source.

A survey on data assessment and improvement is provided by Batini et al. (2009).
The authors describe a comparative analysis of methodologies, strategies, and
techniques regarding data quality dimensions. These dimensions are a way to
capture the usefulness of the data for given and expected applications [“The concept
of fitness for use is now widely adopted in the quality literature” (Wang and Strong
1996)]. For example, Färber et al. (2018) adopt some of these criteria to compare
several Knowledge Graphs such as Freebase, OpenCyc, Wikidata, and YAGO.
Furthermore, Zaveri et al. (2016) introduce a quality assessment methodology that
systematically adopts measures of data quality for Knowledge Graphs.

Paulheim et al. (2019) identify subtasks such as specifying datasets and Knowl-
edge Graphs, specifying the evaluation metrics, specifying the task for task-specific
evaluations, and defining the setting in terms of intrinsic vs. task-based and
automated vs. human-centric evaluation, as well as the need to keep the results
reproducible. In conclusion, besides having various dimensions, we also have
different metrics and evaluation functions that define a score for such a dimension
and procedures used to compute the scoring values.

2.4.2.2 Task Types

The core mission of knowledge assessment is to provide an overview of the amount
of wrong or missing assertions in a Knowledge Graph. Given our maximal simple
Knowledge Representation Formalism, we can distinguish three error sources:

1. Instance assertions: isElementOf(i,t)
2. Property value assertions: p(i1,i2)
3. Equality assertions: isSameAs(i1,i2)

Considering the correctness (i.e., wrong assertions) and completeness (i.e., miss-
ing assertions) quality dimensions and the error sources above, we can define six
tasks for knowledge assessment:

• Correctness:

1. Identify the number of wrong instance assertions.
2. Identify the number of wrong property value assertions.
3. Identify the number of wrong equality assertions.

43https://www.eventbrite.com/
44https://www.feratel.com
45https://www.outdooractive.com/

42 2 How to Build a Knowledge Graph

https://www.eventbrite.com/
https://www.feratel.com
https://www.outdooractive.com/

• Completeness

4. Identify the number of missing instance assertions.
5. Identify the number of missing property value assertions.
6. Identify the number of missing equality assertions.

Given the goal of knowledge curation, which is to provide cost-sensitive
methods, a life-cycle-based, cost-ratio-driven approach to improve the usability of
the Knowledge Graph has to be defined.

2.4.2.3 Methods and Tools

There are different methodologies and tools to assess Knowledge Graphs. In the
following, we describe some of them that can help to define metrics which are used
to analyze data quality assessment.

Methodologies such as the Total Data Quality Management (TDQM) (Wang
1998) and Data Quality Assessment (Pipino et al. 2002) allow identifying the
important quality dimensions and their requirements from various perspectives.
Those perspectives are, for example, suppliers, managers, consumers, and manufac-
turers. Other methodologies define quality metrics that allow a semi-automatic
assessment based on data integrity constraints. Those are, for example, user-driven
assessment (Zaveri et al. 2013), test-driven assessment (Kontokostas et al. 2014),
and a manual assessment based on human expertise [crowdsourcing-driven assess-
ment (Acosta et al. 2013)]. Besides that, there are quality assessment approaches
which use statistical distribution for measuring the correctness of statements
(Paulheim and Bizer 2014), SPARQL queries for the identification of functional
dependency violations, and missing values (Fürber and Hepp 2010a, b).

Regarding tools, some of them are already mentioned in Zaveri et al. (2016) and
Debattista et al. (2016a), and we will describe more tools here. WIQA (Web
Information Quality Assessment Framework46) uses filtering policies to evaluate
information quality (Bizer and Cygania 2009); SWIQA (Semantic Web Information
Quality Assessment Framework) (Fürber and Hepp 2011) defines data quality rules
and quality scores for identifying wrong data; and LINK-QA (Guéret et al. 2012) is a
framework for assessing the quality of data using network metrics. For example, one
way to confirm a correct isSameAs relation is to find closed chains of isSameAs
relations between the linking resource and the resource linked, tackling Task
3. Sieve (Mendes et al. 2012) is a framework for flexibly expressing quality
assessment methods as well as fusion methods. Validata47 (Hansen et al. 2015) is
an online tool for testing RDF data conformance against present schemas written in
the ShEx48 (Shape Expressions) language. Luzzu (A Quality Assessment

46http://wifo5-03.informatik.uni-mannheim.de/bizer/wiqa/
47https://www.w3.org/2015/03/ShExValidata/
48https://www.w3.org/2001/sw/wiki/ShEx

2.4 Knowledge Curation 43

http://wifo5-03.informatik.uni-mannheim.de/bizer/wiqa/
https://www.w3.org/2015/03/ShExValidata/
https://www.w3.org/2001/sw/wiki/ShEx

Framework for Linked Open Datasets) (Debattista et al. 2016a) implements around
30 data quality metrics based on the Dataset Quality Ontology (daQ49).

The tools and methodologies above differ in how they measure or define data
quality metrics. In the following, we describe four approaches that help to define
metrics and tackle the assessment of the tasks defined before.

Sieve50 for Data Quality Assessment (Mendes et al. 2012) is a framework that
consists of two modules: a Quality Assessment module and a Data Fusion module.51

The Quality Assessment Module involves four elements:

1. Data Quality Indicators allow to define an aspect of a dataset that may demon-
strate the suitability of it for the intended use. For example, meta-information
about the creation of a dataset, information about the provider, or ratings provided
by the consumers.

2. Scoring Functions define the assessment of the quality indicator based on its
quality dimension. Scoring functions range from simple comparisons, over set
functions, aggregation functions, to more sophisticated statistical functions, text-
analysis, or network analysis methods. See Table 2.1 for a set of scoring
functions.

3. Assessment Metrics calculate the assessment score based on indicators and
scoring functions, for example, recency and reputation. The assessment metrics
can be classified into three categories, such as content-, context-, and rating-based
metrics.

4. Aggregate Metrics allow users to aggregate new metrics that can generate new
assessment values. For example, apply average, sum, max, min, or threshold
functions to a set of assessment metrics.

Table 2.1 Available scoring functions in Sieve

Scoring function Example

TimeCloseness Measures the distance from the input date (obtained from the input meta-
data through a path expression) to the current (system) date. Dates outside
the range (informed in number of days) receive value 0, and dates that are
more recent receive values closer to 1.

Preference Assigns decreasing, uniformly distributed, real values to each graph URI
provided as a space-separated list.

SetMembership Assigns 1 if the value of the indicator provided as input belongs to the set
informed as parameter, 0 otherwise.

Threshold Assigns 1 if the value of the indicator provided as input is higher than a
threshold informed as parameter, 0 otherwise.

IntervalMembership Assigns 1 if the value of the indicator provided as input is within the
interval informed as parameter, 0 otherwise.

49http://purl.org/eis/vocab/daq
50http://sieve.wbsg.de/
51We will explain this Fusion module in the context of knowledge enrichment.

44 2 How to Build a Knowledge Graph

http://purl.org/eis/vocab/daq
http://sieve.wbsg.de/

Using Semantic Web Resources for Data Quality Management (Fürber and Hepp
2010b) proposes methods to handle data quality problems using SPARQL queries,
which uses a knowledge base as a trusted reference. In the following, we describe the
problems tackled by this approach:

1. Missing literal values define two types of missing values: (1) values that must not
be missing at all, for example, an empty literal attached to a datatype property,
and (2) values that must not be missing in specific contexts, for example, the
absence of a particular datatype property for an instance.

2. False literal values refer to (1) imaginary values, (2) wrong values, (3) values that
are syntactically wrong, and (4) outdated values.

3. Functional dependency violations appear if the dependent literal obtains a value
outside of the correct set of values. For example, compare a set of properties and
values of instances to identify which of them do not have an identical value
combination as in the trusted knowledge base.

SDType52 (Paulheim and Bizer 2013) proposes to focus on the statistical distri-
bution of relations between instances to infer their types using weighted voting. For
each relation in a dataset, there is a statistical distribution of types for the subject and
object position of the relation. For example, the property location is used in 24,601
statements in DBpedia with the distribution shown in Table 2.2. Hence, given a
statement (X, location, Y), SDType may infer (with a certain statistical precision)
that X is a place and Y is a place with 69% and 87.6% of probability, respectively.
Besides, SDType defines a weight for each property, which measures the deviation
of that property from the a priori distribution of all types, i.e., the weights help to
reduce the influence of general-purpose properties.

Resolving Range Violations (Lertvittayakumjorn et al. 2017) proposes an
approach that is based on reducing the search space and score methods for resolving
range violation errors in a Knowledge Graph:

Table 2.2 Type distribution of property dbpedia-owl:location in DBpedia (Paulheim and Bizer
2013)

Type Subject (%) Object (%)

owl: Thing 100.0 88.6

dbpedia-owl: Place 69.8 87.6

dbpedia-owl: PopulatedPlace 0.0 84.7

dbpedia-owl: ArchitecturalStructure 50.7 0.0

dbpedia-owl: Settlement 0.0 50.6

dbpedia-owl: Building 34.0 0.0

dbpedia-owl: Organization 29.1 0.0

dbpedia-owl: City 0.0 24.2

.

52Statistical Distribution of Type (SDType).

2.4 Knowledge Curation 45

1. Reduce search space allows reducing the search space of all entities with the type
of the range’s property to only the entities related to the erroneous triple t ¼ (s, p,
o). It generates a set of candidate objects based on (1) all entities that are linked to
the subject (s), (2) entities whose abstract contains any keyword generated from
the object (o), and (3) entities that are linked to the object (o).

2. Calculating scores allows evaluating the likelihood that a candidate object is the
correct one for the triple t. For that, the authors propose two methods: (1) Graph
Method, which considers that the correct object has direct links, and (2) Keyword
Method, which considers that keywords generated from the object (o) are in the
abstract of the candidate object and they begin with a capital letter. Finally, it
ranks all candidate objects.

The approaches mentioned above can cover one or various tasks defined in Sect.
2.4.2.2. For example, Paulheim and Bizer (2013) can be used to tackle the identifi-
cation of missing instance assertions (i.e., Task 4), Fürber and Hepp (2010b) can
identify wrong and missing type and property value assertions (i.e., Tasks 2 and 5),
and Lertvittayakumjorn et al. (2017) can address the identification of wrong property
value assertions (i.e., Task 2). The approach presented by Mendes et al. (2012)
defines a few quality assessment metrics, which are not enough to tackle the tasks
mentioned in Sect. 2.4.2.2. However, this approach can be adopted for defining more
quality metrics for knowledge assessment.

2.4.3 Knowledge Cleaning

The goal of knowledge cleaning is to improve the correctness of a Knowledge
Graph. This includes two major objectives:

• Identifying wrong assertions in a Knowledge Graph (error detection)
• Correcting wrong assertions (error correction) by deleting or modifying them

In order to achieve these objectives, assertions can be added to the Knowledge
Graph, deleted, or modified. For evaluating the correctness of a statement, we have
to again distinguish between verification and validation (see also Sect. 2.2.3.5 on
evaluating semantic annotations). Verification is the process of evaluating the
Knowledge Graph with a formal specification of integrity constraints; see Garcia-
Molina et al. (2009). For example, we may require a unique value for a property like
birthdate, name, or an identifier in addition to the standard requirements defined by
schema.org. Also, we need to validate the Knowledge Graph that should accurately
describe a domain. That is, we validate the correspondence of the Knowledge Graph
with the so-called real world, whereas, for semantic annotations, we just had to
validate against the virtual world of human-readable web content.

In the following, we provide a short survey of the literature, define the tasks
included in knowledge cleaning, introduce a set of methods and tools applicable to
them, and finalize with a summary and open research question.

46 2 How to Build a Knowledge Graph

2.4.3.1 Literature

In order to provide high-quality data, we need to ensure the correctness of a
Knowledge Graph [i.e., free-of-errors (Pipino et al. 2002)]. The literature (Batini
and Scannapieco 2006; Paulheim 2017, 2018a; Zaveri et al. 2016) presents
approaches focused on the error detection or correction. However, it is difficult to
find an approach suitable for both tasks. For example, once an error is detected, the
erroneous assertion(s) will be removed, and a correction algorithm will try to find a
proper instance or property value assertion. In addition to the literature review, we
also observe that DBpedia is most frequently used for evaluation, which, in many
cases, limits the significance of the result for domain-specific use cases.

That being said, it is relevant to make a careful analysis of errors, identification,
and correction of them. Therefore, given our knowledge representation formalism,
we can distinguish and enumerate all possible error sources in a Knowledge Graph.
We present here the relevant literature for each error source, which includes wrong
instance assertions (Esteves et al. 2018; Gangemi et al. 2012; Paulheim and Bizer
2013, 2014; Nuzzolese et al. 2012; Liang et al. 2017; Sleeman and Finin 2013),
wrong property value assertions (Debattista et al. 2016b; Lertvittayakumjorn et al.
2017; Melo and Paulheim 2017), and wrong equality assertions (Esteves et al. 2018;
Raad et al. 2018; Pernelle et al. 2018).

We observed that most of the approaches are focused on detecting errors than
correcting them. Additionally, only a few approaches were accompanied by an
implemented tool, and none of the existing tools covered all of our defined tasks
(see the following subsection). The best coverage in terms of detection of errors was
achieved by SDType (Paulheim and Bizer 2013) and SDValidate53 (Paulheim and
Bizer 2014), which exploit statistical distribution of types and relations to detect
erroneous instance and property value assertions. In terms of correction of errors, we
have found Katara54 (Chu et al. 2015) for correcting wrong instance and property
value assertions, HoloClean55 (Rekatsinas et al. 2017) for correcting wrong property
value assertions, and LOD Laundromat56 (Beek et al. 2014) for syntax errors.

2.4.3.2 Task Types

Given our simple knowledge representation formalism, we try to detect the follow-
ing errors in our set of assertions:

1. Detection of wrong instance assertions: isElementOf(i,t):

– i is not a proper instance identifier.

53https://github.com/HeikoPaulheim/sd-type-validate
54http://da.qcri.org/ntang/dcprojects/katara.html
55http://holoclean.io/
56http://lodlaundromat.org/

2.4 Knowledge Curation 47

https://github.com/HeikoPaulheim/sd-type-validate
http://da.qcri.org/ntang/dcprojects/katara.html
http://holoclean.io/
http://lodlaundromat.org/

– t is not an existing type name.
– The instance assertion is (semantically) wrong.

2. Detection of wrong property value assertions: p(i1,i2):

– p is not a proper property name.
– i1 is not a proper instance identifier.
– i1 is not in any domain of p.
– i2 is not a proper instance identifier.
– i2 is not in any range of p where i1 is an element of a domain of p.
– The property assertion is (semantically) wrong.

3. Detection of wrong equality assertions: isSameAs(i1,i2):

– i1 is not a proper instance identifier.
– i2 is not a proper instance identifier.
– The identity assertion is (semantically) wrong.

Our error correction approach has to deal with these error types:

4. Correction of wrong instance assertion: isElementOf(i,t):

– i is not a proper instance identifier: Delete assertion or correct i.
– t is not an existing type name: Delete assertion or correct t.
– The instance assertion is (semantically) wrong: Delete assertion or find proper

t.57

5. Correction of wrong property value assertions: p(i1,i2):

– p is not a proper property name: Delete assertion or correct p.
– i1 is not a proper instance identifier: Delete assertion or correct i1.
– i1 is not in any domain of p: Delete assertion or add assertion isElementOf(i1,t)

with t a domain of p.
– i2 is not a proper instance identifier: Delete assertion or correct i2.
– i2 is not in the range of p for where i1 is an element of a domain of p58: Delete

assertion or add a proper isElementOf assertion for i1. Such an assertion adds a
domain for which i2 is an instance of the range of the property. Alternatively, it
adds a proper isElementOf assertion for i2 that turns it into an instance of a
range of the property applied to a domain of p of which i1 is an element.

– The property assertion is (semantically) wrong: delete assertion or correct it. In
this case, you should most likely define proper i2, or search for better p, or
search for better i1.

6. Correction of wrong equality assertions: isSameAs(i1,i2):

– i1 is not a proper instance identifier: Delete assertion or correct i1.

57Finding a proper i would neither scale nor make sense.
58The informed reader may here recognize the implicit usage of the closed versus open world
assumption.

48 2 How to Build a Knowledge Graph

– i2 is not a proper instance identifier: Delete assertion or correct i2.
– The identity assertion is (semantically) wrong: Delete assertion or replace it by

a SKOS operator, which however does not come with operational semantics.59

Finding and correcting these errors until an acceptable quality has been reached
requires manual, semi-automatic, and automatic tool support, which are sketched in
the following.

2.4.3.3 Methods and Tools

There exist several methods and tools for knowledge cleaning. Firstly, we distin-
guish methods according to the cleaning target (e.g., instance assertion, property
value assertion, and equality assertion). Afterward, we describe the tools available
for knowledge correction.

• Instance assertion. There are methods for identifying or correcting wrong
instance assertions that use a statistical distribution of types and properties
(Paulheim and Bizer 2013), disjointness axioms (Ma et al. 2014), supervised
machine learning and entity-type dictionaries (Sleeman and Finin 2013), and
association rule mining (Hipp et al. 2000).

• Property value assertion. For identifying wrong property value assertions and
correcting them, there are methods that use statistical distribution (Paulheim and
Bizer 2014), Ontology reasoners (Ding et al. 2007), Wikipedia pages (Lange et al.
2010; Muñoz et al. 2013), and outlier detection (Wienand and Paulheim 2014;
Fleischhacker et al. 2014).

• Equality assertion. Wrong equality assertions can be addressed using methods
such as outlier detection (Paulheim 2014), constraints (De Melo 2013), logical
verification (Papaleo et al. 2014), and local context of instances (Raad et al.
2017).

Tools for knowledge cleaning can be built using different approaches. They
utilize statistical distributions like SDValidate and SDtype, inferencing rules like
SWIQA, constraints language like SPIN,60 parsers like LOD Laundromat, statistical
distributions and a constraint language like HoloClean, or external knowledge bases
like KATARA. In the following, we give an overview of existing tools that cover
various tasks related to identifying or correcting wrong assertions.

HoloClean (Rekatsinas et al. 2017) uses various approaches such as integrity
constraints, external data, and quantitative statistics to detect errors. The
HoloClean’s workflow follows three steps: First, HoloClean takes a dataset, along
with a set of methods and resources (such as denial constraints,61 outlier detection,

59https://www.w3.org/TR/skos-reference/
60http://spinrdf.org/
61
“Denial constraints are a generalization of many other integrity constraints widely used in

databases,” http://www.vldb.org/pvldb/vol11/p311-bleifub.pdf

2.4 Knowledge Curation 49

https://www.w3.org/TR/skos-reference/
http://spinrdf.org/
http://www.vldb.org/pvldb/vol11/p311-bleifub.pdf

external dictionaries, or labeled data) for detecting erroneous data. It splits input
datasets into a noisy and clean dataset. Second, HoloClean assigns an uncertainty
score over the value of noisy datasets, which is based on a probabilistic model
generated using DDlog program.62 Third, HoloCLean computes a marginal proba-
bility for each value to be repaired.

KATARA (Chu et al. 2015) identifies correct and incorrect data and generates
possible corrections for wrong data. KATARA’s process involves three steps. First,
KATARA allows the user to select the target data table and the trusted knowledge
base. Second, KATARA identifies the pattern (coherence of types and relationships)
of the target data in the trusted knowledge base, and the user validates the pattern.
Third, KATARA annotates each value and tuple (pair of values) as correct if they
have the type and relations in the trusted knowledge base, respectively, otherwise as
incorrect.

SDValidate (Paulheim and Bizer 2014) uses statistical distributions to assess
(assigning a confidence score to) the correctness of statements. It involves three
main steps: First, it computes the relative predicate (predicate/object combination)
frequency for each statement. For example, statements with a low frequency are
selected for a detailed analysis. Second, for each statement selected in the first step,
SDValidate uses the statistical distributions of properties and types (predicate’s
subject/object combination) to assign a score of confidence to each statement.
Third, SDValidate applies a threshold of confidence above which statements are
considered to be true. Similarly, there exist SDType (which we have described in
Sect. 2.4.2.3) which applies statistical distributions for detecting type assertion
errors.

SPIN (SPARQL Inferencing Notation) is a SPARQL-based constraint lan-
guage.63 SPIN generates SPARQL Query templates based on data quality problems
such as inconsistency, lack of comprehensibility, heterogeneity, and redundancy on
the Semantic Web (Fürber and Hepp 2010a). For example, missing datatype prop-
erties, functional dependency violations, mistyping errors, and unique value viola-
tion (Fürber and Hepp 2010b). Nowadays, SPIN has turned into SHACL,64 a
language for validating RDF graphs.

The LOD Laundromat (Beek et al. 2014) is a platform that cleans Linked Open
Data. LOD Laundromat takes a SPARQL endpoint or archived data as entry dataset,
tries to guess the serialization format (for archived data), identifies syntax errors
using a library65 while parsing RDF, and saves RDF data in a canonical format.

62DDlog is a higher-level language for writing DeepDive applications and a DDlog program is a
collection of declarations and rules. http://deepdive.stanford.edu/writing-dataflow-ddlog
63SPIN in Five Slides. https://www.slideshare.net/HolgerKnublauch/spin-in-five-slides
64Shapes Constraint Language (SHACL) is an official W3C recommendation. https://www.w3.org/
TR/shacl/
65For identifying syntax errors LOD Laundromat uses the SWI-Prolog Semantic Web Library.

50 2 How to Build a Knowledge Graph

http://deepdive.stanford.edu/writing-dataflow-ddlog
https://www.slideshare.net/HolgerKnublauch/spin-in-five-slides

TISCO66 (Temporal Scoping of Facts) (Rula et al. 2019) aims to determine the
temporal scope of facts (i.e., the time intervals in which the fact is valid). TISCO
follows three steps.

1. Temporal evidence extraction extracts information for a given fact from the web
and DBpedia. For achieving the extraction, TISCO uses the DeFacto frame-
work,67 which returns possible evidence for a given fact. Then TISCO returns a
list of all dates and their number of occurrences for a given fact.

2. Matching applies a local and global approach for normalizing the time scope.
Local normalization takes the relative frequency of a fact, and global normaliza-
tion considers the frequency of all facts that share the same subject. The Matching
function returns interval-to-fact significance matrix associated with a fact (i.e., a
fact associated with several time intervals).

3. Selection and Reasoning select the time intervals associated with a fact. Once
there is a set of significance matrices, TISCO applies two functions. (1) Neigh-
bour-x function selects the neighborhood of the time interval with the maximum
significance score. (2) Top-k function selects intervals whose significance is close
enough to the most significant interval. Finally, TISCO uses Allen’s interval
algebra68 to merge two-time intervals associated with a fact.

The tools mentioned above cover our defined tasks partially. For example,
SDType detects wrong instance assertions (Task 1), SPIN identifies functional
dependencies violations (part of Task 2), LOD Laundromat allows the detection
and correction of syntax errors (part of Tasks 2 and 5). SDValidate partially
identifies wrong property value assertions (part of Task 2), KATARA identifies
and corrects wrong property value assertions (part of Tasks 2 and 5), and HoloClean
can be used for detecting and correcting wrong property value assertions (part of
Tasks 2 and 5).

2.4.3.4 Summary

We have presented a literature review, defined tasks for addressing Knowledge
Graph cleaning. Additionally, we have described approaches, methods, and tools
error detection and correction. We consider the correctness quality dimension, and
we concentrate on addressing the six tasks described in Sect. 2.4.3.2 that allows us to
calculate the correctness of a Knowledge Graph.

Finally, we have observed that there is still a need for proper tools and methods
that can handle the cleaning of Knowledge Graphs. We assume that knowledge
verification and validation will become even more important since none of the
methods and tools mentioned above can cover all the defined tasks.

66TISCO: http://tisco.disco.unimib.it/temporal-interval-scoping/
67DeFacto: http://aksw.org/Projects/DeFacto.html
68Allen’s interval algebra: https://en.wikipedia.org/wiki/Allen%27s_interval_algebra

2.4 Knowledge Curation 51

http://tisco.disco.unimib.it/temporal-interval-scoping/
http://aksw.org/Projects/DeFacto.html
https://en.wikipedia.org/wiki/Allen%27s_interval_algebra

2.4.4 Knowledge Enrichment

The goal of knowledge enrichment is to improve the completeness of a Knowledge
Graph by adding new statements. The process of knowledge enrichment starts with
the identification of new relevant knowledge sources. However, discovering new
sources is not always a straightforward task. For instance, the fact that large
technology companies have launched their efforts to organize knowledge (Dong
and Srivastava 2015) implies internal and external heterogeneity and overlap of
information. For open sources, the increasing size of LOD cloud69 has brought
challenges in identifying relevant knowledge sources. Thus, it is a challenging task
to identify the potential knowledge source for a specific task or domain (Lalithsena
et al. 2013; Gunaratna et al. 2014). In our touristic use cases, alongside open sources,
we are focused on proprietary knowledge sources, e.g., feratel,70 intermaps,71

Outdooractive,72 and more. They need a manual process of identifying and accessing
their knowledge sources as well as a legal negotiation process. Therefore, the
possibility to mechanize such a process is quite limited.

Once we identify a relevant knowledge source, we start with the integration of
TBox and ABox statements from that source to our Knowledge Graph. In that sense,
Bleiholder and Naumann (2009) have identified the following three issues related to
this:

Regarding the integration of TBox:

Issue 1. Merging or aligning different schemata

Regarding the integration of ABox:

Issue 2. Identifying (lack of isSameAs statements) and resolving duplicates
Issue 3. Invalid property statements such as domain/range violations and having

multiple values for a unique property (also known in the data quality literature as
contradicting or uncertain attribute value resolution)

Since we assume that we have mapped all potential data sources to schema.org
(see Sect. 2.2), we will skip this first issue.73 That is, we will focus on issues 2 and
3 (also described in Sect. 2.4.4.2). In the following, we provide a literature survey on
knowledge enrichment, introduce specific tasks in our context, investigate relevant
methods and tools for tackling these issues, and provide a wrap-up and outlook at the
end of this section.

69https://lod-cloud.net/. See also West et al. (2014) as an approach for automated knowledge
completion.
70http://www.feratel.at/en/
71https://www.intermaps.com/en/
72https://www.outdooractive.com/
73See, e.g., Batini et al. (1986).

52 2 How to Build a Knowledge Graph

https://lod-cloud.net/
http://www.feratel.at/en/
https://www.intermaps.com/en/
https://www.outdooractive.com/

2.4.4.1 Literature

Knowledge is a valuable asset (Wang 1998; Wang and Strong 1996; Pipino et al.
2002) in all enterprises. It is continuously gathered and maintained in order to serve
several purposes, providing a common unified view on all data resources of the
enterprises to power their applications. For instance, large technology companies
have invested in knowledge source curation with the purpose of improving all their
web-scale services (Pan et al. 2017b). In this context, a fundamental problem is the
discovery of relevant knowledge sources for a given task since their knowledge
sources are heterogeneous, incomplete, and have overlapping of information
between each other. For addressing that, methods that use an artificial neural
network model and Ontology matching (Rubiolo et al. 2009; Stegmayer et al.
2007) and tools like SEMINT (Li and Clifton 2000) have been proposed.

We can state that knowledge management shares some goals with data manage-
ment74: data access, data quality, data cleansing, data integration, and more. At least,
it faces many challenges that the data management community has been facing for
decades (Wang 1998; Wang and Strong 1996; Pipino et al. 2002; Batini and
Scannapieco 2006). Thus, when we talk about knowledge enrichment, we may
also refer to Data Fusion. “Data fusion is the process of integrating multiple data
sources to produce more consistent, accurate, and useful information than that
provided by any individual data source.”75 That being said, and in order to produce
more consistent, accurate, and useful knowledge, we must especially tackle the
following issues:

• Entity resolution: Deriving new isSameAs(instance1, instance2) (Halpin et al.
2010) assertions and aligning the descriptions of these two identifiers [i.e., their
property assertions; see Batini and Scannapieco (2006), Sect. 5, Bhattacharya and
Getoor (2007), Christophides et al. (2015), Getoor and Machanavajjhala (2012),
Paulheim (2017, 2018a)].

• Resolving conflicting property value assertion: Handling for example situations
such as P(i1, i2), and P(i1, i3), and i2 ¼/¼ i3, and P has a unique value constraint;
see Batini and Scannapieco (2006), Sect. 6, Dong et al. (2014b), Dong and
Naumann (2009), Dong and Srivastava (2015), Paulheim (2017), and Paulheim
(2018a). This refers to error detection and correction.

74https://en.wikipedia.org/wiki/Data_management
75https://en.wikipedia.org/wiki/Data_fusion

2.4 Knowledge Curation 53

https://en.wikipedia.org/wiki/Data_management
https://en.wikipedia.org/wiki/Data_fusion

Author-name disambiguation,76 Data Deduplication,77 Entity Linking,78 Identity
Resolution,79 Record Linkage,80 Schema Matching,81 and Single-instance storage82

are different conceptual frames for a problem that is as old as computer science. For
example, Record Linkage can be traced back to a publication from 1946 (Dunn
1946), finding out that (syntactical) different identifiers refer to the same entity; see
Fig. 2.15. This name confusion is a solid indication that we talk about a real and hard
problem that is not just an artifact constructed by the specific view of a single
scientific community.83

Fig. 2.15 Multiple names for a hard problem; see Getoor and Machanavajjhala (2012)

76https://en.wikipedia.org/wiki/Author_name_disambiguation
77https://en.wikipedia.org/wiki/Data_deduplication
78https://en.wikipedia.org/wiki/Entity_linking
79https://en.wikipedia.org/wiki/Record_linkage#Identity_resolution
80https://en.wikipedia.org/wiki/Record_linkage
81https://en.wikipedia.org/wiki/Schema_matching
82https://en.wikipedia.org/wiki/Single-instance_storage
83
“While entity disambiguation and resolution is an active research area in the Semantic Web, and

now in Knowledge Graphs for several years, it is almost surprising that it continues to be one of the
top challenges in the industry almost across the board. In its simplest form, the challenge is in
assigning a unique normalized identity and a type to an utterance or a mention of an entity” (Noy
et al. 2019). No, it is obviously not a surprise looking at the principal problems around equality; see
Halpin et al. (2010).

54 2 How to Build a Knowledge Graph

https://en.wikipedia.org/wiki/Author_name_disambiguation
https://en.wikipedia.org/wiki/Data_deduplication
https://en.wikipedia.org/wiki/Entity_linking
https://en.wikipedia.org/wiki/Record_linkage#Identity_resolution
https://en.wikipedia.org/wiki/Record_linkage
https://en.wikipedia.org/wiki/Schema_matching
https://en.wikipedia.org/wiki/Single-instance_storage

2.4.4.2 Task Types

The goal of knowledge enrichment is to improve the completeness of a Knowledge
Graph. For achieving this goal, we will define two tasks:

1. Identifying and resolving duplicates (lack of isSameAs(i1, i2) assertions).
2. Resolving conflicting property value assertions.

These tasks are solved by adding new statements to the Knowledge Graph. Given
the maximal simple Knowledge Representation Formalism in Sect. 2.4.1, we try to
add or delete the following assertions:

• Addition of missing instance assertions: isElementOf(i,t)
• Addition or deletion of property value assertions: p(i1,i2)
• Addition of missing equality assertions: isSameAs(i1,i2)

Identifying and resolving such assertions to reach a reasonable coverage requires
manual, semi-automatic, and automatic tool support, which are sketched in the
following.

2.4.4.3 Methods and Tools

Several methods and tools have been developed to address the tasks described above
(i.e., identifying and resolving duplicates and resolving conflicting property value
assertions). The resolution of duplicates may cause some property value conflicts
that have to be resolved. In the following, we will describe (1) methods for
identifying duplicates, (2) methods and tools for resolving duplicates, and
(3) methods and tools for resolving conflicting property value assertions.

1. Methods for identifying duplicates

The identification of duplicates in Knowledge Graphs is a challenging task. To
tackle it, some authors use methods and techniques based on string similarity
measures (Winkler 2006), association rule mining (Hipp et al. 2000), topic modeling
(Sleeman et al. 2015), Support Vector Machine (Sleeman and Finin 2013), property-
based (Hogan et al. 2007), crowd-sourced data (Getoor and Machanavajjhala 2013),
and graph-oriented techniques (Korula and Lattanzi 2014). Additionally, there are
approaches aiming for the identification of duplicates for particular domains. For
example, university data sources (Glaser et al. 2009), music datasets (Raimond et al.
2008), different DBpedia language editions (Aprosio et al. 2013), data sources that
contain geospatial data (Giannopoulos et al. 2014), or social media platforms
(Campbell et al. 2016). Besides, there are approaches focused on formalizing entity
resolution, such as (Benjelloun et al. 2009) that define four properties (i.e.,

2.4 Knowledge Curation 55

Idempotence,84 Commutativity,85 Associativity,86 and Representativity87) for help-
ing algorithms to address entity resolution.88

2. Methods and tools for identifying and resolving duplicates

Entity resolution has become an important discipline in different fields; thus,
several methods and tools have been developed to address it and its related problems.
In the following, we will describe some tools that help to address this issue.

• ADEL (Adaptable Entity Linking) (Plu et al. (2017)) aims to identify entities of
texts and generate links [i.e., isSameAs(i1,i2)] to external knowledge sources for
the identified entities. ADEL proposes a method for indexing and linking data
based on the label and popularity of entities and it has a configuration as follows:
(1) Extractor extracts likely entities from text based on different extractors (see
Plu et al. 2017). (2) Indexing defines feature properties for entities to be indexed,
e.g., id, a label, and a score. (3) Entity Linking generates a list of entity candidates
for each extracted entity and defines the linking method, e.g., Levenshtein
distance.89

• Dedupe90 is a Python library that uses machine learning to find duplicate entries
in a dataset. Dedupe may be used in two cases: (1) to identify duplicates in a
dataset and (2) to find matches between two datasets. For the first case, dedupe
takes a messy CSV91 input dataset and a training examples dataset (entered by the
user). For the second case, Dedupe takes two datasets with their field names and
labeled training examples. The training examples are the core of Dedupe. The
output of matching is added to the input dataset with an additional column that
refers to the cluster IDs that Dedupe assigns to the grouped entities.

• Duke92 (Garshol and Borge 2013) is a tool for identifying duplicated entities
inside and across different sources. First, Duke loads a data source, e.g., CSV,
JDBC, SPARQL, NTriples, and JSON. Second, it calls a cleaner that applies:
string cleaners (LowerCase, DigitsOnly, and Trim), configurable cleaners
(Regexp, MappingFile, and Parsing), as well as parsing cleaners (PhoneNumber,
PersonName, Address, CompanyName). Third, Duke utilizes Lucene93 for

84https://en.wikipedia.org/wiki/Idempotence
85https://en.wikipedia.org/wiki/Commutative_property
86https://en.wikipedia.org/wiki/Associative_property
87The meaning of the representativity property is that record r3 obtained from merging two records
r1 and r2 “represents” the original records, in the sense that any record r4 that would have matched
r1 (or r2 by commutativity) will also match r3 (Benjelloun et al. 2009).
88Some of the tools discussed during the following also cover duplication identification but are
discussed in the broader context of enriched requirements.
89https://en.wikipedia.org/wiki/Levenshtein_distance
90https://github.com/dedupeio/dedupe
91https://en.wikipedia.org/wiki/Comma-separated_values
92https://github.com/larsga/Duke
93http://lucene.apache.org/

56 2 How to Build a Knowledge Graph

https://en.wikipedia.org/wiki/Idempotence
https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Associative_property
https://en.wikipedia.org/wiki/Levenshtein_distance
https://github.com/dedupeio/dedupe
https://en.wikipedia.org/wiki/Comma-separated_values
https://github.com/larsga/Duke
http://lucene.apache.org/

indexing data and finding potential matches. Fourth, Duke compares two string
values and produce a similarity measure; it uses string comparators (Levenshtein,
Jaro-Winkler, QGram94), simple comparators (Exact, Different), specialized
comparators (Geoposition, Numeric, PersonName), as well as phonetic and
token set comparators.

• Legato95 (Achichi et al. 2017) is a linking tool based on indexing techniques.
Legato implements the following steps: (1) Data cleaning that filters properties
from two input datasets. For example, properties that do not help the comparison:
“has_note” and “has_comment”. (2) Instance profiling that creates instance pro-
files based on Concise Bounded Description96 for the source. (3) Pre-matching
that applies indexing techniques (it takes TF-IDF97 values), filters such as
tokenization98 and stop-words removal, and cosine similarity to preselect the
entity links. (4) Link repairing that validates each produced link against a target
source.

• LIMES99 (Ngomo and Auer 2011) is an approach for link discovery between a
source dataset and a target dataset. LIMES comprises three steps: (1) Generation
of a set of different examples for the target dataset, which represents a portion of a
metric space.100 (2) Calculation of the distance between each resource of the data
source and each example. (3) Matching all instances of the data target where the
approximation of the distance is less than the given threshold.

• SERIMI (Araújo et al. 2011) helps to match instances between two datasets. It has
three steps: (1) property selection, allows the selection of relevant properties from
the source dataset; (2) the selection of candidates from the target dataset, via
string matching; and (3) the disambiguation of candidates, by measuring the
similarity for each candidate applying Tversky’s contrast model,101 which returns
a degree of confidence.

• Silk102 (Volz et al. 2009) is a framework for achieving entity linking. Silk tackles
three tasks: (1) link discovery that defines similarity metrics to calculate a total
similarity value for a pair of entities (see Table 2.3), (2) evaluation of the
correctness and completeness of generated links, and (3) a protocol for
maintaining the data that allows source dataset and target dataset to exchange
generated link sets. For instance, a protocol notifies a target dataset when the
source dataset publishes a set of links pointing to the target dataset.

94https://github.com/larsga/Duke/wiki/Comparator#qgramcomparator
95https://github.com/DOREMUS-ANR/legato
96https://www.w3.org/Submission/CBD/
97https://en.wikipedia.org/wiki/Tf%E2%80%93idf
98https://en.wikipedia.org/wiki/Lexical_analysis#Tokenization
99http://aksw.org/Projects/LIMES.html
100https://en.wikipedia.org/wiki/Metric_space
101https://en.wikipedia.org/wiki/Tversky_index
102http://silkframework.org/

2.4 Knowledge Curation 57

https://github.com/larsga/Duke/wiki/Comparator#qgramcomparator
https://github.com/DOREMUS-ANR/legato
https://www.w3.org/Submission/CBD/
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Lexical_analysis#Tokenization
http://aksw.org/Projects/LIMES.html
https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Tversky_index
http://silkframework.org/

3. Methods and tools for resolving conflicting property value assertions

Entity resolution after integrating a new knowledge source into a Knowledge
Graph is just the tip of the iceberg because the issues that come after are even bigger.
For instance, once an equality assertion between two or more instances is added to a
Knowledge Graph or when a new instance or property assertion is added, their
property values may cause invalid property value assertions or conflicts with each
other. Therefore, for resolving those conflicting property values, some authors have
developed tools, which will be mentioned below.

• FAGI103 (Giannopoulos et al. 2014) is a framework for fusing geospatial data,
which has the following components: (1) Transformation normalizes the data in
respect of the vocabularies used. (2) Processing indexes the data to produce
similarity scores for fusion. (3) Fusion performs the fusion process using property
mapping, calculation of similarity scores, and recommendation of fusion strate-
gies. Furthermore, it suggests entity links or removal of existing links. (4) Finally,
Learning trains machine learning models used for generating suggestion of fusion
strategies.

• FuSem (Bleiholder et al. 2007) is a tool that implements five approaches to fuse
conflicting values in a dataset. It utilizes different implementations of Outer
Join104 and Union SQL operations for combining two data sources. The authors
also describe how to solve inconsistencies by grouping and to solve aggregation
using FuseBy statement that proposes to extend the SQL syntax to support data
fusion operation (Bleiholder and Naumann 2009). Besides, FuSem allows users

Table 2.3 Available similarity metrics in Silk

Similarity metric Description

jaroSimilarity String similarity based on Jaro distance metrica

jaroWinklerSimilarity String similarity based on Jaro-Winkler metricb

qGramSimilarity String similarity based on q-grams

stringEquality Returns 1 when strings are equal, 0 otherwise

numSimilarity Percentual numeric similarity

dateSimilarity Similarity between two date values

uriEquality Returns 1 if two URIs are equal, 0 otherwise

taxonomicSimilarity Metric based on the taxonomic distance of two concepts

maxSimilarityInSet Returns the highest encountered similarity of comparing a single item to
all items in a set

setSimilarity Similarity between two sets of items
aJaro distance metric is a string metric measuring an edit distance between two sequences
bJaro-Winkler Similarity is a variant of Jaro distance metric. https://en.wikipedia.org/wiki/Jaro%
E2%80%93Winkler_distance#Jaro%E2%80%93Winkler_Similarity

103https://github.com/GeoKnow/FAGI-gis
104https://en.wikipedia.org/wiki/Join_(SQL)#Outer_join

58 2 How to Build a Knowledge Graph

https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance#Jaro%E2%80%93Winkler_Similarity
https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance#Jaro%E2%80%93Winkler_Similarity
https://github.com/GeoKnow/FAGI-gis
https://en.wikipedia.org/wiki/Join_(SQL)%23Outer_join

to postulate a set of key constraints together with their queries using ConQuer
(Fuxman et al. 2005).

• HumMer (Bilke et al. 2005) is a tool that consists of four components: (1) A query
language, HumMer uses Select-Project-Join105 queries to sort, group, and aggre-
gate data. For instance, it uses the column name of tables for identifying same
properties across different tables. (2) Schema matching that uses an instance-
based matching algorithm to detect duplicates between datasets and then gets
attribute correspondences between them. For instance, it uses TF-IDF similar-
ity.106 (3) Duplicate detection that utilizes similarity measures such as edit
distance107 and some numerical distance functions108 and then adds a new
objectID column to the input dataset indicating the duplicated identifier. (4) Con-
flict resolution that resolves the conflicting values using strategies such as
CHOOSE that returns the value provided by the specific data source or VOTE
that returns the value that appears most often; see more (Bilke et al. 2005).
Finally, the same objectID values are fused into a single tuple.

• KnoFuss109 (Nikolov et al. 2008) provides data fusion using different methods.
The overview of the workflow of KnoFuss is as follows: (1) It receives a dataset
to be integrated into the target dataset; (2) it performs co-referencing using the
Jaro-Winkler Similarity method, detects conflicts utilizing ontological con-
straints, and resolves inconsistencies using the Dempster-Shafer Theory;110 as
well as (3) it produces a dataset to be integrated into the target dataset.

• ODCleanStore (Knap et al. 2012) is a framework for cleaning, linking, quality
assessment, and fusing of RDF data. The fusion module allows users to configure
conflict resolution strategies based on provenance and quality metadata, e.g.,
(1) an arbitrary value, ANY, MIN, MAX, SHORTEST, or LONGEST is selected
from the conflicting values; (2) computes AVG, MEDIAN, and CONCAT of
conflicting values; (3) the value with the highest (BEST) aggregate quality is
selected; (4) the value with the newest (LATEST) time is selected; and (5) ALL
input values are preserved.

• Sieve (Mendes et al. 2012) is a framework that consists of two modules: a Quality
assessment module (as explained in Sect. 2.4.2.3) and a Data Fusion module that
is described below. The Data Fusion module describes various fusion policies
that are applied for fusing conflicting values.

This Fusion module has the following elements:

105Select-Project-Join Expressions is a Relational Algebra expression it consists only of selections,
projections and joins. http://mlwiki.org/index.php/Select-Project-Join_Expressions
106https://en.wikipedia.org/wiki/Vector_space_model#Example:_tf-idf_weights
107https://en.wikipedia.org/wiki/Edit_distance
108https://en.wikipedia.org/wiki/Distance
109http://technologies.kmi.open.ac.uk/knofuss/
110https://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory

2.4 Knowledge Curation 59

http://mlwiki.org/index.php/Select-Project-Join_Expressions
https://en.wikipedia.org/wiki/Vector_space_model#Example:_tf-idf_weights
https://en.wikipedia.org/wiki/Edit_distance
https://en.wikipedia.org/wiki/Distance
http://technologies.kmi.open.ac.uk/knofuss/
https://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory

1. Fusion describes the name and description of a data fusion policy, e.g.,
name¼“Fusion strategy for DBpedia City Entities”.

2. Class defines a subset of the input that belongs to a given class, e.g., Class
name¼“dbpedia:City”.

3. Property defines a property where a FusionFunction is applied, e.g., Property
name¼“dbpedia:areaTotal”

4. FusionFunction specifies the FusionFunction class used to fuse for a given
property (Table 2.4). For example, FusionFunction
class¼“KeepValueWithHighestScore” metric¼“sieve:lastUpdated”.

It is important to note that when we resolve property value conflicts from different
sources, we need to know which data source is reliable. For instance, we can apply a
voting strategy and consider giving a higher vote to a more trustworthy data source.

Truth-discovery techniques allow integrating noisy data by estimating the reli-
ability of each source (Li et al. 2016). In the following, we will describe some
approaches that have been proposed and used for truth-discovery:

• Kleinberg (1999) proposes an algorithm to discover “authoritative” pages, based
on the relationship between a set of authorities and hub pages. Along the same
line and trying to improve the proposed method, Borodin et al. (2005) have
explored link analysis ranking algorithms for computing hub and authorities’
weights, for example, Indegree,111 PageRank,112 Hits,113 and the SALSA114

algorithms. The authors propose new algorithms like Hub-Averaging, Authority
Threshold, Max, and Breadth-First-Search, which modify Hits and Indegree
algorithms for being applied on specific use cases.

• Dong et al. (2009a) proposes an approach that applies Bayesian analysis115 to
evaluate dependency between data sources and discover the truth-value from

Table 2.4 Available fusion functions in Sieve

Fusion function Description

Filter Removes all values for which the input quality assessment
metric is below a given threshold

KeepSingleValueByQualityScore Keeps only the value with the highest quality assessment

Average, max, min Takes the average, chooses the maximum, or minimum of all
input values for a given numeric property

First, last, random Takes the first, last, or the element at some random position
for a given property

PickMostFrequent Selects the value that appears more frequently in the list of
conflicting values

111https://en.wikipedia.org/wiki/Directed_graph#Indegree_and_outdegree
112https://en.wikipedia.org/wiki/PageRank
113https://en.wikipedia.org/wiki/HITS_algorithm
114https://en.wikipedia.org/wiki/SALSA_algorithm
115https://en.wikipedia.org/wiki/Bayesian_inference

60 2 How to Build a Knowledge Graph

https://en.wikipedia.org/wiki/Directed_graph#Indegree_and_outdegree
https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/HITS_algorithm
https://en.wikipedia.org/wiki/SALSA_algorithm
https://en.wikipedia.org/wiki/Bayesian_inference

conflicting information. For conflicting data, they count the vote for a particular
value considering the out-degree of the data in the data source. Then, for finding
the true values, they propose an algorithm called VOTE that takes the value with
the maximal vote count as the true value. In the same line, they utilize the Hidden
Markov Model116 for discovering copying sources.

• Wu and Marian (2007) proposes a method for ranking the query answers from
different sources (e.g., websites). The ranking is based on the importance and
similarity of the sources reporting each answer. For defining the importance of an
answer, they (1) identify the answers; (2) aggregate a relevance score of similar
answers considering the importance of the source, for example, the duplication of
information and the prominence of the answer; and (3) corroborate the frequency
of the answers in the set of sources.

• Menestrina et al. (2010) propose a distance measure for entity resolution called
Generalized Merge Distance (GMD) based on edit distance, which is a common
measure in other domains such as string-to-string matching. Besides, they pro-
pose an algorithm called Slice which computes GMD.

2.4.4.4 Summary

Knowledge enrichment is a hard and important task. The current literature has shown
the existence of tools that help to tackle the issues regarding duplicate detection and
for resolving conflicting property values. Thus, the addition of missing equality
assertions can be resolved using ADEL, Duke, Dedupe, Legato, LIMES, SERIMI,
and Silk, and the addition of missing instance and property assertions can be
addressed using FAGI, FuSem, HumMer, KnoFuss, ODCleanStore, and Sieve. We
have seen that most of the tools need a previous configuration to start working, such
as Silk and Sieve. Also, most of the approaches focus on an individual type of use
cases. For example, FAGI focuses on geospatial data.

Finally, we have noticed that there are still some open questions like how to scale
efficiently an approach for a Knowledge Graph with billions or trillions of triples and
how to represent effectively and efficiently the consolidated entities in an updated
Knowledge Graph.

2.4.5 Summary on Knowledge Curation

Schema.org is a rather limited knowledge representation formalism. For example,
we do not have integrity constraints. We cannot express that a property has a unique
value for a certain property. However, such conflicting property values are a typical
result when integrating multiple data sources for knowledge enrichment. We have

116https://en.wikipedia.org/wiki/Hidden_Markov_model

2.4 Knowledge Curation 61

http://schema.org
https://en.wikipedia.org/wiki/Hidden_Markov_model

defined an extension of schema.org using the Shapes Constraint Language
(SHACL)117 to add such means to our simplistic knowledge representation formal-
ism (see Appendix).

Also, the discussed truth value assignment to assertions is rather a simplistic false/
true rather than a certain likelihood or a given context in which an assertion is
evaluated to a certain truth value. Defining preferences, rankings, and probabilities
provides a wide range of more useful but also significant more complex approaches
for knowledge curation. Obviously, we have to prevent ourselves from entering the
hyper complex area of belief revision118 in all its variations.

In general, knowledge curation is still an emerging area of science and much more
work need to be spent to develop appropriate methodologies, methods, and tools for
it (Paritosh 2018).

2.5 Knowledge Deployment: The Use of the Pudding Is
in the Eating

Here the topic of Linked Open Data (LOD) comes into play which is a means to
publish data openly and according to some principles, based on semantic technolo-
gies, which allow the data to be easily reused due to the implicit machine read- and
interpretability (Bizer et al. 2008). To introduce the term Linked Open Data, it is
necessary first to explain the terms Open Data and Linked Data in separation, of
which LOD consists. Open Data is, according to the Open Data Handbook,119 “. . .
data that can be freely used, re-used and redistributed by anyone—subject only, at
most, to the requirement to attribute and share alike” (Dietrich et al. 2009). Linked
data, according to the definition in Bizer et al. (2009), “is a method of publishing
structured data so that it can be interlinked and become more useful through
semantic queries.” Linked Open Data is Linked Data published as Open Data or
Open Data published as Linked Data. The quality of LOD can be measured by
applying the 5� criteria according to Janowicz et al. (2014):

�) The dataset gets awarded one star if the data are provided under an open license.
��) Two stars if the data are available as structured data.
���) Three stars if the data are also available in a non-proprietary format.
����) Four stars if URIs are used so that the data can be referenced.
�����) Five stars if the dataset is linked to other datasets to provide context.

The LOD-cloud is a collection of LOD sets which all are published according to
the five-star criteria. As of November 25, 2018, there are 1365 datasets in the cloud
with more than 16,000 links describing fields like Geography, Life Science, Media,

117https://www.w3.org/TR/shacl/
118https://en.wikipedia.org/wiki/Belief_revision
119http://opendatahandbook.org

62 2 How to Build a Knowledge Graph

https://www.w3.org/TR/shacl/
https://en.wikipedia.org/wiki/Belief_revision
http://opendatahandbook.org

Social Networks, and more. To store LOD, Knowledge Graph (as mentioned above)
is a suitable format. Typically, the data can be queried through a SPARQL endpoint
(Harris et al. 2013).

We have built the Tirol Knowledge Graph (TKG) as a five-star linked open
dataset published in a graph database providing a SPARQL endpoint (Kärle et al.
2018), for the provisioning of touristic data of Tyrol, Austria. The TKG currently
contains data about touristic infrastructures, like accommodation businesses, restau-
rants, and points of interests, events, and recipes. The data of the TKG fall under
three categories of data: Static data is information which is rarely changing, like
addresses of hotels, descriptions of points of interests, and alike. Dynamic data is
fast-changing information, like availabilities and prices. Active data describes
actions that can be executed, for example, the description of purchase or reservation
Web API that can be accessed through the TKG GraphDB platform120 (see for more
details Sects. 4.3 and 4.4).

The data are collected either through the crawling of websites or mappings from
proprietary data sources into the Knowledge Graph that is using schema.org as
Ontology. So only websites containing schema.org annotated data are considered
and data sources are always mapped to schema.org before stored. The crawler is
implemented inside the semantify.it annotation platform (Kärle et al. 2017), called
broker.semantify.it. Based on a list of URLs of touristic websites, the data gets
collected periodically and is then stored in the graph. The mapping is provided for
different data sources such as Feratel,121 General Solutions,122 Infomax,123 and
Tomas124 (Panasiuk et al. 2018b, c). The data is mostly retrieved through SOAP
or REST APIs and are originally provided in XML or JSON format. For fetching
these data, translating it to schema.org and storing it in the Knowledge Graph
periodically, wrappers are implemented inside semantify.it that are executed peri-
odically. The mapping is either implemented programmatically in NodeJS or done
through the mapping language RML (Dimou et al. 2014).

On November 25, 2018, the TKG contained around 5 billion statements, of which
55% are explicit and 45% are inferred. Every day the Knowledge Graph grows by
around 8 million statements. The data are held in around 2000 subgraphs, where
every subgraph represents one import process per data source. TKG contains more
than 200 entity types; the most frequently used ones are shown in Table 2.5.

To demonstrate the possibilities of the TKG and to evaluate its usability, we have
built several pilots.

1. Dialog-driven room booking: Among the crawled websites, many are customers
of the Internet booking engine provider Easybooking.125 The features, identifying

120http://graphdb.sti2.at:8080/
121https://www.feratel.com/
122https://general-solutions.eu/php/portal.php
123https://www.infomax-online.de/
124https://www.tomas.travel/
125https://www.easybooking.eu/de/

2.5 Knowledge Deployment: The Use of the Pudding Is in the Eating 63

https://doi.org/10.1007/978-3-030-37439-6_4
https://doi.org/10.1007/978-3-030-37439-6_4
http://schema.org
http://schema.org
http://broker.semantify.it
http://schema.org
http://graphdb.sti2.at:8080/
https://www.feratel.com/
https://general-solutions.eu/php/portal.php
https://www.infomax-online.de/
https://www.tomas.travel/
https://www.easybooking.eu/de/

a website as customer of Easybooking, inside the source code are known. The
booking API structure of Easybooking is known too. We developed an Alexa
skill that enables voice-driven booking of Easybooking hotels through the TKG.
If the showcase skill is asked for a certain hotel, it sends a request to a webhook.
The result, a list of available hotel offers, is sent back to the skill and read to the
user. The list also contains annotated API descriptions for the booking API. So, if
the user decides on an offer, a booking can be executed through a voice
command.

2. Showcase dialog system: as described in Şimşek and Fensel (2018b) and
Panasiuk et al. (2018a), we built two dialog systems that fetch their data from
the graph. One (Panasiuk et al. 2018a) answers generically to touristic topics like
hiking or opening hours. The other one (Şimşek and Fensel 2018b) goes one step
further and conducts generic dialogs solely based on data taken from the Knowl-
edge Graph.

3. Time series analysis of prices in touristic regions: Since all the prices of offers, if
available, are stored permanently, a time series analysis can be conducted. We
compared the price development of two touristic regions over a while. Time
series analysis work perfect with Knowledge Graphs and is a promising applica-
tion of them in tourism.

TKG goes FAIR: FAIR126 is an acronym and stands for findability, accessibility,
interoperability, and reuse. FAIR was introduced in Wilkinson et al. (2016) and
intended to provide principles to improve the machine-accessibility of published
datasets. The TKG aims to follow those principles and improve their adoption
continually, currently by taking the following measures:

– Findability: The data is identified uniquely and described with metadata follow-
ing RDF principles.

– Accessibility: the data is accessible over a web UI, through HTTP, or a SPARQL
API. Authentication or authorization is not required.

Table 2.5 Top ten entities
used in the TKG

Entity Count

schema: Thing 453,841,147

schema: CreativeWork 175,787,490

schema: MediaObject 175,746,110

http://purl.org/dc/dcmitype/Image 175,735,868

schema: ImageObject 175,735,868

schema: Intangible 172,124,244

schema: StructuredValue 155,482,666

schema: Place 60,996,190

schema: ContactPoint 53,155,166

schema: PostalAddress 51,706,023

126https://www.go-fair.org/fair-principles/

64 2 How to Build a Knowledge Graph

https://www.go-fair.org/fair-principles/

– Interoperability: The language that is used to access the data is SPARQL, which
is a W3C recommendation. The vocabulary to describe the data is schema.org,
which is a de facto standard to describe data on the Web.

– Reusable: The data is available openly, the provenance is stated, and it meets the
domain-relevant community standards which were created in cooperation with
domain experts.

An example query from Tirol Knowledge Graph, retrieving all lodging busi-
nesses from the region of Mayrhofen, can be seen in Fig. 2.16.

The result of that query contains 1475 distinct lodging businesses; a sample
output can be seen in Table 2.6.

Another query example from the Tirol Knowledge Graph returns all Restaurants
in Seefeld (see Fig. 2.17).

PREFIX schema: <http://schema.org/>

SELECT DISTINCT ?name ?street ?location ?zip WHERE {

?s a schema:LodgingBusiness;

schema:name ?name;

schema:address ?address.

?address schema:addressLocality ?location;

schema:streetAddress ?street;

schema:postalCode ?zip.

FILTER (regex(str(?location), "Mayrhofen") || regex(str(?location),

"Ginzling") || regex(str(?location), "Ramsau") || regex(str(?loca-

tion),

"Schwendau") || regex(str(?location), "Hippach") ||

regex(str(?location), "Brandberg"))

}

Fig. 2.16 A SPARQL query retrieving all lodging businesses and their addresses in the Mayrhofen
region

Table 2.6 A sample result set of a query returning all lodging businesses and their addresses in the
Mayrhofen region from the Tirol Knowledge Graph

Name Street Location Zip

Wechselberger Lukas Hochschwendberg 678 Hippach 6283

Aschenwald Ingrid Zillerlände 489 Mayrhofen 6290

Sieghard, Das kleine Hotel mit der großen
Küche

Johann-Sponring-
Straße 83

Schwendau/
Hippach

6283

Haus Mauracher Burgstall 346 Mayrhofen 6290

Veitlerhof Schwendberg 322 Hippach 6283

Apartment Stock Zillergrundweg 573 Mayrhofen 6290

.

2.5 Knowledge Deployment: The Use of the Pudding Is in the Eating 65

This query returns 324 distinct restaurants; a sample can be seen in Table 2.7.
Even though the Tirol Knowledge Graph (TKG) grows daily, it still suffers from

many disconnected nodes. The reason for that is the heavy use of blank nodes due to
the design of the schema.org vocabulary, instead of identifying things with URIs. A
lot of web addresses, which could cater as URIs for things, are encoded as RDF
literals instead of URIs. Therefore, as can be seen in the queries above, there are no
URIs for regions like Mayrhofen or villages like Seefeld, and queries must use
SPARQL filters to distinguish. This could only be tackled if either the data providers
use proper URIs at the knowledge generation phase or via knowledge curation
efforts. Finding proper URIs for such entities (e.g., http://dbpedia.org/resource/
Seefeld_in_Tirol for Seefeld) and making the necessary property value assertions
can be a good practice for knowledge enrichment.

The Tirol Knowledge Graph currently consists of Tyrolean data. However,
geographical borders should not stop LOD endeavors. That is why we are about to
join forces with touristic stakeholders to extend the reach and visibility of our Open
Touristic Knowledge Graph to all the German-speaking parts of Italy and

PREFIX schema: <http://schema.org/>

SELECT DISTINCT ?name ?street ?location ?zip WHERE {

?s a schema:Restaurant;

schema:name ?name;

schema:address ?address.

?address schema:addressLocality ?location;

schema:streetAddress ?street;

schema:postalCode ?zip.

FILTER regex(str(?location), "Seefeld")

}

Fig. 2.17 A SPARQL query retrieving all restaurants and their addresses in Seefeld

Table 2.7 A sample result set of a query returning all restaurants and their addresses in Seefeld
from the Tirol Knowledge Graph

Name Street Location Zip

Hotel Hocheder Klosterstr. 121 Seefeld 6100

Tiroler Weinstube Dorfplatz 130 Seefeld 6100

Birkenlift Food and Drink, Restaurant Leutascherstraße 634 Seefeld in Tirol 6100

Restaurant—Alt Seefeld Olympiastr. 101 Seefeld 6100

Astoria Relax and Spa Hotel Geigenbühelstr. 185 Seefeld 6100

Hirschen Leithener-Dorf-Strasse 9 Reith bei Seefeld 6103

66 2 How to Build a Knowledge Graph

http://dbpedia.org/resource/Seefeld_in_Tirol
http://dbpedia.org/resource/Seefeld_in_Tirol

Switzerland, as well as Austria and Germany.127 The working group behind this
initiative is called DACH-KG.128 To reach the ambitious goal of a unified touristic
Knowledge Graph for the German-speaking countries and beyond, the DACH-KG
working group is also working on a unified vocabulary. The foundation for this
vocabulary is schema.org. Beyond the expressivity of schema.org, DACH-KG
develops extensions to that vocabulary. Those extensions will be more domain
specific and more expressive, but still widely understandable, due to the close
relation to schema.org.129

However, building, implementing, and curating Knowledge Graphs are time-
consuming and costly activities. Integrating large amounts of facts from heteroge-
neous information sources does not come for free (Paulheim 2018b) and estimates
the average cost for one fact in a Knowledge Graph between $0.1 and $6 depending
on the amount of mechanization. Table 2.8 provides a survey on the size of some
Knowledge Graphs where this information is made publicly available.

These costs must be covered. In principle, there are two alternatives for such a
cost model:

• The data consumer is paying for this service. Accessing this data must have value
for him.

• The data supplier is paying for this service. This is often called Open Data or
Linked Open Data. Providing this data must have value for him.

Similarly, we can distinguish between proprietary and public Knowledge Graphs.
For example, the Google Knowledge Graph is an internal resource of Google to
improve its answering quality. Alternatively, a public Knowledge Graph can be the

Table 2.8 Numerical overview of some Knowledge Graphs, taken from Paulheim (2017)

Name Instances Facts Types Relations

DBpedia (English) 4,806,150 176,043,129 735 2813

YAGO 4,595,906 25,946,870 488,469 77

Freebase 49,947,845 3,041,722,635 26,507 37,781

Wikidata 15,602,060 65,993,797 23,157 1673

NELL 2,006,896 432,845 285 425

OpenCyc 118,499 2,413,894 45,153 18,526

Google’s Knowledge Graph 570,000,000 18,000,000,000 1500 35,000

Google’s Knowledge Vault 45,000,000 271,000,000 1100 4469

Yahoo! Knowledge Graph 3,443,743 1,391,054,990 250 800

See Noy et al. (2019) for more actual figures on Bing, eBay, Facebook, Google, and IBM. For
example, for Google they report 70 billion assertions about 1 billion entities

127https://www.tourismuszukunft.de/2018/11/dach-kg-auf-dem-weg-zum-touristischen-knowl
edge-graph/
128https://www.tourismuszukunft.de/2018/11/dach-kg-auf-dem-weg-zum-touristischen-knowl
edge-graph/
129https://github.com/STIInnsbruck/dachkg-schema

2.5 Knowledge Deployment: The Use of the Pudding Is in the Eating 67

http://schema.org
http://schema.org
https://www.tourismuszukunft.de/2018/11/dach-kg-auf-dem-weg-zum-touristischen-knowledge-graph/
https://www.tourismuszukunft.de/2018/11/dach-kg-auf-dem-weg-zum-touristischen-knowledge-graph/
https://www.tourismuszukunft.de/2018/11/dach-kg-auf-dem-weg-zum-touristischen-knowledge-graph/
https://www.tourismuszukunft.de/2018/11/dach-kg-auf-dem-weg-zum-touristischen-knowledge-graph/
https://github.com/STIInnsbruck/dachkg-schema

basis of eco-systems of bots that search for products and services. Many variations
and combinations of these two principles are possible.

Many people in academia prefer the open model; however, it is also clear that the
investment costs must be backed up by a proper business model. Providing infra-
structure for free disable the usage of costs as a resource allocation procedure, just as
spam is a consequence of free email traffic, and as advertisement is the dominant
business model on the web (Vardi 2018).

In conclusion, such an investment can only be justified with a purpose in mind.
For a search engine like Google, it is used in search result improvement. Many
business entities see the value in the information integration service that further
facilities their business. In the following section, we develop an application layer on
top of Knowledge Graphs that facilitate goal-oriented dialog-based access to data,
content, and services. Obviously, this can turn such a Knowledge Graph into a
powerful resource for e-marketing and e-commerce. Using Knowledge Graph tech-
nology in a commercial setting is further discussed in Chap. 4.

68 2 How to Build a Knowledge Graph

https://doi.org/10.1007/978-3-030-37439-6_4

Chapter 3
How to Use a Knowledge Graph

Abstract Intelligent Personal Assistants are changing the way we access the infor-
mation on the web as search engines changed it years ago. Undoubtfully, an
important factor that enables this way of consuming the web is the schema.org
annotations on websites. Those annotations are extracted and then consumed by
search engines and Intelligent Personal Assistants to support tasks like question-
answering. In this section we explain how Knowledge Graphs built based on
content, data, and service annotations can improve search engine results and con-
versational systems. We first give a brief overview of the history of the Internet, AI,
and web and the role semantic technologies is playing in bringing those three to the
point we are today. Then we show the need for an abstraction layer over Knowledge
Graphs where we can create different knowledge views in order to achieve scalable
curation, reasoning, and access control. Finally, we show how Knowledge Graphs
can power conversational agents in different points in the dialog system pipeline and
the promising future of service annotations helping to build flexible systems
decoupled from the web services with which they communicate.

3.1 Introduction

We are currently at the beginning of a significant paradigm shift in accessing and
sharing information on the Internet. This is not the first time that the Internet has
drastically changed the way we cooperate and communicate. With email arose
(nearly) instant online communication and with the web a worldwide platform for
information sharing. Both significantly altered the way marketing and commerce are
done. Currently, we see a new access layer arising on top of them. Bots and
Intelligent Personal Assistants access and aggregate information on behalf of
human users. Humans no longer need to interact with lower levels such as the web
but trust their favorite bots that they do this on their behalf. First, this requires that
these bots understand human language, written or spoken. Second, the descriptions
of available resources no longer need to be provided to human users directly but
must be enriched by semantic annotations to provide machine processability and
understandability by bots. Both require results from Artificial Intelligence such as

© Springer Nature Switzerland AG 2020
D. Fensel et al., Knowledge Graphs, https://doi.org/10.1007/978-3-030-37439-6_3

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37439-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-37439-6_3

natural language processing and Semantic Web technology facilitating Knowledge
Graphs. Building and maintaining Knowledge Graphs is a challenging effort. In this
section, we focus on them as infrastructure for dialog-based information and service
access. We first introduce the merger of AI and Internet technology as it currently
has been happening in Sect. 3.2. Then we discuss in Sect. 3.3 how to access
Knowledge Graphs and optimize the interaction with them. We introduce this
architecture as a means for open dialog systems being able to not only answer
questions but to guide a dialog based on semantically annotated content, data, and
services, as shown in Sect. 3.4.1

3.2 Merging Artificial Intelligence and the Internet

Here we give a brief overview of the development of Artificial Intelligence and its
application on the web of bots.

3.2.1 60 Years of AI in a Glimpse

Many researchers point to the proposal for the Dartmouth Summer Research Project
on Artificial Intelligence (AI)2 in 1956 as the starting point of research on AI. In its
beginning, the optimism in achieving intelligent machines was overwhelming, given
the actual theoretical and practical means that were around these days. The under-
lying assumptions were simple:

• Logic expressions can define any problem (or solution).
• A solution can be found by applying a formal reasoning engine, a kind of theorem

prover, to these logical statements.

This approach was also called the General Problem Solver3 because it can be
applied to any problem. However, such an approach did not deploy intelligence and
therefore, did not provide scalable solutions. Logic reasoning is inherently complex
(NP-hard to undecidable) because without any grounding knowledge, any
(of potential infinite) possible reasoning traces must be explored.

In conclusion, the slogan “Knowledge is power”4 was coined and started a new
trace on research providing means for presenting knowledge formally to make it
machine-understandable. A steady flow of knowledge representation formalisms

1Compare (Singh et al. 2018) that have the same aim but propose a tighter connection of the
different tasks.
2http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
3https://en.wikipedia.org/wiki/General_Problem_Solver
4By Feigenbaum and taken from Sir Francis Bacon.

70 3 How to Use a Knowledge Graph

http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
https://en.wikipedia.org/wiki/General_Problem_Solver

was developed. The assumptions were that as more knowledge about the problem,
its context, possible solutions, and variations of goals would be described as more
efficient reasoning can be performed. This also reflects the meaning of the term
“intelligence” in the English language. It does not only refer to an abstract reasoning
ability but specific knowledge about a domain or task.

Unfortunately, what was meant as a solution just opened a new rabbit hole.
Knowledge can only be formalized when it is available. The research fields of
knowledge acquisition and knowledge engineering arose to provide methodological
support for the challenge to build up such knowledge in a machine-processable
manner.5 These fields were aiming to describe the initial tasks associated with
developing an expert system, namely, finding and interviewing domain experts
and capturing their knowledge via workflows, rules, objects, and Ontologies. Unfor-
tunately, a core insight of this research was the discovery of the so-called knowledge
acquisition bottleneck:

• Acquiring, modeling, and representing this knowledge was an extremely costly
endeavor.

• Most knowledge systems were small, shallow, not connected to overall processes
in the enterprise, and not applicable to additional domains and tasks that steadily
evolve.

Projects such as CYC6 that were aiming at modeling the entire human common-
sense knowledge just proved that modeling this human world knowledge is a
non-feasible task. As a result, the final phase arose, the so-called AI winter, and
working as a researcher in this field became quite an uncool experience in various
aspects.

3.2.2 The Web (for Bots)

Let us jump into something “completely” different. The Internet started in the 1960s
as a local network of four computers in the USA and evolved over the next 20 years
into a worldwide computer network. An early paradigm shift for human communi-
cation based on it was email, which has provided an instant messaging service to a
fast-growing number of people. A complementary interaction paradigm started in
1989 based on the work of Sir Tim. Instead of messaging, the World Wide Web
(WWW) is based on publishing information to many potential readers. The web is an
information space where documents and other web resources are described by
hypertext markup, interlinked by hypertext links, identified by URIs, and can be

5See, for example, CommonKads which has been a leading approach in Europe on these topics.
https://commonkads.org/
6https://en.wikipedia.org/wiki/Cyc

3.2 Merging Artificial Intelligence and the Internet 71

https://commonkads.org/
https://en.wikipedia.org/wiki/Cyc

accessed via the Internet. This combination of hypertext with the Internet was his
actual innovation (see Fig. 3.1).

Soon this information space has grown dramatically and overgrown all compet-
ing approaches. Research on the Semantic Web started in 1996 for two reasons.
First, the aim has been to support the web in its nearly infinite scale. The more
information added, the more machine support is needed to access relevant informa-
tion pieces. In Fensel et al. (1997, 2000), we described a Semantic Web system based
on a schema [Ontology (Studer et al. 1998)], annotations of content (based on an
annotation language called HTML-A), and reasoning engines and crawlers to access
and process the available information (see also Fig. 3.2). The second goal was to
solve the knowledge acquisition bottleneck, bringing AI back in the game and create
a brain for humanity (cf. Fensel and Musen 2001). Billions of humans put data,
information, and knowledge on this global network for free. Through this, the web
mirrors large fractions of human knowledge, and a new brain of humanity based on
the knowledge of humankind is generated. Empowered by semantics, a computer
can access and understand this knowledge. This vision of the Semantic Web has
been to build a brain of/for humankind. CYC would finally work if large fractions of
humanity were joining this task for free. It just requires annotating content with
semantic information.

Fig. 3.1 The essence of the Web

Fig. 3.2 An early example of a schema and annotation language

72 3 How to Use a Knowledge Graph

Unfortunately, around the millennium change, web search engines arose that
chose a different approach for information access on the web. They were basing their
operations on syntax and statistical analysis. Some of them performed quite amazing
in retrieving a proper list of links to follow given a keyword as an input. See an
example of this performance in Fig. 3.3. Statistical analysis of web resources is
enough to provide a fast and excellent index system for the web. Search engines such
as Google did not need semantics for this and turned into an opponent of such
approaches.

Initially, the business model was quite simple. Ads on the Google site brought
revenue because more and more users used Google as the starting point for their web
surfing. After they found an interesting link, they left the Google side and manually
extracted information from the websites they visited. This search engine business
model was hugely successful but finally limited. The users left the Google site as
soon as they entered. Therefore, step by step, Google has been aiming at turning
from a search engine into a query-answering engine (see Guha et al. 2003; Harth
et al. 2007). Why point visitors to other websites? Why not provide the answer to
their queries directly at the Google results keeping them there and opening new
opportunities for commercial cooperation with them (see Fig. 3.4)? However, this
requires more intelligence at the side of Google. It must be able to extract exact

Fig. 3.3 Google as a search engine

3.2 Merging Artificial Intelligence and the Internet 73

information from a website based on machine-processable semantics of content and
data. Achieving this goal asks for more elaborated approaches than simple matrix
manipulations.

In consequence, around 2011 a coalition of leading search engines started the
schema.org7 initiative that allows the injection of semantic annotations in HTML
code based on JSON-LD, Microdata, and RDFa syntax. Meanwhile, a mature corpus
of types, properties, range restrictions, and enumeration values have been developed,
and the uptake is significant. Any important website is using it. Based on the
annotations, Google develops its Google Knowledge Graph, a knowledge base
containing already around 100 billion facts about more than 1 billion entities.
What proof of figures that the knowledge acquisition bottleneck is bypassed!
Meanwhile, Google went a step further and identified Artificial Intelligence as a
critical competence needed for its future prosperity (see Fig. 3.5).

Based on this, new ways to present information from external sources in a
structured way become possible. See, for example, the possibilities of rich snippets
(Fig. 3.6), carousels, or event tables.

Google’s Knowledge Graph is perhaps most visible when users issue queries about entities,
and the search results include an array of facts about the entities that are served from the
Knowledge Graph. For example, a query for “I.M. Pei” produces a small panel in the search
results with information about the architect’s education, awards, and the significant struc-
tures he designed (Noy et al. 2019).

Such a concept offers entirely new ways of presenting information and doing
e-marketing and e-commerce. It is what is occasionally called the “headless web.”8

Fig. 3.4 Google as a query-answering engine

7https://schema.org/
8https://paul.kinlan.me/the-headless-web/

74 3 How to Use a Knowledge Graph

https://schema.org/
https://paul.kinlan.me/the-headless-web/

Information is presented without a URL as reference. Content gets extracted from
other pages and directly represented without its original layout representation. Many
web page design aspects become irrelevant as robots visit the pages and not humans.
Necessary for being perceived is the publication of high-quality, well-structured, and
semantically annotated content. This will soon become a dominant access layer on
top of the more-than-25-year-old web. Spoken in a nutshell, in 5 years no kid will
know the web (with the exceptions of students of history). This significantly alters a
core principle of the web and opens new opportunities to channel and bundle
commercial activities. Take a look at a recent search with Google shown in
Fig. 3.7. Only around 25% of the result shows classical web resources. The remain-
der is paid advertisement and a Google-based e-commerce solution. This goes a step
further with the Google Assistant on mobile devices where traditional web results are
nearly no longer shown at all but only content selected and aggregated by Google.

Moreover, Google is, by far, not the only player in this game. The current hype
around chatbots and Intelligent Personal Assistants targets this new access layer on
top of the web. Alexa, Bixby, Cortana, Facebook messenger, Google Assistant, Siri,
and others provide personalized and (spoken) message-based access to information.
This generates new challenges for providers that need to make their content, data,
and services visible to potential customers.

Like it was a must 20 years ago to communicate via email and be visible on the
web, it is now crucial for economic success to be present properly in this new,
dialog-based information access. We identify four major challenges for achieving
such a goal.

Fig. 3.5 Google reference to AI

3.2 Merging Artificial Intelligence and the Internet 75

Fig. 3.6 Examples of rich snippets for recipes and hotels

76 3 How to Use a Knowledge Graph

• You need to understand user requests precisely. Beyond simple stimulus-
response patterns communication based on simple query answering, you should
be able to organize a goal-oriented dialog with them.

• You need to have access to vast sources of smart content, data, and services. Their
smartness is based on adequately structured and semantically (i.e., machine

1. Adver sements that makes Google rich.
2. Direct eCommerce that will make Google even richer (Google

hotel ads, limited offers, places, maps, etc.).
3. Google 1.0, the historical Web.

3

1 2

Fig. 3.7 Search for “Hotel Innsbruck” with Google

3.2 Merging Artificial Intelligence and the Internet 77

processable) metadata. Only this enables knowledgeable dialogs with your poten-
tial customers. No knowledge, no power, as we know from history.

• Proper matchmaking of intents identified by Natural Language Processing tech-
nologies with semantically annotated resources is needed. Here, two types of
semantic technologies (understanding human language and making resources
machine-understandable) shake hands.

• Steady improvement and adaptation of achieved solutions through semi-
automatic and fully automatic techniques. Something that is called machine
learning.

All challenges are primarily based on the progress in Artificial Intelligence, which
suddenly turned from a pariah discipline into something everybody wants and must
have. It is a bit like with windmills. First, Don Quixote was fighting against them
without success. Then they became a piece for museums of technological history,
and finally, they are state-of-the-art technology to generate electricity. In many
aspects, science has periodic changes of taste, like the fashion industry has, too.

3.2.3 Summary

In Berners-Lee et al. (2001), the authors envisaged a web where no longer humans
but bots are accessing information on the web, and these bots are supporting humans
in fulfilling their tasks. Content, data, and services must be enriched with machine
processable semantics to be accessible by these bots. Additionally, bots must
understand humans. Natural language processing must be improved toward a level
where smooth automated interaction can be provided. We want to improve current
techniques to identify intents in human communication acts and develop methods for
structured and goal-oriented communications using information about the context of
the user as well as machine-processable semantics of the available resources. This
defines several research questions which will be discussed further during the fol-
lowing sections.

3.3 Knowledge Access Layer

For example, current knowledge graphs fall short on representing time, versioning, proba-
bility, fuzziness, context, reification, and handling inconsistency among others. New gener-
ations of knowledge graph models should explain/describe/implement these and other
aspects of the structure of “knowledge & data at scale”. (Groth et al. 2019)

Knowledge management technology based on graph-based repositories (see
Chap. 2) is responsible for acquiring, storing, and managing Knowledge Graphs
together with context data on user requests. We implement the connection of user
request with resources through inference engines based on deductive reasoning (see

78 3 How to Use a Knowledge Graph

https://doi.org/10.1007/978-3-030-37439-6_2

Ramakrishnan and Ullman 1995). They implement agents that define views on this
graph together with data from user requests and external data sources. The inference
engines access this information to obtain data for their reasoning that provides input
to the dialog engine interacting with the human user.

In this section, we first introduce this as a new concept for TBoxes that are not one
monolithic layer on top of very large ABoxes but as specialized means to work with
a defined subset of the Knowledge Graphs for fulfilling certain tasks in specific
domains. Second, we focus on the handling of dynamic and active data. Dynamic
data cannot simply be stored in the Knowledge Graph as they steadily change over
time. We need to access them during query-answering time through semantic
descriptions of external information sources. With active data, we refer to the fact
that a reservation or booking action does also change the state of an external source.

3.3.1 Loosely Connected TBoxes Defining Logic-Based Views
on Knowledge Graphs

Reasoning is about discovering new knowledge from existing one. It starts with one
or more general premises and links them to reach specific conclusions. It operates on
logical propositions that may be either true or false (Sternberg and Sternberg 2009).
If the premises are true, then we conclude that the conclusions are true, too. It is not
an easy task, especially when confronted with ambiguous, contradictory,
misclassified, and uncertain knowledge (Reed and Pease 2017). While ambiguity
can be clarified by using context to infer the intended meaning, discovering contra-
dictions requires theorem-proving techniques that become challenging when the
knowledge base increases in size. Identification and reclassification of misclassified
knowledge are also needed, as well as the incorporation of probabilities into
reasoning to deal with uncertainty. Automatic reasoning started with theorem prov-
ing of variants of first-order logic in the early days of Artificial Intelligence (compare
Kowalski 1974). The restriction to horn logic allowed simplified calculi and led to
the logic programming language Prolog.9 Alternatively, production rule systems10

have been developed that also provided a rule-based syntax, however, without any
declarative semantics. The complexity of reasoning in these systems, as well as the
wish to define model theoretical semantics, led to the development of description
logics (Baader et al. 2017) and deductive databases (Kifer et al. 1995). In a nutshell,
description logics are binary predicate logics with restrictions on how to construct
formulas. Similarly, deductive databases restrict predicate logic to Horn logic,
however, they do not adopt the standard model-theoretical semantics of predicate
logic. Description logics are using standard semantics of first-order logic, whereas
deductive databases use variations of the minimal model semantics that allows the

9https://en.wikipedia.org/wiki/Prolog
10https://en.wikipedia.org/wiki/Production_system_(computer_science).

3.3 Knowledge Access Layer 79

https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/Production_system_

definition of the transitive closure of a relationship. Besides Artificial Intelligence,
such reasoning techniques are applied in software verification as a formal means to
verify the correctness of complex software systems (see D’Silva et al. 2008). The
first approach to scale reasoning practically to a scenario of frillions of potentially
inconsistent facts that may be changing faster than any reasoning process was
developed in the LarKC project; see Fensel and van Harmelen (2007) and Fensel
et al. (2008).

Reasoning can be used to find errors, correct errors, and enrich the knowledge in a
Knowledge Graph (Paulheim 2017). However, here, we focus on the aspect of
creating personalized, dialog-oriented access to large Knowledge Graphs. A graph
database is used to store the Knowledge Graph. On top of the repository, so-called
reasoning agents use parts of the Knowledge Graph to handle user requests. Fig-
ure 3.8 presents a schematic representation of the architecture, including the Knowl-
edge Graph and the reasoning agents. For example, the Knowledge Graph contains
all the knowledge about ski resorts in Austria. In order to build a chatbot for Wilder
Kaiser, only the data from Wilder Kaiser are needed. Therefore, a new reasoning
agent will be created, which uses only the data from Wilder Kaiser.

Rules can play different roles in dialog-based systems using Knowledge Graphs.
First, rules allow for expressing complex bearings in an Ontology. For instance,
which ski areas are connected via ski slopes and the total length of all ski slopes in an
area can be expressed by rules. Reasoning dynamically deduces the answers using
those rules. Second, dialog modeling is a complex undertaking in complex domains

Fig. 3.8 Reasoning agents accessing a Knowledge Graph

80 3 How to Use a Knowledge Graph

and for complex processes. Reasoning uses the context, the previous answers, and
the Knowledge Graph to create flexible and intelligent dialogs. Third, reasoning
allows integrating external knowledge sources and services context into the answers.
As we work with huge sets of facts, requirements are high performance and scalable
real-time reasoning. Means for that in databases are properly partitioning the data,
parallel, federated, clustered, and distributed query answering.11 The advantage of
using parts of the data in the reasoning agents is that these agents can optimize the
reasoning process to improve the performance and can decrease the response times.
Defining such views that constitute a knowledge access layer12 has many
advantages:

11A method to reduce the response time is, for example, so-called magic sets (Bancilhon et al.
1986). The idea behind magic sets is that the existing rules will be adapted so that they do not create
facts which are useless for the response. The magic sets will persist as long as the data stays the
same. So the Knowledge Graph can be updated permanently, whereas the agent takes periodical
snapshots that are then compiled in an optimized presentation. However, dynamic data such as
streams must be directly incorporated and require stream-reasoning approaches (see Dell’Aglio
et al. 2017).
12
“We can start with Newtonian mechanics. For a couple of centuries, scientists and philosophers

thought that Newton’s laws (F¼ ma and related equations) were the ultimate Theory of Everything
(ToE). They thought that those laws were the fundamental axioms, and every term T(x, y, z. . .) in
science could be defined by statement of the following form: T(x, y, z. . .) if and only if some
expression P(x, y, z. . .), where P is some combination of statements in Newtonian mechanics that
involve the variables x, y, z. . .

The first cracks in that claim came in the nineteenth century with Maxwell’s equations for
electromagnetism, which were independent of F¼ma. That led to major research efforts, which led
to various equations that the physicists and mathematicians were trying to integrate with F ¼ ma.
But their attempts created all sorts of loose ends.

In 1905, Einstein published some critical papers that used those equations. He kept F ¼ ma as a
fundamental assumption, and he related the equations for the other loose ends. But the results
(relativity and quantum mechanics) caused all the definitions of F, m, a, and their relationships to
change. For over a century, scientists have been using the same words: force, mass, position,
velocity, acceleration, momentum, energy. . . But �every� definition of those words has changed
with every new discovery and explanation (theory). Furthermore, the most fundamental definition
of mass involves the recently discovered Higgs boson. That’s the closest thing to a ToE. But nobody
would ever dream of using that definition for any practical application of any kind. In fact, Newton’s
equations, which are at best approximately true, are still the most widely used for most purposes.
But any large system will include many components that use multiple inconsistent approximations.

Your car, for example, was designed with Newton’s equations for all major motions, including
the engine, steering, brakes, and springs. But all the electrical and electronic equipment depends on
Maxwell’s equations, which are fundamentally relativistic. The fire in a gasoline engine or the
chemical reactions in the battery depend on quantum-mechanical calculations. Any GPS signals it
may use depend on relativistic corrections for the signals from satellites. And all those computations
are so complex, that they use special-case approximations that are inconsistent with the special
cases assumed for the others.

Basic principle: Your car, cell phone, refrigerator, TV. . . are based on a multiplicity of incon-
sistent theories with inconsistent definitions. There is no single unified ontology that could be used
to specify every feature of any of them. Even if somebody might discover a universal ToE, the
calculations that depend on it would be at least as complex as anything that depends on the Higgs
boson. Don’t expect anything better during the twenty-first century, if ever.

3.3 Knowledge Access Layer 81

• Instead of accessing trillions of facts, an access layer can provide a much more
reduced amount of them.

• It is not necessary to curate the entire Knowledge Graphs in terms of aspects like
inconsistencies. It can be used as a semantic data lake13 allowing different views
on data. Each reasoning agent can restrict itself to a well-curated island.

• Access rights and privacy issues may prevent specific applications to access the
entire Knowledge Graph but only subsets of it. This can be implemented by these
views.

• It integrates additional dynamic knowledge sources and user-given input.

This extends the architecture that was discussed in Sect. 2.4, distinguishing three
layers of different functionalities (see Fig. 3.8).14

• Input: We use at the input layer MongoDB extended by crawlers and semantify it.
APIs collect and semantically lift data from various sources.

• Storage: These data are stored as facts in the Knowledge Graph, curated, and
hosted by GraphDB.

• Output: The data are accessible through personalized agents that define partial
views15 on the Knowledge Graph and providing contextual and personalized
reasoning on top of these data [also called personalized fusion in Dong and
Naumann (2009)].

• Finally, a conversational interface on top of the knowledge infrastructure man-
ages the dialog-specific aspects of an application.

Interestingly, our Knowledge Access Layer could be viewed as a reintroduction
of the TBox; however, in a distributed and localized version. Instead of trying to find
axioms and rules that hold for the entire world, it extends a subset of the Knowledge
Graph in a defined context. All the problems around defining such global logical
expressions for the entire world with all their heterogeneity, inconsistency, and
notorious exceptions are bypassed by reducing the scope of such rules that should
govern the ABox. These also make them comparable to so-called inference actions in
the CommonKADS methodology (Schreiber et al. 2000) and microtheories in CYC
(Guha 1991).16

If anybody wants a truly universal explanation of everything, you can rely on the all-time
favorite: God. As the mathematician Paul Erdős said, he hoped that when he died he would have
a chance to look into God’s Big Book. It would be nice if he did.” J. F. Sowa, email at ontology-
summit@googlegroups.com, Sat, 1 Jun 2019 15:46:21–0400.
13https://en.wikipedia.org/wiki/Data_lake
14A more direct coupling is proposed in Marx et al. (2014).
15Using a local-as-view approach, for example, used in Infomaster (Genesereth et al. 1997). For a
general discussion, see also Bleiholder and Naumann (2009).
16See also Brachman (1990).

82 3 How to Use a Knowledge Graph

https://doi.org/10.1007/978-3-030-37439-6_2
https://en.wikipedia.org/wiki/Data_lake

3.3.2 Dynamic and Active Data: Semantic Web Services

Knowledge Graphs and applications working with them deal with three different
types of data:

• Static data are data that do not likely change frequently. For instance, the address
of a hotel or the birthdate of a person do not change very often. This low velocity
allows to directly store these data in a Knowledge Graph repository.

• Dynamic data change with a high frequency, for instance, age, weather forecast,
traffic information, or share prices. Here the actual data must be accessed
periodically or on demand. It is possible to store these data for future data mining,
but the current data must be accessed dynamically.

• Active data, which changing the state of an external resource. For instance, a
booking action changes the state of an external resource (e.g., creation of new
room reservations at a hotel).

For both dynamic and active data, web services play an important role. For
dynamic data like temperature at a given location and time, a request (e.g., HTTP
GET) to the weather web service must be made to retrieve the necessary information
at the query time. Similarly, for active data, a request (e.g., HTTP PUT) to a hotel’s
booking web service must be sent to make a room reservation.

Traditionally, applications would hardwire the logic to consume web services
into their business logic. In order to utilize services automatically, the web service
descriptions should be semantically enriched (Ankolekar et al. 2002; Fensel and
Bussler 2002) and stored in the Knowledge Graphs. Unlike static data, a Knowledge
Graph stores the semantic annotations of the service with which it needs to interact
and not the data directly. Intelligent applications like conversational interfaces then
access the web services on the fly. In this section, we give an overview of the
Semantic Web services technology that enables semantic description of web services
and consequently automated consumption by applications, allowing them to inte-
grate dynamic and active data.

We first introduce the so-called heavyweight approaches, targeting mainly SOAP
web services, and then we dive into the so-called lightweight approaches that enable
semantic descriptions of RESTful web services.

The Internet Reasoning Service (IRS-II) (Motta et al. 2003) provides an infra-
structure for publication, storage, composition, and execution of heterogeneous web
services with the help of semantic descriptions. IRS-II matches implementation
independent descriptions of different reasoning process to relevant tasks. IRS-II
stands out with its advanced publication and registry mechanisms.

OWL-S uses OWL and description logic (DL) for describing web services
(Martin et al. 2004). It utilizes three main elements: the service profile to describe
the capabilities provided by a web service and some nonfunctional aspects, process
model to describe order of service calls need to be made to perform a certain task,
and service grounding to enable the description of concrete WSDL bindings for
invocation.

3.3 Knowledge Access Layer 83

METEOR-S (Patil et al. 2004) framework supports the whole Semantic Web
services lifecycle by describing data, functional, nonfunctional, and execution
semantics. The METEOR-S framework extends existing web and web services
technologies for semantic descriptions. It adopts the SAWSDL (Semantic Annota-
tions of Web Services) (Kopecký et al. 2007) technology for annotating WSDL
services. METEOR-S provides tools for design, discovery, composition, and exe-
cution of web services.

Developed based on the insights obtained from the OWL-S, the Semantic Web
Services Framework (SWSF) (Battle et al. 2005) provides a more expressive frame-
work by using first-order logic (FOL) instead of DL, sacrificing decidability. The
framework uses the Semantic Web Services Ontology (SWSO) for the conceptual
modeling and the Semantic Web Services Language to express SWSO. Moreover,
SWSF extends the Process Specification Language (PSL)17 for defining process flow
of web services.

The Web Service Modelling Framework (WSMF) (Fensel and Bussler 2002)
provides a decoupled way of automating the entire lifecycle of web service con-
sumption. It utilizes a conceptual model WSMO, a set of languages WSML, and an
execution environment WSMX (Roman et al. 2006). WSMF has four pillars for
describing web services. The first pillar, Ontologies enable domain descriptions.
Goals are the second pillar which foster the description of what a user wants to
do. The third pillar is the web service descriptions for describing various aspects of
web services such as their capabilities and behavioral properties, and the fourth pillar
mediators tackle interoperability problems at different levels.

As the RESTful web services increasingly gained popularity, the interest in
Semantic Web services technology shifted toward more lightweight approaches
that target such web services. An extensive survey of such approaches can be
found in (Verborgh et al. 2014).

WSMO-Lite (Roman et al. 2015) is a conceptual model for describing the
functionality of RESTful services in a lightweight, bottom-up manner. Unlike the
approaches for SOAP services (e.g., OWL-S, WSMO), it does not follow a
top-down approach but works through annotation of web service documentations
(i.e., HTML file) with MicroWSMO microformat. The lightweight approach has
limitations in terms of expressiveness and description of the behavioral aspects of
web services. It provides a minimal model for web service descriptions to enable
interoperability.

RESTDesc (Verborgh et al. 2013) focuses on the functional aspects of RESTful
Web Services. It uses N3Logic (Berners-Lee and Connolly 2008) as formalism. The
functionality supported on a resource can be described with pre- and post-conditions.
It utilizes OPTIONS calls to resources to return the potential actions that can be
taken on that resource with their expected outcomes.

Recently, two approaches, with different motivations, namely, Hydra (Lanthaler
and Guetl 2013), for facilitating the creation of hypermedia-driven APIs by using

17https://en.wikipedia.org/wiki/Process_Specification_Language

84 3 How to Use a Knowledge Graph

https://en.wikipedia.org/wiki/Process_Specification_Language

linked data principles, and SmartAPI (Zaveri et al. 2017) to make APIs follow the
FAIR principles.18 Hydra builds itself on the principle of self-documenting APIs,
meaning that a machine-readable documentation and hypermedia types are all that is
needed for a client to consume an API. SmartAPI19 enriches some of the functional
aspects of OpenAPI20 descriptions with semantic annotations in order to make APIs
better findable, accessible, interoperable, and reusable. Alternatively, with schema.
org Actions21 Web API annotation may now become mainstream and integrated into
industrial de facto standards. Although it provides a generic way to describe actions
that can be taken on entities, an extended subset of actions vocabulary can be used to
describe Web APIs, and these descriptions then can natively interact with schema.
org annotations (Table 3.1). Usage of schema.org Actions is also an interesting use
case for domain specification patterns, as they provide a more task-specific (i.e., web
service description) pattern based on an otherwise generic vocabulary. Further
example Web API annotations and the domain-specific patterns can be found
online.22 These domain-specific patterns are then used for generating an annotation
tool, including a lifting-grounding mapping for existing non-semantic APIs.23

3.4 Open and Service-Oriented Dialog Systems

Almost 30 years after the invention of the web, the concept of browsing as a primary
means for information access is losing its importance. With the advances of Artificial
Intelligence, content, data, and services on the web can be consumed through
conversations. If the invention of the web browser was a milestone in the history
of the web, another milestone is undoubtedly the mobile computing and conversa-
tional interfaces, especially dialog systems that work as Intelligent Personal Assis-
tants. We first focus on the general case of Knowledge Graph-supported dialog
systems and then focus on the role of semantic description of services for building
dialog-based systems (c.f. Chen et al. 2017).

3.4.1 Open Dialog Systems

The research on dialog systems has been tackling the challenge of natural human-
computer interaction for more than 50 years (McTear et al. 2016). Although the

18https://www.go-fair.org/fair-principles/
19https://smart-api.info
20https://www.openapis.org/
21https://schema.org/Action/
22https://github.com/semantifyit/sdo-webapi
23https://actions.semantify.it/annotation/webApi

3.4 Open and Service-Oriented Dialog Systems 85

http://schema.org
http://schema.org
http://schema.org
http://schema.org
http://schema.org
https://www.go-fair.org/fair-principles/
https://smart-api.info
https://www.openapis.org/
https://schema.org/Action/
https://github.com/semantifyit/sdo-webapi
https://actions.semantify.it/annotation/webApi

Table 3.1 An example action annotation for feratel API

The action describes how to search hotel room offers

86 3 How to Use a Knowledge Graph

general architecture of a dialog system has not changed much over the years, the
methods and implementation of the components in this architecture improved. Early
dialog systems encoded the domain knowledge into the system, which made them
relatively “closed,” meaning that the adaption of such systems to new domains was
very expensive. Such closeness also caused the structure of dialog being statically
defined, hindering the flexible elaboration of a topic by the dialog system to collect
all the necessary information to reach its goal. Knowledge bases have been used to
overcome these obstacles by separating the domain knowledge from the system,
allowing dialog systems to be adapted to different domains relatively more straight-
forwardly (Milward and Beveridge 2003).24 Here we want to explore the possibil-
ities of how a Knowledge Graph based on different sources can improve a dialog
system in different aspects. Like Sir Tim opened hypertext systems to the Internet,
dialog systems must take the same challenge as a new access layer to information
over the Internet. Google’s Knowledge Graph is, in fact, one of the largest scale
examples of a Knowledge Graph that powers conversational interfaces. It started by
helping Google to turn into a question-answering engine, rather than a search engine
(Fig. 3.9). Now it powers many Google services, including their intelligent assistant,
Google Assistant.25 From the dialog strategy perspective, dialog systems can be
classified into three categories:

• System initiative systems where only the system guides the dialog
• User initiative where only the user asks the questions
• Mixed initiative where both parties can guide the dialog

Although semantic technologies have been utilized in all three categories, the
main research effort in the context of the web comes for the user initiative dialog
systems. Most typical user initiative dialog systems in the context of Knowledge
Graphs are question-answering systems (QAS). Such systems aim to use natural
language questions to retrieve information from Knowledge Graphs. According to
the survey in (Diefenbach et al. 2018a), there are over 60 QAS that are powered by
Knowledge Graphs on the web. In principle, these systems follow the following
pipeline (Moschitti et al. 2017; Diefenbach et al. 2018a)26:

• Running typical NLP tasks for syntactic analysis of the question
• Entity mapping and disambiguation over the Knowledge Graph
• Query construction (e.g., SPARQL), query execution, and answer provision

Applying such a pipeline bares certain challenges at each step. A comprehensive
survey (Höffner et al. 2017) on 72 publications about 62 systems on question

24For example, there is a plethora of work to improve different aspects of dialog systems, especially
with machine learning in the recent years (McTear et al. 2016; Chen et al. 2017).
25In 2016, Google Assistant was working with Google Knowledge Graph, which contained
70 billion facts at the time (https://www.businessinsider.de/why-google-assistant-will-win-the-ai-
race-2016-10?r¼US&IR¼T).
26There are also approaches such as WDAqua (Diefenbach et al. 2018b) that skip the syntactic
processing step and disambiguate entities by eliminating candidate queries.

3.4 Open and Service-Oriented Dialog Systems 87

https://www.businessinsider.de/why-google-assistant-will-win-the-ai-race-2016-10?r=US&IR=T
https://www.businessinsider.de/why-google-assistant-will-win-the-ai-race-2016-10?r=US&IR=T
https://www.businessinsider.de/why-google-assistant-will-win-the-ai-race-2016-10?r=US&IR=T
https://www.businessinsider.de/why-google-assistant-will-win-the-ai-race-2016-10?r=US&IR=T

answering over the Semantic Web identifies those challenges. Following the survey,
we group the most relevant ones under the following categories:

1. Lexical Gap
2. Ambiguity
3. Multilingualism
4. Complex questions and queries

In the context of question-answering systems over Knowledge Graphs, the lexical
gap is a term for the situation where the vocabulary used in the question does not
directly match the vocabulary used in the labels of the resources in a Knowledge
Graph (Hakimov et al. 2015). According to the aforementioned survey, methods like
string normalization and applying similarity functions, query expansion with syno-
nyms and semantic features like hypernym-hyponym hierarchies, pattern generation
for identifying various representations of relationship between two instances (i.e.,
different ways to represent a particular property), and incorporating traditional
document retrieval methods (e.g., TF-IDF) to find relevant resources are adopted.

Fig. 3.9 Google as a question-answering engine

88 3 How to Use a Knowledge Graph

Ambiguity is one of the major challenges to tackle in question-answering systems.
It refers to the notion of the same phrase having different meanings. As pointed out
in the survey, lexical gap and ambiguity are two different sides of the same coin,
since while the former affects the recall of a system, the latter has an impact on the
precision. The resolution of ambiguous phrases, also known as disambiguation, aims
to find the most relevant resource among multiple candidates in a Knowledge Graph
to answer a natural language question. The disambiguation methods in QAS benefit
from the statistical distribution of phrases in several text corpora to identify the
correct context of a question. Similarly, they may benefit from the graph structure of
Knowledge Graphs in order to rank the relatedness of entities. While several
approaches used historical question-answer data or user context and preferences,
some moved the effort mostly to the user and let them do the disambiguation of
candidate answers.

Multilingualism refers to the notion of being able to handle questions and answers
in multiple languages. Open Knowledge Graphs such as DBpedia andWikidata have
mappings of the data in different languages. Such mappings make a precious
resource for developing multilingual QAS. Additionally, some QAS use multilin-
gual lexicon Ontologies for answering multilingual questions.

In simple cases, QAS convert a natural language question into simple triple
patterns in ASK or SELECT queries. However, complex questions may require
queries with a more sophisticated structure (e.g., subqueries, union patterns, aggre-
gation). The systems that can handle such complex questions benefit from pre-built
linguistic representations of concepts and relations in Ontologies, determining the
core elements and building queries around it, even from multiple sentences. For
complex questions, template-based approaches are the most adopted ones. The
generation of query templates can be manual or automated to some extent. Addi-
tional to the questions, complexity may also be introduced due to the nature of
Knowledge Graphs. This typically refers to the procedural (e.g., instructions for
building furniture), temporal (e.g., temporally ordered events, time-dependent facts),
and spatial (e.g., spatial relationships between entities and their three-dimensional
coordinates). Concepts and relationships for such aspects are usually not provided by
the underlying schemas of Knowledge Graphs or not straightforward to represent
with the triple-based data structure of RDF.27 Still, some approaches try to help QAS
to handle such questions by inferring such temporal and spatial relationships based
on the existing knowledge.

The challenges above and different approaches tackling them pose strong evi-
dence for the heterogeneity in addressing the question-answering challenge. As
pointed out in the survey (Höffner et al. 2017), many dialog systems focus on a
particular aspect of question answering. This leads to a situation where each system
re-implements a certain part of the pipeline, even though there may be some
components already implemented and could be reused. Researchers have addressed

27However this situation is changing. For instance, schema.org is now testing properties for spatial
relationships and the Wikidata data model allows attaching temporal context to facts.

3.4 Open and Service-Oriented Dialog Systems 89

this modularity and reusability issue by providing QAS architecture and methodol-
ogies that allow building question-answering pipelines with interoperable, replace-
able components in Marx et al. (2014), Singh et al. (2018), Ferrández et al. (2011)
and Kim et al. (2017). An exciting approach is presented in (Singh et al. 2018), the
Frankenstein framework, that integrates 29 components for different purposes in
order to build question-answering pipelines. The framework integrates these com-
ponents with the Qanary methodology that enables different components to share the
state of the question-answering process, allowing them to interoperate. The Fran-
kenstein framework supports dynamic pipelines, meaning the components for dif-
ferent tasks can be dynamically selected based on their performance according to the
question type.28

In the remainder of this section, we have a closer look at how Knowledge Graphs
can be used to improve dialog systems, in particular, Chatbots and Intelligent
Personal Assistants. There are two main directions in which one can use a Knowl-
edge Graphs for this purpose: (1) to power the language understanding part of the
dialog system and (2) to react on the conversations and provide additional interac-
tions, information, and recommendations to the user engaged in conversations with
the dialog system.

When it comes to supporting the language understanding part of the dialog
system, the goal is to use the Knowledge Graphs to provide training data for the
natural language understanding service (e.g., DialogFlow29). We can automatically
ingest from the Knowledge Graph as training data for the entity recognition task
(e.g., Vienna is a city) and provide (semi-)automatically generate intents and exam-
ple questions. Based on the Knowledge Graph structure, we can generate on the one
hand entities and synonyms and on the other hand, intents needed in the natural
language understanding service based on the entities, respectively the relations
between these entities in the Knowledge Graph. Furthermore, one can use an
ontology-to-text approaches to generate example questions that can be used to
train the natural language understanding service.

The second direction on how Knowledge Graphs can be used to improve dialog
systems is to react to the conversations and provide additional interactions, infor-
mation, and recommendations to the user.

• Using the knowledge from the Knowledge Graph, the dialog system can elaborate
on the topic of discussion and provide additional interesting facts. Let us consider
a dialog system providing information about events. Based on the knowledge
from a touristic Knowledge Graph, such a dialog system can provide the user with
detailed information about an event but also additional information about the
connected entities, e.g., artist, location, and means of transportation related to that
event.

28Comparable to the LarKC approach that developed a similar open plug-in pipeline architecture for
large-scale reasoning (Fensel et al. 2008).
29https://dialogflow.com/

90 3 How to Use a Knowledge Graph

https://dialogflow.com/

• AKnowledge Graph can also be used to improve the handling of the conversation
context. Using a template or rule-based approach, one can drive interaction with
the user to provide context-dependent answers (e.g., prices based on the role of
the user), the invocation of actions (booking of a hotel room with follow-up
questions), or a combination of both (e.g., which outdoor events happen on the
weekend if the weather permits).

• Finally, a Knowledge Graph can also be used to refine the search for products or
services in a dialog system. In case the dialog system cannot answer the given
question, the Knowledge Graph can be used to inquire on more information. For
example, actions and APIs that are modeled as part of the Knowledge Graph
might require input data of a specific type, and can be used to steer the dialog.
More details on how this can be achieved are provided in the following section on
service-guided dialogs/actions.

3.4.2 Service-Guided Dialogs

For goal-oriented dialog systems that aim beyond simple question answering, the
external access component is usually more complicated. A goal-oriented dialog
system aims to guide users to elicit all the necessary information that is needed to
achieve their goal. For a dialog system that works with the data and services on the
web, external communication typically involves web services. Traditionally, dialog
systems are tightly coupled with the web services they access. This situation
naturally brings certain limitations, for instance, service invocations are weaved
into the dialog systems, and the order of the invocations are hard coded. This harms
the flexibility of the dialog system, by forcing dialogs to be manually altered
whenever a new service, consequently a new functionality, is introduced. This
flexibility issue has implications in terms of scalability of the dialog systems that
run with data and services on the web. If we see the dialog system as a client, this
issue turns into a service-client decoupling challenge.

In order to utilize services automatically, the web service descriptions should be
semantically enriched (Ankolekar et al. 2002; Fensel and Bussler 2002). The initial
efforts were mostly focused on SOAP services [e.g., OWL-S (Martin et al. 2004);
SWSF (Battle et al. 2005); WSMF (Fensel and Bussler 2002)]. Lightweight
approaches targeting RESTful Web APIs have been developed in recent years to
provide simple annotations for these services on the web (see Sect. 3.3.2).

We argue that a dialog system can benefit from the strengths of semantic
annotation from two different viewpoints:

• First, a dialog system can generate a backend-driven intent and training sentences
semi-automatically.

• Second, it can benefit from the hypermedia links of a Web API to extract the
invocation flow that guides the dialog.

3.4 Open and Service-Oriented Dialog Systems 91

An implementation of this idea can be found in (Şimşek and Fensel 2018a).
Table 3.2 shows an excerpt from an example dialog created based on an intent
generated from the action annotation in Table 3.1. First the action is processed and a
search intent for lodging reservation including its required parameters is created.
Then user’s request that already contains some of the required information for
booking a room is matched with this intent. After the missing input is elicited (i.e.,
occupancy), the search is done via the endpoint defined in the action. The action
returns hotel rooms with offers and potential buy actions attached to them. After user
selects an offer, the buy action on that offer is completed and reservation is shown to
the user.

The idea of extracting tasks for dialog systems from Semantic Web service
descriptions is mentioned in (González Bermúdez 2010). Another system that
aims to provide dialogical access to Semantic Web services is SmartWeb (Sonntag
et al. 2007), a dialog-based multimodal question-answering system. The dialog
system uses Semantic Web services described with OWL-S to find relevant web
services to invoke according to user’s request. However, the project deals with only
a small set of predefined and well-curated web services. Therefore, their invocation
can be hardcoded.

We utilize the schema.org vocabulary, especially the “actions” subset for describ-
ing Web APIs semantically (Şimşek et al. 2018b) (see Sect. 3.3.2). These APIs can
be consumed by a dialog system semi-automatically, after their functional (e.g.,
operation signatures), nonfunctional (e.g., invocation fee, publisher), and behavioral
(e.g., hypermedia links between resources) are mapped to schema.org.

3.4.3 Summary

Communicating with computers through natural language has been an interest of AI
researchers for more than half a century. Semantic technologies have contributed to
tackling various challenges of dialog system development, from natural language
understanding to dialog management and external communication. Additional to the
question answering over linked (open) data, Knowledge Graphs can be used to

Table 3.2 An excerpt from an example booking conversation based on the action in Table 3.1

User: I want a hotel room in Seefeld from 12.09.2019 to 14.09.2019

Bot: How many guests?

User: 2

Bot: Ok I have found following hotel rooms: 1. Double room, shower or bathtub, WC offered
by Alpenpark resort for 200 EUR per night. 2. Double room, shower or bath, toilet offered
by central Seefeld for 119 EUR per night. You can purchase an offer.

User: Ok I want number 2.

.

Bot: Done. Here is the reservation:

92 3 How to Use a Knowledge Graph

http://schema.org

improve mixed-initiative dialog systems, especially in goal-oriented settings. This
can be in terms of providing additional information regarding the topic of interest via
the links between entities in a Knowledge Graph, by providing context-aware
responses, or through dialogs that are driven by the semantically annotated services.

3.4 Open and Service-Oriented Dialog Systems 93

Chapter 4
Why We Need Knowledge Graphs:
Applications

Abstract No matter how well curated and high quality Knowledge Graphs we build
are, they are only as powerful as their applications. In this section we introduce
concrete real-world use cases where Knowledge Graphs power dialog-based access
to information and services. We do that by giving an overview of the existing chatbot
and voice assistant market first and then demonstrating their limitations. We explain
in which ways Knowledge Graphs can improve conversational interfaces with the
help of pilots from different domains such as tourism and energy.

4.1 Introduction

In the previous sections, we have introduced the scientific and theoretical founda-
tions of Knowledge Graphs, the lifecycle of Knowledge Graphs including a process
model, and all tasks needed to build and maintain Knowledge Graphs as well as a
Knowledge Access and Dialog-based Interface Layer to make usage out of it. This
section introduces some use cases and pilots for Knowledge Graphs as a means for
dialog-based access to information and services.

This section elaborates on the practical use of Knowledge Graph technologies to
support applications explicitly chatbots and voice assistants and how Knowledge
Graphs will unleash data for AI. The remainder of it is structured as follows.
Section 4.2 provides insights into the current state of the market for chatbots and
voice assistants looking at the current state/development of such solutions.
Section 4.3 identifies the limitation of chatbots and voice assistants and motivates
the need for a Knowledge Graph-based solution to improve dialog-based access to
information. Section 4.4 exemplifies with the help of several use cases how our
solution is deployed and used to power intelligent chatbots and voice assistant in
tourism. Section 4.5 presents two use cases in energy domain and Sect. 4.6 expands
to further verticals. Finally, we give a summary in Sect. 4.7.

© Springer Nature Switzerland AG 2020
D. Fensel et al., Knowledge Graphs, https://doi.org/10.1007/978-3-030-37439-6_4

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37439-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-37439-6_4

4.2 The Market

The Gartner1 hype cycle for emerging technologies (August 2018) show both
Knowledge Graphs and conversational Artificial Intelligence in the innovation
trigger. MarketsandMarkets2 forecasts the global conversational AI market size to
grow from USD 4.2 billion in 2019 to USD 15.7 billion by 2024, at a compound
annual growth rate (CAGR) of 30% during the forecast period (2019–2024). The
major growth drivers for the market include the increasing demand for AI-powered
customer support services, omnichannel deployment, and reduced chatbot develop-
ment cost. As we describe in the following, Knowledge Graph technologies com-
plement Conversational Platforms to scale the automation of conversations of
chatbots and voice assistant at reduced costs. The growth for conversational AI is
due to the evolving usage of chatbots for content marketing activities such as digital
marketing and advertising. The technological capabilities, individuality, and cus-
tomization are the main features accelerating market growth. With chatbots there to
assist, interact, and engage with customers, they offer personalized marketing
capabilities.3

The 2018 State of Chatbots report shows that only 43% of consumers said they
would prefer to communicate with a human. Approximately 34% said they would
use a bot to connect with a human employee. Thus, the willingness to use bots is
there, and a combination of the two options is conceivable.4 Consumers would prefer
a voice assistant to a website or app because it is more convenient (52%); it allows
them to multitask and do things without using their hands (48%); and it helps them to
make recurring purchases (41%).5 Artificial intelligence-based voice assistance
(AI-voice) will soon be a primary user interface for all digital devices—including
smartphones, smart speakers, personal computers, automobiles, and home appli-
ances. As of mid-January 2019, more than 1 billion devices worldwide were
equipped with Google’s AI-voice assistant,6 and another hundred million devices
spoke with Amazon’s Alexa—and neither number accounts for the devices equipped
with voice assistants from Apple, Microsoft, Samsung, or across the digital worlds of
China and Asia. Juniper Research7 forecasts the global market for voice assistants to

1https://gartner.com
2https://www.marketsandmarkets.com/Market-Reports/conversational-ai-market-49043506.html?
gclid¼CjwKCAjw5pPnBRBJEiwAULZKvu4Zj7wnERAAayhuZwFzcO8fquxkACCvSlAbxD8
m4tD4_BKSJAIjUhoCCmkQAvD_BwE
3https://www.sdcexec.com/software-technology/news/21011880/chatbot-market-to-grow-at-31-
percent-cagr-from-2018-to-2024
4https://www.drift.com/wp-content/uploads/2018/01/2018-state-of-chatbots-report.pdf
5https://www.capgemini.com/consulting/wp-content/uploads/sites/30/2018/01/conversational_
commerce_research_report.pdf
6https://voicebot.ai/2019/01/07/google-assistant-to-be-available-on-1-billion-devices-this-month-
10x-more-than-alexa/
7https://www.juniperresearch.com/press/press-releases/digital-voice-assistants-in-use-to-triple

96 4 Why We Need Knowledge Graphs: Applications

https://gartner.com
https://www.marketsandmarkets.com/Market-Reports/conversational-ai-market-49043506.html?gclid=CjwKCAjw5pPnBRBJEiwAULZKvu4Zj7wnERAAayhuZwFzcO8fquxkACCvSlAbxD8m4tD4_BKSJAIjUhoCCmkQAvD_BwE
https://www.marketsandmarkets.com/Market-Reports/conversational-ai-market-49043506.html?gclid=CjwKCAjw5pPnBRBJEiwAULZKvu4Zj7wnERAAayhuZwFzcO8fquxkACCvSlAbxD8m4tD4_BKSJAIjUhoCCmkQAvD_BwE
https://www.marketsandmarkets.com/Market-Reports/conversational-ai-market-49043506.html?gclid=CjwKCAjw5pPnBRBJEiwAULZKvu4Zj7wnERAAayhuZwFzcO8fquxkACCvSlAbxD8m4tD4_BKSJAIjUhoCCmkQAvD_BwE
https://www.marketsandmarkets.com/Market-Reports/conversational-ai-market-49043506.html?gclid=CjwKCAjw5pPnBRBJEiwAULZKvu4Zj7wnERAAayhuZwFzcO8fquxkACCvSlAbxD8m4tD4_BKSJAIjUhoCCmkQAvD_BwE
https://www.sdcexec.com/software-technology/news/21011880/chatbot-market-to-grow-at-31-percent-cagr-from-2018-to-2024
https://www.sdcexec.com/software-technology/news/21011880/chatbot-market-to-grow-at-31-percent-cagr-from-2018-to-2024
https://www.drift.com/wp-content/uploads/2018/01/2018-state-of-chatbots-report.pdf
https://www.capgemini.com/consulting/wp-content/uploads/sites/30/2018/01/conversational_commerce_research_report.pdf
https://www.capgemini.com/consulting/wp-content/uploads/sites/30/2018/01/conversational_commerce_research_report.pdf
https://voicebot.ai/2019/01/07/google-assistant-to-be-available-on-1-billion-devices-this-month-10x-more-than-alexa/
https://voicebot.ai/2019/01/07/google-assistant-to-be-available-on-1-billion-devices-this-month-10x-more-than-alexa/
https://www.juniperresearch.com/press/press-releases/digital-voice-assistants-in-use-to-triple

grow at a 25% CAGR over the next 5 years, with 8 billion active voice assistants
(across all platforms and devices) by 2023. The 2019 CES Show—the world’s
leading exhibition of the digital future—was filled with AI-voice interfaces that
ranged from the connected home to the connected car.

4.3 Motivation and Solution

Voice to text understanding has recently achieved very high accuracy and continues
to improve. Nevertheless, current use cases of a chatbot and voice assistant still focus
on simple question and answer solutions. A dialog with an Amazon Echo or Google
Home quite often ends in “Sorry, I do not know,” due to the lack of domain-specific
knowledge these devices have. The reason for this is that natural language solutions
of such devices lack knowledge of entities, e.g., Restaurant and Roast Pork, as
demonstrated in the example in Fig. 4.1 and therefore cannot resolve the goals of the
questions.

To support the chatbot and voice assistant type of scenarios introduced before, we
need to design, implement, and deploy a knowledge-centered solution that will
enable conversational interfaces to engage in human-like dialogs. Figure 4.2 depicts
the internal process of such a solution for chatbots and voice assistants [also compare
Singh et al. (2018)].

At first, the natural language input of a user, in written or spoken form, undergoes
a natural language understanding step (understand 1), in which the user intent,
together with parameters, are identified. The intent needs then to be resolved to an
action that typically translates in a set of queries (map 2) that can then be executed

Fig. 4.1 Typical dialog with current chatbots and voice assistants

4.3 Motivation and Solution 97

(query 3) against large volumes of heterogeneous, distributed, dynamic, and poten-
tially (i.e., nearly for sure) inconsistent statements in order to identify the relevant
knowledge parts needed to generate the user answer in natural language (NLG—
natural language generation 4) as text or voice; see also Höffner et al. (2017), Marx
et al. (2015), and Zafar et al. (2018).

Each step of the process described above typically requires much manual work.
For example, setting up the natural language understanding modules in current
chatbots and voice assistants requires the intents to be designed by a human dialog
manager. He/she would also need to provide example questions, also known as
utterances, identify the parameters, and mark them in the utterances. The same is true
for the other steps, from mapping the intents and parameters to query, to defining
user’s answers. In this context, the overall challenge is how to bring as much
automation as possible in the process described above. The critical point is that
knowledge and the usage of knowledge is the only way to address these challenges,
to automatize the internal process of chatbots and voice assistants in order to deliver
meaningful dialogs going beyond the current state of the art of conversational
systems.

In this section, we introduce Onlim,8 a knowledge-centered solution for conver-
sational interfaces that follows the generic process introduced before. We show how
such a knowledge-centered solution can be technically built, what the required

Fig. 4.2 The inner process of a knowledge-centered chatbots and voice assistants (Heuristic
classification (Clancey 1985) slightly “messed” up)

8https://www.onlim.com/

98 4 Why We Need Knowledge Graphs: Applications

https://www.onlim.com/

building blocks are, and how they fit together. Figure 4.3 shows the two main
building blocks, i.e., the Conversational Platform and the Knowledge Graph
Platform.

The Conversational Platform is the place supporting the full lifecycle of chatbots
and voice assistants, including but not limited to setup and management. This
platform enables easy deployment of the conversational agent on a multitude of
channels, from Facebook Messenger, chatbot widget that can be integrated on the
website, to voice channels such as Alexa and Google Assistant on phone interfaces.
The Conversational Platform includes conversational modules and templates needed
to generate answers, as well as to manage conversations and perform analytics on
conversational data. A strong feature of the Conversational Platform is the possibil-
ity to integrate external data and service, as well as to plug in content and data for
conversations.

This Conversational Platform is powered by the knowledge available in the
Knowledge Graph Platform. This second platform relies on the following blocks:
Semantics, Knowledge Graphs, Algorithms, and Applications.

Semantics is at the backbone of this solution, enabling the capturing of the
meaning of data as well as of the customer’s domain information. Furthermore,
semantics enables the smart matchmaking between customer requests in natural
language and appropriate answers related to the channel. To realize the unified
semantic representation of the customer’s domain information, we use semantic
technologies to capture industry-specific information about the customer in the form
of a domain model. We use these models specific for each domain or industry sector
that defines the information or knowledge items. We based our models on schema.

Fig. 4.3 The internal process of a knowledge-centered chatbots and voice assistants

4.3 Motivation and Solution 99

org. We support various schemas, define a unifying schema, and map other schemas
into it. As our models are already based on schema.org, we use schema.org as
unifying schema and extend it with additional types and properties to fit our needs.9

A Knowledge Graph is a self-descriptive knowledge base where data and its
schema are stored in a graph format, and the relations/connections between data are
first-class citizens. This data representation allows for flexible data modeling and
reducing the data integration complexity (e.g., by merely creating new links between
data sources). It also allows us to apply a broad set of applications and algorithms. In
order to get knowledge in our Knowledge Graphs, we follow the knowledge creation
methods described in Sect. 2.2, taking as input a variety of data sources. We have
implemented a software solution that retrieves data from multiple content sources in
various formats, e.g., XML, CSV, and JSON, via APIs, in a pull or push approach,
and generates semantic annotations according to a unified semantic representation
based on schema.org and extensions. Conceptual mappings are created between the
various schemas and our internal schema. Previous work is done in the field of
Ontology mapping, and Ontology alignment is used as a foundation for our solution
(cf. Studer et al. 1998; Staab and Studer 2010). Mappings require a mapping
language to specify the conceptual mappings and a mapping engine to execute the
mappings between the schemas (cf. Şimşek et al. (2019a) and Sect. 2.2.3.3).

Algorithms that run on top of Knowledge Graphs include inference, recommen-
dations, machine learning, and text understanding, to name a few. Given the
semantic representation of entities and relationships between them that are
represented as part of the Knowledge Graph, inference algorithms, of various
complexity, e.g., rule-based reasoning, OWL/RDFS reasoning, or combinations of
these approaches, can be used to infer knowledge and enrich the Knowledge Graph.
This increases the knowledge by creating and inferring new relations (e.g., identi-
fying hotels, which also have a restaurant by mapping via the location). Another
class of algorithms that can be applied on top of Knowledge Graphs are recommen-
dations algorithms. We use the structure and semantics of data to generate knowl-
edge for chatbots and voice assistants in the form of entities and actions and combine
this with personalization. Profile information extracted from various sources (e.g.,
Facebook profiles or CRM systems) is represented as rules and used to identify the
relevant content and send it in a personalized form to a user. This leads to more
relevant content, additional interesting facts, in the short term better recommenda-
tions for a user and better results for content providers, as well as, over time, smarter
chatbot systems. Finally, the Knowledge Graphs structure can be used to power text
understanding and machine learning algorithms. Here we use the Knowledge Graphs
to provide training data for the Natural Language Understanding service (e.g.,
Dialogflow10). We can automatically derive from the Knowledge Graph training
data for entity recognition (e.g., Telfs is a village) and provide (semi-)automatically
generated intents and example questions. Dialogs refer to template or rule-based

9https://schema-tourism.sti2.org/
10https://dialogflow.com/

100 4 Why We Need Knowledge Graphs: Applications

http://schema.org
http://schema.org
https://doi.org/10.1007/978-3-030-37439-6_2
https://doi.org/10.1007/978-3-030-37439-6_2
https://schema-tourism.sti2.org/
https://dialogflow.com/

descriptions how the chatbot interacts with the user to provide context-dependent
answers (e.g., prices based on the profile of the user), the invocation of actions
(booking of a hotel with follow-up questions), or a combination of both (e.g., which
outdoor events happen on the weekend if the weather permits).

Applications, more precisely chatbots and voice assistants, are fed with knowl-
edge from the Knowledge Graph in order to better answer human users’ natural
language queries and engage in meaningful dialogs with them.

Let us revisit our example in Fig. 4.1 and see how Knowledge Graphs can enable
chatbots and voice assistants to understand the goal the human users expressed in
natural language requests. Figure 4.4 illustrates the different steps of the process,
from understanding the user request to generating and executing the query against
the Knowledge Graph, to generating the answer for the user. With a touristic
Knowledge Graph in place that includes touristic entities such as restaurants, offers
of these restaurants (e.g., roast pork), as well as actions related to these entities that
can be performed (e.g., booking a table), intents and parameters can be derived. For
example, an intent TableReservation for entities of type Restaurant can be generated.
Restaurants and, in general, organizations can be connected in the Knowledge
Graphs to other entities of type Offer (e.g., Roast Pork offers).

Further, the Knowledge Graph can be used to improve the understanding of the
NLU by pushing entities from the Knowledge Graph (e.g., Hofbräu Bierhaus NYC)
to the NLU or by generating example questions for the intents. The Knowledge
Graph can also be used to generate the rules that restrict the view/access to the
Knowledge Graph depending on the use cases. Such rules, together with the intent
and parameters extracted by the NLU, are used to generate the queries to be executed
against the Knowledge Graph. Last but not least, the Knowledge Graph can be used
to generate templates for the answers, textual answers, or follow-up questions to run
the dialogs.

4.4 Touristic Use Cases

Here we introduce use cases for Knowledge Graphs as a means for dialog-based
access to information and services in the tourism area, namely, touristic chatbots and
voice assistants that are using Knowledge Graphs to achieve a better understanding
of natural language dialogs.11 We look at different application scenarios and
describe requirements that must be fulfilled with the help of Knowledge Graph
technology.

Chatbots and voice assistants have started to play an increasing role in customer
communication for many businesses in various verticals. Especially in tourism, they
are proving more and more benefits in terms of convenience, availability, and fast

11Note that tourism is one of the most important economical verticals on a worldwide scale,
accounting for around 10% of the global GDP and total employment in 2017 (WTTC 2018).

4.4 Touristic Use Cases 101

access to information and customer support through the entire customer journey.12 In
the dreaming and planning phase, hotels and Destination Management

Fig. 4.4 Using Knowledge Graphs to make chatbots and voice assistants (e.g., Alexa) smarter

12https://tourismeschool.com/customer-journey-mapping-tourism-brands/

102 4 Why We Need Knowledge Graphs: Applications

https://tourismeschool.com/customer-journey-mapping-tourism-brands/

Organizations (DMOs) can provide information through chatbots and voice assis-
tants about the hotel and the region, the surroundings, and weather conditions to
potential guests. In the booking phase, from booking the hotel and transport to
buying connected services, e.g., ski tickets, all becomes much simpler and efficient
by using natural language. Finally, in the experiences phase, chatbots and voice
assistants can also announce special offers or events. All requested information and
processes are available 24/7/365 and instantly. For hotels guests, in particular, the
stay experience can be enriched by providing them access to hotel services and
beyond. Recently Amazon launched a program for hotel operators13 that allows
guests to request room service, ask for housekeeping, configure the temperature and
lights in the hotel room, set wake-up calls, and even connect their accounts to listen
to their music and audiobooks.

Finally, customer support questions regarding rooms, equipment, additional
services, and more are answered in a fully automated way. One can argue that
similar functionalities are available in mobile apps, but the major drawback of
these apps is that each of them is focusing on different aspects, and one needs
some time to learn how each app is working. Chatbots and voice assistants provide
more straightforward means to access the same functionalities by using the most
natural way for humans to interact, i.e., natural language (as voice or written text).

Touristic chatbots and voice assistants are thus expected to answer questions of
different nature from “What is the most popular attraction in the city?”, “What events
are happening the coming weekend?”, “What is the snow height?” to “Book me a
table tonight for 2 persons in a Tyrolean restaurant,” “I am looking for a bike ride
that is difficult and offers huts on the way,” and so forth. To correctly answer all
these types of questions and perform tasks such as booking, chatbots and voice
assistants need machine-processable (semantic) annotations of content, data, and
services. They need structures that encode the knowledge about the tourism domain,
in terms of entities and relations between them, in a machine-processable form.
Knowledge Graphs are such structure providing the technical means to integrate
various heterogeneous touristic information sources, for instance, about accommo-
dations, points of interests (POI),14 events, and sports activity locations. With the
help of Knowledge Graphs, not only simple question-answering tasks can be
supported but rather complex conversations/dialogs.

Applying the principles, methods, and tools introduced in the previous sections,
we have built a Knowledge Graph for Tourism that integrates multiple sources of
content, data, and services from various providers:

13https://techcrunch.com/2018/06/19/amazon-launches-an-alexa-system-for-hotels/
14A very interesting approach for POI data integration in open, heterogeneous, and distributed data
sources is described in Athanasiou et al. (2019a). The approach described here is more focusing on
proprietary data sources, but certain aspects of this technological approach can also be reused in
such a more simple setting.

4.4 Touristic Use Cases 103

https://techcrunch.com/2018/06/19/amazon-launches-an-alexa-system-for-hotels/

• Closed sources: feratel,15 General Solutions,16 intermaps,17 Outdooractive,18 and
Verkehrsauskunft Österreich19

• Open sources: DBpedia,20 GeoNames,21 OpenStreetMap,22 and Wikidata23

The resulting touristic Knowledge Graph powers several chatbots and voice
assistants of touristic regions in Tyrol, Austria. The Seefeld pilot24 focuses on
integrating only closed data sources, namely, from feratel, General Solutions,
Intermaps, and Outdooractive. The use case is for the Olympiaregion Seefeld. For
this use case, we also focus on question answering for more advanced (compound)
questions. For instance, “Where can I have a traditional Tyrolean food when going
cross country skiing?” (see Fig. 4.5).

The Serfaus-Fiss-Ladis tourist region envisions that users can not only chat about
the specific tourism data but also inquire on common knowledge about the region.
The conversational interface can handle questions that are combining the closed and
open datasets. For instance, “How many inhabitants does Serfaus have?” or “Traffic
information from Serfaus to Via Claudia Augusta?” (see Fig. 4.6).

Common to all these pilots and use cases is the need to integrate data from
multiple heterogeneous static and dynamic sources for which we need to track
provenance (e.g., data owner, temporal validity, or the integration process) and
maintain one shared evolving schema. Using knowledge cleaning and enrichment,
we also ensured a certain level of quality of the touristic knowledge. The ultimate
aim is to optimize conversational interfaces based on Knowledge Graphs by provid-
ing a rich intent and entity management (e.g., automated NLU training), question
answering over the Knowledge Graph, and supporting advanced dialogs such as
guiding a user through actions or recommendations or follow-up conversations.

In detail, this requires:

1. Integration of data from multiple sources: Common to all use cases and pilots is
that data from different sources need to be combined and integrated into one
coherent data model. Also, new data sources will be added in the future.
Representing the information (facts and relationships between facts) in the form
of one large Knowledge Graph seems natural and provides the necessary flexi-
bility to integrate new data sources and enrich existing information with new
relationships. This also requires creating and maintaining one large data schema

15http://www.feratel.at/en/
16https://general-solutions.eu/
17https://www.intermaps.com/en/
18https://www.outdooractive.com/
19https://verkehrsauskunft.at/
20https://wiki.dbpedia.org/
21https://www.geonames.org/
22https://www.openstreetmap.org
23https://www.wikidata.org/
24https://www.seefeld.com/en/

104 4 Why We Need Knowledge Graphs: Applications

http://www.feratel.at/en/
https://general-solutions.eu/
https://www.intermaps.com/en/
https://www.outdooractive.com/
https://verkehrsauskunft.at/
https://wiki.dbpedia.org/
https://www.geonames.org/
https://www.openstreetmap.org
https://www.wikidata.org/
https://www.seefeld.com/en/

for existing and new sources and verify that the schema and data are consistent
and that the imported data adheres to our schema.

2. Static and dynamic information: The data sources can provide static information
(e.g., geolocations, names, categories) but also dynamic information (e.g., the
current weather, snow level, open ski lifts, hotel rates, or transport information).
Therefore, our solution must handle and represent such dynamic information, by
combining updates in the Knowledge Graph and by specifying services to derive
the current and most up-to-date information.

3. Represent facts and available services/actions: The Knowledge Graph needs to
contain not only facts but also the description of actions and services (active data).
For instance, given the hotel domain, we do not only need to represent and search
over hotel information but also describe the actions related to hotels, such as

Fig. 4.5 Seefeld pilot

4.4 Touristic Use Cases 105

booking a hotel room or additional services offered by the hotel. The service
descriptions should contain not only the service type but also all information
which allows invoking such a service. This includes the description of the service
protocol, required and optional parameters, and the response information.

4. Clean and enrich existing knowledge: The Knowledge Graph must further be
cleaned and enriched. The cleaning steps typically contain the handling of
duplicate information, entity resolution, or linking and checking for introduced
inconsistencies (e.g., different sets of opening hours for the same hotel). The next
step is to further enrich this knowledge by creating new relations between entities.
First, this is done to add missing links (e.g., adding a booking service to a hotel or
geolocation information to an address) and second, to connect entities with

Fig. 4.6 Serfaus-Fiss-Ladis pilot

106 4 Why We Need Knowledge Graphs: Applications

additional and new links (e.g., adding an inWalkingDistance link between hotels
and restaurants based on some predefined measures).

5. Track provenance of data sources. One important aspect is to track and represent
provenance information of the original data sources in the resulting Knowledge
Graph. The provenance information has to include the data provider, temporal
information (e.g., data validity), and applied mappings. Often use cases require
that only parts of the overall data sources are used. This requires that we use the
provenance information and restrict the query access to the Knowledge Graph for
a conversation.

6. Support and drive conversations. The Knowledge Graph is used to support and
guide conversations/dialogs. The first step is to extract facts from the Knowledge
Graph and train an NLU engine (e.g., DialogFlow) to understand the user input
(entities and intend) in dialogs. The second step is to query the Knowledge Graph
to derive the requested user information (e.g., “List all hotels in Seefeld” or “How
the weather is on the weekend in Seefeld?”). The Knowledge Graph is also used
to guide and drive conversations, e.g., guide the user through a booking process,
provide recommendations, or suggest follow-up actions (e.g., booking a hotel
room after the user booked an event).

7. Focus on specific conversational aspects. Another use case-specific requirement
is to focus on a particular aspect or feature for the conversational interfaces. This
might be the ability to guide a user through an action by asking for missing
required or optional parameters until the action can be completed or providing
recommendations or further suggestions.

The pilots that we have introduced in this section have been implemented and
used to test and validate the usage of Knowledge Graphs to enable a better under-
standing of natural language dialogs and knowledge access for touristic chatbots and
voice assistants.

4.5 Energy Use Cases

In the energy domain, chatbots and Intelligent Personal Assistants powered by
Knowledge Graphs are engaging in full conversations with customers of energy
companies on various topics related to their products and services. More precisely,
the formal knowledge about energy products, tariffs, locations, and services modeled
in the Knowledge Graphs is used to extend and enhance the language understanding
of Chatbots and Intelligent Personal Assistants. To validate and test our approach in
the domain, we are developing several pilots for the largest energy and utility
providers in Austria and its regions, such as Wien Energie, Energienetze Steiermark,
and Wiener Netze. In the remainder of this section, we are describing the Wien
Energie and Energienetze Steiermark pilots.

4.5 Energy Use Cases 107

The Wien Energie25 pilot is focusing on building and using a Knowledge Graph
that captures knowledge about the various products and service variants provided by
Wien Energie. Wien Energie has already a chatbot solution in place, developed by us
as well, and branded as BotTina, which is available both on Facebook Messenger as
well as chatbot widget integrated into the Wien Energie website. By using Knowl-
edge Graphs, we were able to better structure the inner mechanics of the chatbot,
reduce the number of intents, and above all improve the quality of the dialogs.

The Wien Energie Knowledge Graph includes information about the electric
vehicle charging stations also called EV charging stations in the city of Vienna.
To model EV charging stations, we extended the schema.org vocabulary with
additional types and properties. Using our extension, it is possible to model infor-
mation such as the different types of plugs available at an EV charging station, its
voltage and power, its address and geo-coordinates, as well as accepted payment
methods. We are currently aligning our model with other approaches in the area, e.g.,
MobiVoc—Open Mobility Vocabulary.26

The Knowledge Graph is populated with data received from Wien Energie EV
charging station API. The same data is accessible via the online portal Tanke-
WienEnergie.27 The data is then lifted to a semantic representation according to
the extended schema.org model we developed and then pushed in the Wien Energie
Knowledge Graph. We consider not only static data but dynamic data as well. For
example, the number of available plugs, waiting times, and offers is also included in
the Knowledge Graph. Using the Knowledge Graph, the chatbot can answer ques-
tions such as: “Are there any 11KW Type 2 charging stations around the main
station?” or “How many type 2 plugs are available now?” (see Fig. 4.7).

The Wien Energie Knowledge Graph includes also information about the differ-
ent energy sources that Wien Energie uses to supply its customer. We cover
renewable and nonrenewable energy sources from biogas, wind, solar, and hydro
energy. Wien Energie offers several products based on such energy sources. All
these products, offers, and energy sources are modeled and included in the Wien
Energie Knowledge Graph. Using this part of the Knowledge Graph, the Wien
Energie chatbot is able to answer complex questions, for instance, “Which tariffs
are based on renewable energy sources?” or “Which Gas tariffs have a price
guarantee?”

The Energienetze Steiermark28 pilot is focusing on building and using a Knowl-
edge Graph that captures knowledge about the various products and services pro-
vided by the Energienetze Steiermark. It is an Austrian energy and utility supply
company. It operates in the fields of electricity, gas, and heat throughout Austria with
a focus on the Austrian state of Styria. As in the case of Wien Energie, Energienetze
Steiermark has already a chatbot solution in place. Branded as “Herr Ewald,” the

25https://www.wienenergie.at
26http://schema.mobivoc.org/
27https://www.tanke-wienenergie.at/
28https://www.e-netze.at/

108 4 Why We Need Knowledge Graphs: Applications

https://www.wienenergie.at
http://schema.mobivoc.org/
https://www.tanke-wienenergie.at/
https://www.e-netze.at/

chatbot is available on the Energienetze Steiermark website. The focus of this pilot is
to model and integrate knowledge about products, energy sources, services, offers,
and partners of Energienetze Steiermark and make this knowledge available to
power an enhanced version of Herr Ewald chatbot. Figure 4.8 provides an overview
of the top-level types introduced to model the domain of Energienetze Steiermark.

A significant part of the Energienetze Steiermark Knowledge Graph includes
information about their various products and services. Gas-based heaters, boilers,
hot water pumps, and high-, medium-, and low-voltage power networks are just few
of the products provided by Energienetze Steiermark and modeled in their Knowl-
edge Graph.

Using the Knowledge Graph, the enhanced version of the chatbot can answer
questions such as “Where is the next Bösch partner company?” or “Is there a partner
company for Bösch in Leibnitz?”

Fig. 4.7 WienEnergie pilot—chatbot answers based on EV charging stations modeled in the
Knowledge Graph

4.5 Energy Use Cases 109

4.6 Further Verticals

The methods and tools for constructing, implementing, and curating Knowledge
Graphs described in our book are applicable in a multitude of domains and for
various use cases where humans interact with chatbots and Intelligent Personal
Assistants through conversational interfaces. In all these use cases, information
needs to be extracted from various heterogeneous data sources, brought as knowl-
edge in a machine processable form, reconciled, integrated, and then made accessi-
ble through conversational interfaces.

In the education domain, institutions such as schools and universities can use
Knowledge Graphs to model information about their study programs, the different
subjects they teach, and the educational and connected services they offer such as
library access and printing. Furthermore, FAQs information can be modeled and
integrated, which are then used to power the educational Chatbots and Intelligent
Personal Assistants. To validate and test our approach in the educational domain, we
are currently developing two pilots, namely:

• The University of Innsbruck pilot is focusing on constructing a Knowledge Graph
about study programs offered by the University of Innsbruck. The Knowledge
Graph is used to improve conversations related to the different study programs,
subjects, and examinations. Based on the entities and relations modeled in the
Knowledge Graph, dynamic intents are created to query the content from the
Knowledge Graph and answer questions such as “Which study programs are

Fig. 4.8 Energienetze Steiermark domain model top-level types

110 4 Why We Need Knowledge Graphs: Applications

offered by the Faculty of Biology?” or “How many semesters do I need to study
for the Master’s Programme Business Law?”

• The University of Vienna (UniWien) pilot has a focus on modeling and integrating
internal data sources as well as educational and connected services, such as
printing, scanning, charging, and ordering and the usage of terminals. Another
main topic is the university cards and their usage for accessing services. The
Knowledge Graph is also used to better structure the existing University of
Vienna FAQs for different roles, i.e., students, university employees, and external
users. The UniWien Chatbot supports question such as “Which services can I use
with my ucard?” or “What are the printing costs for a student?”

In the finance domain, we develop the Wiener Börse pilot, which focuses on
modeling knowledge about companies, equities, bonds, and indexes available on the
Vienna Stock Exchange.29 In particular, this pilot is accessing data in real time.
High-frequency data are essential to enable the chatbot and Intelligent Personal
Assistant to provide accurate, up-to-date information. The chatbot answers questions
such as “What is the stock price of X?” and “Which stocks have lost the most?”

Finally, retail is another domain where chatbots and Intelligent Personal Assis-
tants based on Knowledge Graphs will radically change the e-marketing and e-com-
merce processes. By using natural language, in written or spoken form, customers
will be able to search for products that fit their needs and then may buy these
products, by directly engaging in natural dialogs with the retail chatbots and
Intelligent Personal Assistants. The Wortmann pilot, with a focus on dialog-based
access to clothing and footwear products, models and integrates information about
product catalogs, product stocks, shops, and connected services into a retail Knowl-
edge Graph for Wortmann Schuh Holding KG.30 The Knowledge Graph improves
the conversations of the existing Wortmann chatbot. More precisely, it is supporting
the Wortmann chatbot by answering more complex questions about Wortmann
products or e-commerce processes.

4.7 Summary

As evident from the market data regarding conversational AI, chatbots and Intelli-
gent Personal Assistants are on the way to become the main interface for accessing
information. However, without knowledge, the capabilities of these conversational
agents are limited. In this section, we introduced Onlim, a knowledge-based con-
versational AI solution. We explained from which aspects Knowledge Graphs can
improve conversational interfaces and presented several real-world applications. Our

29https://www.wienerborse.at/en/ which is one of the oldest and most established exchange in
Central, Eastern, and Southeastern Europe.
30https://www.wortmann-group.com/de/home, a leading shoe and clothes production and distribu-
tion company in Europe.

4.7 Summary 111

https://www.wienerborse.at/en/
https://www.wortmann-group.com/de/home

use cases presented examples from tourism and energy verticals, as well as indica-
tions of how our solution can expand to further verticals such as education, finance,
and retail. The pilots cover different domains and require methods and tools to cope
with a variety of data models, volumes, and velocities integrated into Knowledge
Graphs. They provide foundations to validate construction, integration, manage-
ment, curation, access, and usage of Knowledge Graphs to power chatbots and
Intelligent Personal Assistants.

112 4 Why We Need Knowledge Graphs: Applications

Chapter 5
Conclusions

With this book, we are aiming to provide answers to three essential questions: what
are Knowledge Graphs, how are they built and accessed, and why are they impor-
tant? We elaborated on several possible definitions of Knowledge Graphs and
identified as core feature the extremely large amount of interlinked data they try to
turn into knowledge. This significantly exceeds any traditional AI approach. We
described in detail several approaches for constructing, hosting, curating, and
deploying Knowledge Graphs, and we showed their usage for dialog-based infor-
mation access that revolutionizes information access by humans. We described
applications in the areas of e-tourism and beyond.

A severe issue in understanding Knowledge Graphs is the answer to the question
of whether they are a new phenomenon or not. On the one hand, they are not.
Semantic networks arose in the 1960s of the last century as a means to connect
pieces of knowledge and founded the area of knowledge representation (Brachman
1990) and knowledge-based systems (Akerkar and Sajja 2010). On the other hand,
they are quite a new phenomenon, due to the fact that size and focus matters.
Traditional KR systems separated the factual and terminological knowledge from
each other and put the former in the ABox and the latter into the TBox. The focus
was on elaborating the TBox, and usually, the ABox was quite a small set of facts for
illustrating the approach. Actually this was, the usual sandbox approach of AI in the
1980s. Knowledge-based systems slightly improved the number of facts in the
knowledge base to tens of thousands and in the case of CYC, even to millions
(Lenat 1995). Still, the focus was complete, concise, consistent, and correct axioms
over these facts and millions look tiny compared with billions and soon trillions of
facts captured by an average-sized Knowledge Graph (see Fig. 5.1).

It is not only the size that turns things upside down. Rise in quantity often goes
along with changes in quality. With the size comes inherent heterogeneity of the data
which inherently makes axioms and constraints on top of them an unfeasible
business. Data from different contexts and sources do inherently reflect the different
point of views and easily—if not immediately—lead to contradictions when trying
to express their meaning by monolithic axioms and rules. Trying to resolve these

© Springer Nature Switzerland AG 2020
D. Fensel et al., Knowledge Graphs, https://doi.org/10.1007/978-3-030-37439-6_5

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37439-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-37439-6_5

inconsistences at the layer of the interwoven data is neither feasible nor scalable, nor
is it the conceptually right approach. Building up meaningful heterogeneous and
distributed, domain, and task-specific TBoxes on top of existing Knowledge Graphs
looks like a necessary and exciting way to go (e.g., see Töpper et al. 2012; Socher
et al. 2013; Galárraga et al. 2013; Galárraga et al. 2015; Paulheim 2018a). One could
call them micro TBoxes in reference to microtheories of CYC (Guha 1991), how-
ever, without the requirement that they are used as a structure for the (semantic) data
lake (see Fig. 5.2 and Sect. 3.3).

This layer of domain- and task-specific views is actually the place where
interlinked data are turned into knowledge. Building up this knowledge access
layer based on task-specific problem-solving brings into play a pile of work of the
Knowledge Acquisition Workshop Series in Banff, Alberta1 (see, e.g., Schreiber
et al. 1993; Eriksson et al. 1995; Fensel 2000) as a means to build Knowledge Graph
Systems (KGS). Modeling and engineering such artifacts call for a new area of
science on knowledge at scale that may be called (computational) Knowledge
Science2 with all its implication on existing educational curricula. It is also the
point where traditional AI techniques can come into the game. Large amounts of
facts can be enriched and compressed by the elegance of constraints, rules, or
axioms, given the specific view that is taken on these data.

Size

1015

1012

109

106

103

1980 2000 2020
Time

The Knowledge Bang

KGs

KB Systems

Axioms

Facts

KR Systems

TBox

ABox

Interlinked
data

Fig. 5.1 The inflationary growth of the Knowledge Universe

1http://ksi.cpsc.ucalgary.ca/KAW/
2Coined by Juan Sequeda, see http://www.juansequeda.com/blog/

114 5 Conclusions

https://doi.org/10.1007/978-3-030-37439-6_3
http://ksi.cpsc.ucalgary.ca/KAW/
http://www.juansequeda.com/blog/

In the future, we expect Knowledge Graphs soon to grow to trillions of facts and
beyond quickly. Just to mention the frillions of data that soon may be added by the
Internet of Things.3 This introduces harsh requirements on methods that can handle
them. Even in the optimistic case, Paulheim (2018b) estimates the related costs with
billions of dollars. Keeping scale without cost explosion by developing scalable
scientific and engineering methods and frameworks is an obvious requirement for
the success of the Knowledge Graph System adventure.

Fig. 5.2 Knowledge Graph System Architecture

3See the Internet of Things Series by Springer, https://www.springer.com/series/11636

5 Conclusions 115

https://www.springer.com/series/11636

Appendix

Here we provide syntax and semantics of our domain modeling formalism.

A.1 Abstract Syntax and Semantics of Domain Specifications

Domain specification is a process that generates domain-specific patterns by apply-
ing an operator to the schema.org vocabulary. Through such patterns, the generic
complexity of schema.org is reduced, and its domain specificness is increased.
Moreover, it can provide restrictions and constraints to the vocabulary in order to
make it suitable for a specific task. The generic complexity of schema.org comes
from its wide but shallow coverage of multiple domains and its flexible data model.
Domain specification process removes types and properties from the vocabulary and
extends it when needed to have a finer-grained coverage of specific domains. By
default, the schema.org data model supports properties with global ranges. Domain-
specific patterns apply the restrictions on ranges through local properties (i.e.,
property ranges are defined per domain) for properties. In this appendix, we intro-
duce three different types of domain specification processes. We propose an abstract
syntax based on the Shapes Constraint Language (SHACL) (Knublauch and
Kontokostas 2017) and the semantics for verification of annotations against
domain-specific patterns. This work is based on Şimşek et al. (2019b), where also
additional explanations and examples are provided.

© Springer Nature Switzerland AG 2020
D. Fensel et al., Knowledge Graphs, https://doi.org/10.1007/978-3-030-37439-6

117

http://schema.org
http://schema.org
http://schema.org
http://schema.org
https://doi.org/10.1007/978-3-030-37439-6

A.1.1 SHACL (As We Adopt)

SHACL is a recent W3C recommendation for defining constraints over RDF data.
The language does not have a normative abstract syntax nor a formal semantics.1 A
syntactically well-formed SHACL shape is ensured by a set of shapes that imple-
ment2 the SHACL Syntax Rules.3 For the domain specification language, we use a
subset of SHACL-CORE4 elements. In this section, we give a brief introduction to
the SHACL elements we adopt for the syntax of our language.

A shape is identified with an IRI or a blank node and fits at least one of the
following conditions:

1. A SHACL instance of sh:NodeShape or sh:PropertyShape
2. Subject of a triple that has sh:targetClass, sh:targetNode, sh:targetObjectsOf or

sh:targetSubjectsOf as predicate
3. Subject of a triple that has a parameter as a predicate
4. A value of a shape-expecting, non-list-taking parameter such as sh:node
5. A member of a SHACL list that is a value of a shape-expecting and list-taking

parameter such as sh:or

SHACL Core Vocabulary defines two different kinds of shapes, namely, node
shapes and property shapes. Node shapes target a set of nodes in an RDF data graph.
These targeted nodes are called focus nodes. Property shapes target the values of
specific properties of focus nodes. Target specifications select the focus nodes in an
RDF graph. There are several ways to select a set of focus nodes as the target in
SHACL; however, for domain specifications, we are only interested in class-based
targets.

A class-based target selects a set of nodes in an RDF graph that are instances of
the specified class as the value of the property sh:targetClass.

Shapes can define certain constraints on focus nodes and property values. Our
constraints are defined by constraint component instances attached to a shape with
parameters. In the domain specification language, we are only interested in a subset
of the constraint components, namely, value type (sh:class and sh:datatype), cardi-
nality (sh:minCount), shape-based (sh:node and sh:property), and logical constraint
components (sh:or).

A value type constraint component specifies a constraint on the range of a
property for a domain. For our domain specification language, we adopt the sh:
class and sh:datatype parameters in order to constrain the type of property value.

1See https://www.w3.org/TR/shacl-abstract-syntax/ for details and a link to a proposed abstract
syntax and semantics. Last accessed on 23.03.2019.
2https://www.w3.org/ns/shacl-shacl
3https://www.w3.org/TR/shacl/\#syntax-rules
4sh prefix is used for SHACL-Core namespace.

118 Appendix

http://www.w3.org/TR/shacl-abstract-syntax/
http://www.w3.org/ns/shacl-shacl
http://www.w3.org/TR/shacl///#syntax-rules

A cardinality constraint component defines a cardinality constraint on number of
values of a given property. We utilize the sh:minCount parameter for minimum
cardinality constraints.

A shape-based constraint component defines a constraint where the value nodes
need to conform to the specified shape. For our domain specification language, we
use property shape constraints with sh:property parameter to specify the remaining
properties on a type and node shape constraints with sh:node parameter to define
local ranges (typically a more restricted version of a type in the global range) for
properties of a type.

A logical constraint component implements common logical operators AND,
OR, NOT, and XOR on a list of shapes. For the domain specification language, we
adopt only the OR operator with sh:or parameter for specifying disjunction of value
type and node shape constraints.

A.1.2 Conceptual Description of Domain Specification

We define the following types of domain specifications:

• A Simple Domain Specification (SDS) generates a Simple Domain Specific
Pattern (SDSP) through removing types and properties from the schema.org
vocabulary.

• A Restriction Domain Specification (RDS) generates a Restricted Domain Spe-
cific Pattern (RDSP) by restricting the ranges of the remaining properties of the
remaining types in an SDSP.

• An Extension Domain Specification (EDS) generates an Extended Domain Spe-
cific Pattern (EDSP) by adding new types and properties to an SDSP or RDSP.

In the remainder of this section, we describe these domain specification types and
their relationship conceptually. Additionally, we give examples.

A.1.2.1 Simple Domain Specification (SDS)

The SDS generates an SDSP through following steps:

1. Remove types and properties from the schema.org vocabulary.
2. For a remaining type, define local properties from the remaining properties, as a

set of (type, property) pairs where property has type in its domain.
3. For each local property on a type, define a range as a set of ((type, property),

rangeType) where rangeType is one of the remaining types and in the range of
property.5

5As we may exclude some types and given the disjunctive nature of value ranges in schema.org this
may already imply a restriction of the range of a property as a side effect.

Appendix 119

http://schema.org
http://schema.org
http://schema.org

The following example (see Table A.1) is an SDS operator in SHACL syntax6

that defines local properties and ranges on schema:Hotel.7

A.1.2.2 Restriction Domain Specification

The RDS process deletes a type in the range of a property in an SDSP or replaces it
with a subtype and generates an RDSP. The example in Table A.2 is an RDS
operator in SHACL syntax that replaces the range of schema:location property on
schema:Hotel with a more restricted subtype of schema:PostalAddress.

A.1.2.3 Extension Domain Specification

An EDS process generates an extended domain-specific pattern by extending an
SDSP or an RDSP through:

• Adding new types and properties from an external vocabulary
• Defining new properties to an existing type from an external vocabulary
• Adding types from an external vocabulary to the ranges of properties on an

existing type

The example in Table A.3 shows an EDS operator in SHACL syntax. It adds a
new property, totalNumberOfBeds, to the type schema:Hotel from an external
extension of schema.org.

A.1.3 Abstract Syntax

The abstract syntax below specifies how the SHACL components are utilized to
define Simple Domain Specification (SDS), Restriction Domain Specification
(RDS), and Extension Domain Specification (EDS) operators. We describe the
abstract syntax for domain specifications with “EBNF for XML” notation.8 We
extend the notation with the [..] structure for describing special sequences in natural
language (e.g., [a valid URI]).

An SDS operator is a node shape that is identified with a URI or a blank node. An
SDS operator has a target type from the schema.org vocabulary and contains one or
more property shapes, each of which represents the definition of a local property on
the target schema.org type.

6The examples in SHACL syntax replace schema.org datatypes such as Text with XSD datatype
such as string for compatibility with existing Semantic Web stack.
7schema is the prefix for schema.org namespace.
8https://www.w3.org/TR/2004/REC-xml-20040204/#sec-notation

120 Appendix

http://schema.org
http://schema.org
http://schema.org
http://schema.org
http://schema.org
http://www.w3.org/TR/2004/REC-xml-20040204/#sec-notation

SDS ::¼ NodeShape, SDOTargetType, SDSPropertyShape+;
NodeShape ::¼ Identifier, NodeShapeType;
Identifier ::¼ [a URI] | [a BlankNode];
NodeShapeType ::¼ [URI of the SHACL NodeShape Type];
SDOTargetType ::¼ [a class-based target whose value is a URI of a schema.org

type];

A property shape in an SDS consists of a schema.org property and one or more
type specifications for the range of the property. It may also optionally contain a
cardinality constraint to specify whether a property is required. A property shape
may specify a range with multiple disjunct types.

Table A.1 An SDS operator in SHACL syntax

@prefix sh: <http://www.w3.org/ns/shacl#>.

@prefix schema: <http://schema.org/>.

@prefix ds-tourism: <https://ds.sti2.org/tourism/>.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

ds-tourism:Hotel a sh:NodeShape;

 sh:property [

 sh:path schema:name;

 sh:datatype xsd:string;

 sh:minCount 1;

];

 sh:property [

 sh:path schema:checkInTime;

 sh:datatype xsd:time;

 sh:minCount 1;

];

 sh:property [

 sh:path schema:checkOutTime;

 sh:datatype xsd:time;

 sh:minCount 1;

];

 sh:property [

 sh:path schema:location;

 sh:class schema:PostalAddress;

 sh:minCount 1;

].

Appendix 121

http://schema.org
http://schema.org

Table A.2 An RDS operator in SHACL syntax

@prefix sh: <http://www.w3.org/ns/shacl#>.
@prefix schema: <http://schema.org/>.
@prefix ds-tourism: <https://ds.sti2.org/tourism/>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

ds-tourism:Hotel a sh:NodeShape;

 sh:property [

 sh:path schema:name;

 sh:datatype xsd:string;

 sh:minCount 1;

];

 sh:property [

 sh:path schema:checkInTime;

 sh:datatype xsd:time;

 sh:minCount 1;

];

 sh:property [

 sh:path schema:checkOutTime;

 sh:datatype xsd:time;

 sh:minCount 1;

];

 sh:property [

 sh:path schema:location;

 sh:class schema:PostalAddress;

 sh:minCount 1;

 sh:node [

 a sh:NodeShape;

 sh:property [

 sh:path schema:addressCountry;

 sh:datatype xsd:string;

 sh:minCount 1;

(continued)

122 Appendix

SDSPropertyShape ::¼ SDOProperty, MinCount?, (ValueTypeConstraint+ |
SimpleDisjunctiveConstraint);

SDOProperty ::¼ [URI of a schema.org property];

A value type constraint enforces the type of a value. It requires the URI of a type
in schema.org vocabulary as the value of sh:class parameter or the URI of an XSD
datatype as the value of sh:datatype property.

ValueTypeConstraint ::¼ SimpleClassConstraint | DatatypeConstraint ;
SimpleClassConstraint ::¼ [A SHACL Class constraint with sh:class parameter

and a value t where t is a schema.org type that is more specific than schema:
Thing];

DatatypeConstraint ::¼ [A SHACL Datatype constraint with sh:datatype param-
eter and a value t where t is a schema.org datatype];

A cardinality constraint enforces the number of values a property can take. It
takes only the integer 1 as value for sh:minCount parameters to specify minimum
required value occurrences.

MinCount ::¼ [minimum cardinality constraint with sh:minCount 1];

A simple disjunctive constraint applies logical OR operation to a given list of
value type constraints.

SimpleDisjunctiveConstraint ::¼ [OR(ValueTypeConstraint+)] ;

An RDS is a SHACL node shape with a target type from the schema.org
vocabulary and one or more property shapes.

RDS ::¼ NodeShape, SDOTargetType, RDSPropertyShape+;

A property shape in an RDS extends a property shape in SDS with range
constraints.

Table A.2 (continued)

];

 sh:property [

 sh:path schema:addressLocality;

 sh:datatype xsd:string;

 sh:minCount 1;

];

]

].

Appendix 123

http://schema.org
http://schema.org
http://schema.org
http://schema.org
http://schema.org

Table A.3 An EDS operator in SHACL syntax

@prefix sh: <http://www.w3.org/ns/shacl#>.
@prefix schema: <http://schema.org/>.
@prefix ds-tourism: <https://ds.sti2.org/tourism/>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix schema-tourism: <https://schema-tourism.sti2.org/ns/>

ds-tourism:Hotel a sh:NodeShape;

 sh:property [

 sh:path schema:name;

 sh:datatype xsd:string;

 sh:minCount 1;

];

 sh:property [

 sh:path schema:checkInTime;

 sh:datatype xsd:time;

 sh:minCount 1;

];

 sh:property [

 sh:path schema:checkOutTime;

 sh:datatype xsd:time;

 sh:minCount 1;

];

 sh:property [

 sh:path schema-tourism:totalNumberOfBeds;

 sh:datatype xsd:positiveInteger;

];

 sh:property [

 sh:path schema:location;

 sh:class schema:PostalAddress;

 sh:minCount 1;

 sh:node [

(continued)

124 Appendix

RDSPropertyShape ::¼ SDOProperty, MinCount?, (ValueTypeConstraint |
RangeConstraint | DisjunctiveConstraint)+;

A range constraint consists of a value type constraint that declares a type in the
range and a node constraint that further constrains the specified type.

RangeConstraint ::¼ ValueTypeConstraint, NodeConstraint;
NodeConstraint ::¼ NodeShape, RDSPropertyShape+;

A disjunctive constraint extends a simple disjunctive constraint in an SDS by
applying logical OR operator on a list of value type constraints and range
restrictions.

DisjunctiveConstraint ::¼ [OR{(ValueTypeConstraint |RangeConstraint)+}] ;

An EDS operator extends an SDS or an RDS operators with types from an
external vocabulary.

EDS ::¼ NodeShape, (SDOTargetType | ExtTargetType), EDSPropertyShape+;
ExtTargetType ::¼ [URI of type t where t 2 Text];
EDSPropertyShape ::¼ (SDOProperty | ExtProperty), MinCount?,

(ExtValueTypeConstraint | ExtRangeConstraint |
ExtDisjunctiveConstraint)+;

Table A.3 (continued)

 a sh:NodeShape;

 sh:property [

 sh:path schema:addressCountry;

 sh:datatype xsd:string;

 sh:minCount 1;

];

 sh:property [

 sh:path schema:addressLocality;

 sh:datatype xsd:string;

 sh:minCount 1;

];

]

].

Appendix 125

ExtProperty ::¼ [URI of property p where p 2 Pext];
ExtValueTypeConstraint ::¼ SimpleClassConstraint | ExtClassConstraint |

DatatypeConstraint; ExtClassConstraint ::¼ [A SHACL Class constraint
with a value t is a type from an external vocabulary];

ExtRangeConstraint ::¼ ExtValueTypeConstraint, ExtNodeConstraint;
ExtNodeConstraint ::¼ NodeShape, EDSPropertyShape+;
ExtDisjunctiveConstraint ::¼ [OR{(ExtValueTypeConstraint | ExtRan

geConstraint)+}]

In SHACL syntax, an EDS operator can be seen as an SDS and RDS operator
with types or properties from a namespace other than schema.org. There are no
syntactic extensions for SHACL needed to define these operators. Therefore, a
domain specification operator is also a valid SHACL shape and can be used by
existing SHACL tools.

A.1.4 Semantics

An annotation can be verified against a domain-specific pattern that is generated by a
domain specification operator. The verification is done by checking an annotation
against the constraints defined by a domain specification operator. We define two
predicates, namely, applies and verifies, in order to explain the semantics of domain-
specific patterns and annotation verification.9

A domain-specific pattern applies to an annotation when the target type of the
domain specification operator that produces the pattern is the same type as the root
type of the annotation.

• dso is a domain specification operator that generates a domain-specific pattern.
anno is an annotation that is a directed graph with exactly one source node
(sn) that has no incoming edges. An annotation consists of a source node (sn),
other nodes (n1. . .ni) that are reachable through at least one path from the source
node, and labeled edges e1. . .ei. The nodes represent instances of types from
schema.org or an extension of schema.org. The edges are properties from schema.
org or an extension of schema.org. For any directed edge (e) in anno, e.from
represents the source node while e.to represents the target node.

Formally, applies (dso, anno) holds true when:

• isElementOf (sn, t) holds true where t is the value of SDOTargetType in dso

9The semantics is described with SDS and RDS operator components from the abstract syntax.
Replacing them with EDS operator components is rather trivial.

126 Appendix

http://schema.org
http://schema.org
http://schema.org
http://schema.org
http://schema.org
http://schema.org

An annotation is verified, when it conforms to a domain specification operator
that applies to it. For anno and dso pair that make applies (dso, anno) true, the
predicate verifies (dso, anno) holds true, iff:

• Given that oe in anno is a directed edge from sn to n, for each oe, there exists a
property shape (ps) in dso and satisfies (oe, ps) holds true.

• There exists at least one oe, for each ps with a MinCount.

satisfies (oe, ps) holds true iff:

• The label of oe is the same as the value of SDOProperty in ps.
• For each ValueTypeConstraint, NodeConstraint, and DisjunctiveConstraint

(cons) in ps,10 satisfiesRangeRestriction (oe.to, cons) holds true.

satisfiesRangeRestriction (n, cons) holds true iff:

• If cons is a ValueTypeConstraint then:

– isElementOf (n, ta) and isA(ta, tb) and tb is equal to the value of
ValueTypeConstraint.

• If cons is a NodeConstraint then:

– Given that oen is a directed edge from n to n2, for each oen, there exists a
property shape (psnc) in cons.

– There exists at least one oen for each psnc with a MinCount.
– isElementOf (n, tc) and isA (tc, td) and td is equal to the value of

ValueTypeConstraint in cons.
– satisfies (oen.to, psnc) holds true.

• If cons is a DisjunctiveConstraint:

– For the list of constraints (c1 ... cn) in cons, satisfies (n, c1) V satisfies(n, c2) V
satisfies(n, c3) . . . V satisfies(n, c4) holds true.

10Multiple constraints are treated as conjunction.

Appendix 127

References

M. Achichi, Z. Bellahsene, K. Todorov, Legato results for OAEI 2017, in Proceedings of the 12th
International Workshop on Ontology Matching (OM2017) Co-Located with the 16th Interna-
tional Semantic Web Conference (ISWC2017), CEUR Workshop Proceedings, vol. 2032,
Vienna, Austria, 21 October 2017

M. Acosta, A. Zaveri, E. Simperl, D. Kontokostas, S. Auer, J. Lehmann, Crowdsourcing linked data
quality assessment, in Proceedings of the 12th International Semantic Web Conference
(ISWC2013), Sydney, Australia, 21–25 October 2013. Springer LNCS, vol. 8219

R. Akerkar, P. Sajja, Knowledge-Based Systems (Jones & Bartlett, Sudbury, MA, 2010)
R. Angles, C. Gutiérrez, Querying RDF data from a graph database perspective, in Proceedings of

the 2nd European Semantic Web Conference (ESWC2005), Heraklion, Greece, 29 May–1 June
2005. Springer LNCS, vol. 3532

R. Angles, C. Gutiérrez, Survey of graph database models. ACM Comput. Surv. 40(1), 1–39 (2008)
A. Ankolekar, M. Burstein, J.R. Hobbs, O. Lassila, D. Martin, D. McDermott, S.A. McIlraith,

S. Narayanan, M. Paolucci, T. Payne, K. Sycara, DAML-S: web service description for the
Semantic Web, in Proceedings of the 1st International Semantic Web Conference (ISWC2002),
Sardinia, Italia, 9–12 June 2002. Springer LNCS, vol. 2342

A.P. Aprosio, C. Giuliano, A. Lavelli, Automatic expansion of DBpedia exploiting Wikipedia
cross-language information, in Proceedings of the 10th International Extended Semantic Web
Conference (ESWC2013) on the Semantic Web: Semantics and Big Data, Montpellier, France,
26–30 May 2013. Springer LNCS, vol. 7882

S. Araújo, J. Hidders, D. Schwabe, A.P. de Vries, SERIMI—resource description similarity, RDF
instance matching and interlinking, in Proceedings of the 6th International Workshop on
Ontology Matching (OM2011), CEUR Workshop Proceedings, vol. 814, Bonn, Germany,
24 October 2011

S. Athanasiou, G. Giannopoulos, D. Graux, N. Karagiannakis, J. Lehmann, A.N. Ngomo,
K. Patroumpas, M.A. Sherif, D. Skoutas, Big POI data integration with linked data technologies,
in Proceedings of the 22nd International Conference on Extending Database Technology
(EDBT2019), Lisbon, Portugal, 26–29 March 2019a. OpenProceedings.org

S. Athanasiou, M. Alexakis, G. Giannopoulos, N. Karagiannakis, Y. Kouvaras, P. Mitropoulos,
K. Patroumpas, D. Skoutas, SLIPO: large-scale data integration for points of interest, in Pro-
ceedings of the 22nd International Conference on Extending Database Technology (EDBT),
Lisbon, Portugal, 26–29 March 2019b, pp. 574–577

S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z.G. Ives, DBpedia: a nucleus for a web
of open data, in Proceedings of the 6th International Semantic Web Conference (ISWC2007),

© Springer Nature Switzerland AG 2020
D. Fensel et al., Knowledge Graphs, https://doi.org/10.1007/978-3-030-37439-6

129

http://openproceedings.org
https://doi.org/10.1007/978-3-030-37439-6

2nd Asian Semantic Web Conference, (ASWC2007), Busan, Korea, 11–15 November 2007.
Springer LNCS, vol. 4825

F. Baader, I. Horrocks, C. Lutz, U. Sattler, An Introduction to Description Logic (Cambridge
University Press, Cambridge, 2017)

F. Bancilhon, D. Maier, Y. Sagiv, J.D. Ullman, Magic sets and other strange ways to implement
logic programs (extended abstract), in Proceedings of the 5th ACM SIGACT-SIGMOD Sympo-
sium on Principles of Database Systems (PODS1986), 24–26 March 1986 (ACM, Cambridge)

C. Batini, M. Scannapieco, Data Quality: Concepts, Methodologies and Techniques. Data-Centric
Systems and Applications (Springer, New York, 2006)

C. Batini, M. Lenzerini, S.B. Navathe, A comparative analysis of methodologies for database
schema integration. ACM Comput. Surv. 18(4), 323–364 (1986)

C. Batini, C. Cappiello, C. Francalanci, A. Maurino, Methodologies for data quality assessment and
improvement. ACM Comput. Surv. 41(3), 1–52 (2009)

S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer, D. Martin,
S. McIlraith, D. McGuinness, J. Su, S. Tabet, Semantic Web Services Framework (SWSF)
overview, W3C member submission (2005). https://www.w3.org/Submission/SWSF/

W. Beek, L. Rietveld, H.R. Bazoobandi, J. Wielemaker, S. Schlobach, LOD laundromat: a uniform
way of publishing other people’s dirty data, in Proceedings of the 13th International Semantic
Web Conference (ISWC2014), Riva del Garda, Italy, 19–23 October 2014. Springer LNCS, vol.
8796

O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S.E. Whang, J. Widom, Swoosh: a generic
approach to entity resolution. Int. J. Very Large Data Bases 18(1), 255–276 (2009)

M.K. Bergman, A Knowledge Representation Practionary—Guidelines Based on Charles Sanders
Peirce (Springer, Cham, 2018)

T. Berners-Lee, D. Connolly, Notation3 (N3): a readable RDF syntax, W3C Team Submission,
14 January 2008. https://www.w3.org/TeamSubmission/2008/SUBM-n3-20080114/

T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web. Sci. Am. 284(5), 28–37 (2001)
I. Bhattacharya, L. Getoor, Collective entity resolution in relational data. ACM Trans. Knowl.

Discov. Data 1(1), 5 (2007)
A. Bilke, J. Bleiholder, C. Böhm, K. Draba, F. Naumann, M. Weis, Automatic data fusion with

HumMer, in Proceedings of the 31st International Conference on Very Large Data Bases
(VLDB2005), VLDB Endowment, Trondheim, Norway, 30 August–2 September 2005

C. Bizer, R. Cygania, Quality-driven information filtering using the WIQA policy
framework. J. Web Semant. 7(1), 1–10 (2009)

C. Bizer, T. Heath, K. Idehen, T. Berners-Lee, Linked data on the web (LDOW2008), in Pro-
ceedings of the 17th International Conference on World Wide Web (WWW2008): Workshop,
21–25 April 2008 (ACM, Beijing)

C. Bizer, T. Heath, T. Berners-Lee, Linked data—the story so far. Int. J. Semant. Web Inf. Syst. 5
(3), 1–22 (2009)

R. Blanco, B.B. Cambazoglu, P. Mika, N. Torzec, Entity recommendations in web search, in
Proceedings of the 12th International Semantic Web Conference (ISWC2013), Sydney,
Australia, 21–25 October 2013. Springer LNCS, vol. 8219

J. Bleiholder, F. Naumann, Declarative data fusion—syntax, semantics, and implementation, in
Proceedings of the 9th East European Conference on Advances in Databases and Information
Systems (ADBIS2005), Tallinn, Estonia, 12–15 September 2005. Springer LNCS, vol. 3631

J. Bleiholder, F. Naumann, Data fusion. ACM Comput. Surv. 41(1), 1–41 (2009)
J. Bleiholder, K. Draba, F. Naumann, FuSem—exploring different semantics of data fusion, in

Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB2007),
VLDB Endowment, Vienna, Austria, 23–27 September 2007

K.D. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a collaboratively created
graph database for structuring human knowledge, in Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data (SIGMOD2008), 09–12 June 2008 (ACM,
Vancouver)

130 References

https://www.w3.org/Submission/SWSF/
https://www.w3.org/TeamSubmission/2008/SUBM-n3-20080114/

P.A. Bonatti, S. Decker, A. Polleres, V. Presutti, Knowledge graphs: new directions for knowledge
representation on the Semantic Web (dagstuhl seminar 18371). Dagstuhl Rep. 8(9), 29–111
(2019)

A. Borodin, G.O. Roberts, J.S. Rosenthal, P. Tsaparas, Link analysis ranking: algorithms, theory,
and experiments. ACM Trans. Internet Technol. 5(1), 231–297 (2005)

R.J. Brachman, On the epistemological status of semantic networks, in Associative Networks:
Representation and Use of Knowledge by Computers, ed. by N. V. Findler, (Academic,
New York, 1979)

R.J. Brachman, The future of knowledge representation, in Proceedings of the 8th National
Conference on Artificial Intelligence (AAAI1990), 29 July–3 August 1990 (AAAI Press,
Boston)

R.J. Brachman, J.G. Schmolze, An overview of the KL-ONE knowledge representation system.
Cogn. Sci. 9(2), 171–202 (1985)

W.M. Campbell, L. Li, C.K. Dagli, J. Acevedo-Aviles, K. Geyer, J.P. Campbell, C. Priebe, Cross-
Domain Entity Resolution in Social Media, Technical Report, arXiv preprint, 1608.01386
(2016). https://arxiv.org/abs/1608.01386

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka, T.M. Mitchell, Toward an architec-
ture for never-ending language learning, in Proceedings of the 24th Conference on Artificial
Intelligence (AAAI2010), 11–15 July 2010 (AAAI Press, Atlanta)

C. Chang, M. Kayed, M.R. Girgis, K.F. Shaalan, A survey of web information extraction systems.
IEEE Trans. Knowl. Data Eng. 18(10), 1411–1428 (2006)

H. Chen, H. Ji, L. Sun, H. Wang, T. Qian, T. Ruan (eds.), Knowledge Graph and Semantic
Computing: Semantic, Knowledge, and Linked Big Data—First China Conference, CCKS
2016, Beijing, China, 19–22 September 2016. Revised Selected Papers, Springer Communica-
tions in Computer and Information Science, vol. 650 (2016)

H. Chen, X. Liu, D. Yin, J. Tang, A survey on dialogue systems: recent advances and new frontiers.
ACM SIGKDD Explor. Newsl. 19(2), 25–35 (2017)

V. Christophides, V. Efthymiou, K. Stefanidis, Entity Resolution in the Web of Data (Morgan &
Claypool, San Rafael, 2015)

X. Chu, M. Ouzzani, J. Morcos, I.F. Ilyas, P. Papotti, N. Tang, Y. Ye, KATARA: reliable data
cleaning with knowledge bases and crowdsourcing, in Proceedings of the 41st International
Conference on Very Large Data Bases (PVLDB2015), Hawaii, 31 August–4 September 2015,
VLDB Endowment, 8(12), 1952–1955 (2015)

P. Cimiano, S. Handschuh, S. Staab, Towards the self-annotating web, in Proceedings of the 13th
International Conference on World Wide Web (WWW2004), 17–20 May 2004 (ACM,
New York)

W.J. Clancey, Heuristic classification. Artif. Intell. 27(3), 289–350 (1985)
E.F. Codd, A relational model of data for large shared data banks. Commun. ACM 13(6), 377–387

(1970)
M. Croitoru, P. Marquis, S. Rudolph, G. Stapleton (eds.), Proceedings of the 5th International

Workshop on Graph Structures for Knowledge Representation and Reasoning (GKR2017):
Revised Selected Papers, Melbourne, 21 August 2017. Springer LNCS, vol. 10775 (2018)

C. d’Amato, M. Theobald (eds.), Proceedings of the 14th International Summer School 2018:
Reasoning Web. Learning, Uncertainty, Streaming, and Scalability: Tutorial Lectures, Esch-
sur-Alzette, Luxembourg, 22–26 September 2018. Springer LNCS, vol. 11078

V. D’Silva, D. Kroening, G. Weissenbacher, A survey of automated techniques for formal software
verification. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(7), 1165–1178 (2008)

C. Day, Record Linkage I: Evaluation of Commercially Available Record Linkage Software for Use
in NASS. US Department of Agriculture, National Agricultural Statistics Service, Research
Division (1995)

J. De Bruijn, R. Lara, A. Polleres, D. Fensel, OWL DL vs. OWL flight: conceptual modeling and
reasoning for the Semantic Web, in Proceedings of the 14th International World Wide Web
Conference (ISWC2005), 10–14 May 2005 (ACM, Chiba, Japan)

References 131

https://arxiv.org/abs/1608.01386

G. De Melo, Not quite the same: identity constraints for the web of linked data, in Proceedings of
the 27th Conference on Artificial Intelligence (AAAI2013), 14–18 July 2013 (AAAI Press,
Bellevue, USA)

J. Debattista, S. Auer, C. Lange, Luzzu—a methodology and framework for linked data quality
assessment. J. Data Inf. Qual. 8(1), 1–32 (2016a)

J. Debattista, C. Lange, S. Auer, A preliminary investigation towards improving linked data quality
using distance-based outlier detection, in Proceedings of the 6th Joint International Semantic
Technology Conference (JIST2016): Revised Selected Papers, Singapore, 2–4 November
2016b. Springer LNCS, vol. 10055

S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M.C.A. Klein, J. Broekstra, M. Erdmann,
I. Horrocks, The Semantic Web: the roles of XML and RDF. IEEE Internet Comput. 4(5), 63–74
(2000)

D. Dell’Aglio, E.D. Valle, F. van Harmelen, A. Bernstein, Stream reasoning: a survey and outlook.
Data Sci. 1(1–2), 59–83 (2017)

M. Dezani-Ciancaglini, R. Horne, V. Sassone, Tracing where and who provenance in linked data: a
calculus. Theor. Comput. Sci. 464, 113–129 (2012)

D. Diefenbach, V. López, K.D. Singh, P. Maret, Core techniques of question answering systems
over knowledge bases: a survey. Knowl. Inf. Syst. 55(3), 529–569 (2018a)

D. Diefenbach, K.D. Singh, P. Maret, WDAqua-core1: a question answering service for RDF
knowledge bases, in Companion Proceedings of the Web Conference (WWW2018), 23–27 April
2018b (ACM, Lyon)

D. Dietrich, J. Gray, T. McNamara, A. Poikola, P. Pollock, J. Tait, T. Zijlstra, Open data handbook
(Open Knowledge International, Cambridge, 2009)

A. Dimou, M.V. Sande, P. Colpaert, R. Verborgh, E. Mannens, R.V. de Walle, RML: a generic
language for integrated RDF mappings of heterogeneous data, in Proceedings of the Workshop
on Linked Data on the Web (LDOW2014) Co-Located with the 23rd International World Wide
Web Conference (WWW2014), CEUR Workshop Proceedings, vol. 1184, Seoul, Korea, 8 April
2014

L. Ding, P. Kolari, Z. Ding, S. Avancha, Using ontologies in the Semantic Web: a survey. Ontol.
Integr. Ser. Inf. Syst. 14, 79–113 (2007)

X.L. Dong, F. Naumann, Data fusion—resolving data conflicts for integration. Proc. Very Large
Data Bases Endow. 2(2), 1654–1655 (2009)

X.L. Dong, D. Srivastava, Knowledge curation and knowledge fusion: challenges, models and
applications, in Proceedings of the 2015 ACM International Conference on Management of
Data (SIGMOD2015), 31 May–4 June 2015 (ACM, Melbourne)

X.L. Dong, L. Berti-Équille, D. Srivastava, Integrating conflicting data: the role of source depen-
dence. Proc. Very Large Data Bases Endow. 2(1), 550–561 (2009a)

X.L. Dong, L. Berti-Équille, D. Srivastava, Truth discovery and copying detection in a dynamic
world. Proc. Very Large Data Bases Endow. 2(1), 562–573 (2009b)

X.L. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun,
W. Zhang, Knowledge vault: a web-scale approach to probabilistic knowledge fusion, in Pro-
ceedings of the 20th ACM Conference on Knowledge Discovery and Data Mining (KDD2014),
24–27 August 2014a (ACM, New York)

X.L. Dong, E. Gabrilovich, G. Heitz, W. Horn, K. Murphy, S. Sun, W. Zhang, From data fusion to
knowledge fusion. Proc. Very Large Data Bases Endow. 7(10), 881–892 (2014b)

H.L. Dunn, Record linkage. Am. J. Public Health Nations Health 36(12), 1412–1416 (1946)
H. Ehrig, C. Ermel, U. Golas, F. Hermann, Graph and Model Transformation: General Framework

and Applications (Springer, Berlin, 2015)
L. Ehrlinger, W. Wöß, Towards a definition of knowledge graphs, in Proceedings of the 12th

International Conference on Semantic Systems (SEMANTICS2016): Posters and Demos Track,
CEUR Workshop Proceedings, vol. 1695, Leipzig, Germany, 12–15 September 2016

H. Eriksson, Y. Sahar, S.W. Tu, A.R. Puerta, M.A. Musen, Task modeling with reusable problem-
solving methods. Artif. Intell. 79(2), 293–326 (1995)

132 References

F. Erxleben, M. Günther, M. Krötzsch, J. Mendez, D. Vrandečić, Introducing wikidata to the linked
data web, in Proceedings of the 13th International Semantic Web Conference (ISWC 2014),
Riva del Garda, Italy, 19–23 October 2014. Springer LNCS, vol. 8796

D. Esteves, A. Rula, A.J. Reddy, J. Lehmann, Toward veracity assessment in RDF knowledge
bases: an exploratory analysis. ACM J. Data Inf. Qual. 9(3), 1–26 (2018)

M. Färber, F. Bartscherer, C. Menne, A. Rettinger, Linked data quality of DBpedia, Freebase,
OpenCyc, Wikidata, and YAGO. Semant. Web J. 9(1), 77–129 (2018)

D.C. Faye, O. Curé, G. Blin, A survey of RDF storage approaches. Rev. Afr. Rech. Inf. Math. Appl.
15, 11–35 (2012)

E.A. Feigenbaum, Knowledge engineering: the applied side of artificial intelligence. Ann. NY
Acad. Sci. 426(1), 91–107 (1984). (Originally published 1980)

D. Fensel, Problem-Solving Methods: Understanding, Description, Development, and Reuse.
Springer LNAI, vol. 1791 (2000)

D. Fensel, C. Bussler, The web service modeling framework WSMF. Electron. Commer. Res. Appl.
1(2), 113–137 (2002)

D. Fensel, M.A. Musen, The Semantic Web: a brain for humankind. IEEE Intell. Syst. 16(2), 24–25
(2001)

D. Fensel, F. van Harmelen, Unifying reasoning and search to web scale. IEEE Internet Comput. 11
(2), 94–96 (2007)

D. Fensel, M. Erdmann, R. Studer, Ontology groups: semantically enriched subnets of the WWW,
in Proceedings of the 1st International Workshop Intelligent Information Integration During the
21st German Annual Conference on Artificial Intelligence, Freiburg, Germany, September 1997

D. Fensel, J. Angele, S. Decker, M. Erdmann, H. Schnurr, R. Studer, A. Witt, Lessons learned from
applying AI to the web. Int. J. Coop. Inf. Syst. 9(4), 361–382 (2000)

D. Fensel, F. van Harmelen, B. Andersson, P. Brennan, H. Cunningham, E.D. Valle, F. Fischer,
Z. Huang, A. Kiryakov, T.K. Lee, L. Schooler, V. Tresp, S. Wesner, M.J. Witbrock, N. Zhong,
Towards LarKC: a platform for web-scale reasoning, in Proceedings of the 2nd International
Conference on Semantic Computing (ICSC2008), 4–7 August 2008 (IEEE Computer Society,
Santa Clara)

J.D. Fernández, W. Beek, M.A. Martínez-Prieto, M. Arias. LOD-a-lot: a queryable dump of the
LOD cloud, in Proceedings of the 16th International Semantic Web Conference (ISWC2017),
Vienna, Austria, 21–25 October 2017. Springer LNCS, vol. 10588

Ó. Ferrández, C. Spurk, M. Kouylekov, I. Dornescu, S. Ferrández, M. Negri, R. Izquierdo,
D. Tomás, C. Orasan, G. Neumann, B. Magnini, J.L.V. González, The QALL-ME framework:
a specifiable-domain multilingual question answering architecture. J. Web Semant. 9(2),
137–145 (2011)

D. Fleischhacker, H. Paulheim, V. Bryl, J. Völker, C. Bizer, Detecting errors in numerical linked
data using cross-checked outlier detection, in Proceedings of the 13th International Conference
on Management of Data (ISWC2014), Riva del Garda, Italy, 19–23 October 2014. Springer
LNCS, vol. 8796

A. Flemming, Qualitätsmerkmale von Linked Data-veröffentlichenden Daten-quellen, Diploma
thesis, Humboldt-Universität zu Berlin, 2011

C. Fürber, M. Hepp, Using SPARQL and SPIN for data quality management on the Semantic Web,
in Proceedings of the 13th International Conference on Business Information Systems
(BIS2010), Berlin, Germany, 3–5 May 2010a. Springer LNBI, vol. 47

C. Fürber, M. Hepp, Using Semantic Web resources for data quality management, in Proceedings of
the 17th International Conference on Knowledge Engineering and Management by the Masses
(EKAW2010), Lisbon, Portugal, 11–15 October 2010b. Springer LNCS, vol. 6317

C. Fürber, M. Hepp, SWIQA—a Semantic Web information quality assessment framework, in
Proceedings of the 19th European Conference on Information Systems (ECIS2011), Associa-
tion for Information Systems (AIS eLibrary), Helsinki, Finland, 9–11 June 2011

References 133

A. Fuxman, E. Fazli, R.J. Miller, ConQuer: efficient management of inconsistent databases, in
Proceedings of the International Conference on Management of Data (SIGMOD2005),
14–16 June 2005 (ACM, Baltimore)

L.A. Galárraga, C. Teflioudi, K. Hose, F.M. Suchanek, AMIE: association rule mining under
incomplete evidence in ontological knowledge bases, in Proceedings of the 22nd International
Conference on the World Wide Web (WWW2013), 13–17 May 2013 (ACM, Rio de Janeiro)

L. Galárraga, C. Teflioudi, K. Hose, F.M. Suchanek, Fast rule mining in ontological knowledge
bases with AMIE+. Int. J. Very Large Data Bases 24(6), 707–730 (2015)

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software (Addison-Wesley Longman, Boston, MA, 1995)

A. Gangemi, A.G. Nuzzolese, V. Presutti, F. Draicchio, A. Musetti, P. Ciancarini, Automatic typing
of DBpedia entities, in Proceedings of the 11th International Semantic Web Conference
(ISWC2012), Boston, 11–15 November 2012. Springer LNCS, vol. 7649

H. Garcia-Molina, J.D. Ullman, J. Widom, Database Systems: The Complete Book, Chapter 7, 2nd
edn. (Pearson International Editing, 2009)

L.M. Garshol, A. Borge, Hafslund Sesam—an archive on semantics, in Proceedings of the 10th
Extending Semantic Web Conference (ESWC2013): Semantics and Big Data, Montpellier,
France, 26–30 May 2013. Springer LNCS, vol. 7882

G. Gawriljuk, A. Harth, C.A. Knoblock, P.A. Szekely, A scalable approach to incrementally
building knowledge graphs, in Proceedings of the 20th International Conference on Theory
and Practice of Digital Libraries (TPDL2016), Hannover, Germany, 5–9 September 2016.
Springer LNCS, vol. 9819

M.R. Genesereth, A.M. Keller, O.M. Duschka, Infomaster: an information integration system, in
Proceedings of the International Conference on Management of Data (SIGMOD1997),
13–15 May 1997 (ACM Press, Tucson)

L. Getoor, A. Machanavajjhala, Entity resolution: theory, practice & open challenges, in Pro-
ceedings of the 38th International Conference on Very Large Data Bases (VLDB2012), 5(12),
2018–2019 (2012)

L. Getoor, A. Machanavajjhala, Entity resolution for big data, in Proceedings of the 19th Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD2013): Tutorial, 11–-
14 August 2013 (ACM, Chicago)

G. Giannopoulos, D. Skoutas, T. Maroulis, N. Karagiannakis, S. Athanasiou, FAGI: a framework
for fusing geospatial RDF data, in Proceedings of the Confederated International Conferences
on the Move to Meaningful Internet Systems (OTM2014), Amantea, Italy, 27–31 October 2014.
Springer LNCS, vol. 8841

J.M. Giménez-García, M.C. Duarte, A. Zimmermann, C. Gravier, E.R. Hruschka Jr., P. Maret,
NELL2RDF: Reading the Web, and Publishing It as Linked Data, Technical Report (2018).
https://arxiv.org/abs/1804.05639

H. Glaser, I. Millard, W. Sung, S. Lee, P. Kim, B. You, Research on linked data and co-reference
resolution, in Proceedings of the International Conference on Dublin Core and Metadata
Applications (DCMI2019), Dublin Core Metadata Initiative, Seoul, Korea, 12–16 October 2009

A. Gómez-Pérez, M. Fernandez-Lopez, O. Corcho, Ontological Engineering: With Examples from
the Areas of Knowledge Management, e-Commerce and the Semantic Web (Springer, Berlin,
2010)

J.M. Gómez-Pérez, J.Z. Pan, G. Vetere, H. Wu, Enterprise knowledge graph: an introduction, in
Exploiting Linked Data and Knowledge Graphs in Large Organisations, ed. by J. Z. Pan,
G. Vetere, J. M. Gómez-Pérez, H. Wu, (Springer, Cham, 2017)

M. González Bermúdez, DIGUI: A Flexible Dialogue System for Guiding the User Interaction to
Access Web Services, Ph.D. thesis, Universitat Politècnica de Catalunya, 2010

I.J. Goodfellow, Y. Bengio, A.C. Courville, Deep Learning. Adaptive Computation and Machine
Learning (MIT Press, Cambridge, 2016)

P. Groth, F. van Harmelen, A.-C. Ngonga-Ngomo, V. Presutti, J.F. Sequeda, M. Dumontier, Grand
challenges, ed. by P.A. Bonatti, S. Decker, A. Polleres, V. Presutti, in Knowledge Graphs: New

134 References

https://arxiv.org/abs/1804.05639

Directions for Knowledge Representation on the Semantic Web (Dagstuhl Seminar 18371),
Dagstuhl Rep. 8(9), 29–111 (2019)

C. Guéret, P.T. Groth, C. Stadler, J. Lehmann, Assessing linked data mappings using network
measures, in Proceedings of the 9th Extended Semantic Web Conference (ESWC2012),
Heraklion, Greece, 27–31 May 2012. Springer LNCS, vol. 7295

R.V. Guha, Contexts: A Formalization and Some Applications, Ph.D. thesis, Stanford University,
STAN-CS-91-1399-Thesis.guha, 1991

R.V. Guha, Introducing schema.org: Search engines come together for a richer web,Google Official
Blog (2011)

R.V. Guha, R. McCool, E. Miller, Semantic search, in Proceedings of the 12th International World
Wide Web Conference (WWW2003), 20–24 May 2003 (ACM, Budapest)

R.V. Guha, D. Brickley, S. Macbeth, Schema.org: evolution of structured data on the web.
Commun. ACM 59(2), 44–51 (2016)

K. Gunaratna, S. Lalithsena, A.P. Sheth, Alignment and dataset identification of linked data in
Semantic Web. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 4(2), 139–151 (2014)

S. Gupta, G.E. Kaiser, D. Neistadt, P. Grimm, DOM-based content extraction of HTML documents,
in Proceedings of the 12th International World Wide Web Conference (WWW2003), 20–24 May
2003 (ACM, Budapest)

S. Gupta, P.A. Szekely, C.A. Knoblock, A. Goel, M. Taheriyan, M. Muslea, Karma: a system for
mapping structured sources into the Semantic Web, in Proceedings of the 9th Extended
Semantic Web Conference (ESWC2012): Revised Selected Papers, Crete, Greece, 27–31 May
2012. Springer LNCS, vol. 7540

S. Hakimov, C. Unger, S. Walter, P. Cimiano, Applying semantic parsing to question answering
over linked data: addressing the lexical gap, in Proceedings of the 20th International Confer-
ence on Applications of Natural Language to Information Systems (NLDB2015), Passau,
Germany, 17–19 June 2015. Springer LNCS, vol. 9103

H. Halpin, P.J. Hayes, J.P. McCusker, D.L. McGuinness, H.S. Thompson, When owl:sameAs isn’t
the same: an analysis of identity in linked data, in Proceedings of the 9th International Semantic
Web Conference (ISWC2010), 7–11 November 2010 (Springer, Shanghai)

J.B. Hansen, A. Beveridge, R. Farmer, L. Gehrmann, A.J.G. Gray, S. Khutan, T. Robertson, J. Val,
Validata: an online tool for testing RDF data conformance, in Proceedings of the 8th Interna-
tional Conference on Semantic Web Applications and Tools for Life Sciences (SWAT4LS2015),
CEUR Workshop Proceedings, vol. 1546, Cambridge, UK, 7–10 December 2015

S. Harris, A. Seaborne, E. Prud’hommeaux (eds.), SPARQL 1.1 Query Language, W3C Recom-
mendation, 21 March 2013. https://www.w3.org/TR/sparql11-query/

A. Harth, A. Hogan, R. Delbru, J. Umbrich, S. O’Riain, S. Decker, SWSE: answers before links! in
Proceedings of the Semantic Web Challenge 2007 Co-Located with the 6th International
Semantic Web Conference (ISWC2007) and the 2nd Asian Semantic Web Conference
(ASWC2007), CEUR Workshop Proceedings, vol. 295, Busan, Korea, 11–15 November 2007

P. Hayes, The Logic of Frames, Readings in Artificial Intelligence (Morgan Kaufmann, Los Altos,
CA, 1981)

P. Hayes (ed.), RDF semantics, W3C recommendation, 10 February 2004. https://www.w3.org/TR/
sparql11-query/

G.W.F. Hegel, Science of Logic, vol. I, Section 3, Chapter 1, A. The Specific Quantum (Translated
by A.V. Miller). Atlantic Highlands: Humanities Paperback Library, Originally appeared (1812)

J. Hipp, U. Güntzer, G. Nakhaeizadeh, Algorithms for association rule mining—a general survey
and comparison. ACM SIGKDD Explor. Newsl. 2(1), 58–64 (2000)

R. Hoekstra, The knowledge reengineering bottleneck. Semant. Web J. 1(1–2), 111–115 (2010)
J. Hoffart, F.M. Suchanek, K. Berberich, G. Weikum, YAGO2: a spatially and temporally enhanced

knowledge base from Wikipedia. Artif. Intell. 194, 28–61 (2013)
K. Höffner, S. Walter, E. Marx, R. Usbeck, J. Lehmann, A.N. Ngomo, Survey on challenges of

question answering in the Semantic Web. Semant. Web J. 8(6), 895–920 (2017)

References 135

http://schema.org
http://schema.org
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

A. Hogan, A. Harth, S. Decker, Performing object consolidation on the Semantic Web data graph,
in Proceedings of the 16th International World Wide Web Conference (WWW2007): Workshop
I3: Identity, Identifiers, Identification, Entity-Centric Approaches to Information and Knowl-
edge Management on the Web, CEUR Workshop Proceedings, vol. 249, Banff, Canada, 8 May
2007

S.M. Inzalkar, J. Sharma, A survey on text mining-techniques and application. Int. J. Res. Sci. Eng.
14, 1–14 (2015)

K. Janowicz, P. Hitzler, B. Adams, D. Kolas, C. Vardeman, Five stars of linked data vocabulary
use. Semant. Web J. 5(3), 173–176 (2014)

E. Kärle, U. Şimşek, D. Fensel, semantify.it, a platform for creation, publication and distribution of
semantic annotations, in Proceedings of the 11th International Conference on Advances in
Semantic Processing (SEMAPRO2017), IARIA, Barcelona, Spain, 12–16 November 2017

E. Kärle, U. Şimşek, O. Panasiuk, D. Fensel, Building an ecosystem for the tyrolean tourism
knowledge graph, in Proceedings of the International Conference on Trends in Web Engineer-
ing (ICWE2018), International Workshops, MATWEP, EnWot, KD-Web, WEOD, TourismKG:
Revised Selected Papers, Caceres, Spain, 5 June 2018. Springer LNCS, vol. 11153

L. Karoui, M.-A. Aufaure, N. Bennacer, Ontology discovery from web pages: application to
tourism, in Proceedings of the Workshop on Knowledge Discovery and Ontologies (ECML/
PKDD2004), Pisa, Italy, 20–24 September 2004

M. Kejriwal, C. Knoblock, P. Szekely, Constructing domain-specific knowledge graphs, in Pro-
ceedings of the 16th International Semantic Web Conference (ISWC2017): Tutorial, Vienna,
Austria, 21–25 October 2017. https://usc-isi-i2.github.io/ISWC17/

M. Kifer, G. Lausen, J. Wu, Logical foundations of object-oriented and frame-based
languages. J. ACM 42(4), 741–843 (May 1995)

J. Kim, C. Unger, A.N. Ngomo, A. Freitas, Y. Hahm, J. Kim, G. Choi, J. Kim, R. Usbeck, M. Kang,
K. Choi, OKBQA: an open collaboration framework for development of natural language
question-answering over knowledge bases, in Proceedings of the 16th International Semantic
Web Conference (ISWC 2017): Posters & Demonstrations and Industry Tracks, CEUR Work-
shop Proceedings, vol. 1963, Vienna, Austria, 23–25 October 2017

J.M. Kleinberg, Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632
(1999)

T. Knap, J. Michelfeit, M. Necaský, Linked open data aggregation: conflict resolution and aggre-
gate quality, in Proceedings of the 36th Annual IEEE Computer Software and Applications
Conference Workshops (COMP-SAC2012), IEEE Computer Society, Izmir, Turkey, 16–20 July
2012

H. Knublauch, D. Kontokostas (eds.), Shapes Constraint Language (SHACL). W3C recommenda-
tion, 20 July 2017. https://www.w3.org/TR/shacl/

D. Kontokostas, P. Westphal, S. Auer, S. Hellmann, J. Lehmann, R. Cornelissen, A. Zaveri, Test-
driven evaluation of linked data quality, in Proceedings of the 23rd International Conference on
World Wide Web (WWW2014), 07–11 April 2014 (ACM, Seoul)

J. Kopecký, T. Vitvar, C. Bournez, J. Farrell, SAWSDL: semantic annotations for WSDL and XML
schema. IEEE Internet Comput. 11(6), 60–67 (2007)

N. Korula, S. Lattanzi, An efficient reconciliation algorithm for social networks. Proc. Very Large
Data Bases Endow. 7(5), 377–388 (2014)

R. Kowalski, Predicate Logic as a Programming Language Memo 70, Department of Artificial
Intelligence, Edinburgh University. Also in Proceedings IFIP Congress, (North Holland Pub-
lishing, Stockholm, 1974), pp. 569–574

S. Lalithsena, P. Hitzler, A.P. Sheth, P. Jain, Automatic domain identification for linked open data,
in Proceedings of the International Joint Conference on Web Intelligence (WI2013) and
Intelligent Agent Technologies (IAT2013), IEEE Computer Society, Atlanta, 17–20 November
2013

136 References

https://usc-isi-i2.github.io/ISWC17/
https://www.w3.org/TR/shacl/

D. Lange, C. Böhm, F. Naumann, Extracting structured information from Wikipedia articles to
populate infoboxes, in Proceedings of the 19th Conference on Information and Knowledge
Management (CIKM2010), 26–30 October 2010 (ACM, Toronto)

A. Langegger, W. Wöß, Langegger: XLWrap–querying and integrating arbitrary spreadsheets with
SPARQL, in Proceedings of the 8th International Semantic Web Conference (ISWC 2009),
25–29 October 2009 (Springer, Chantilly, VA)

M. Lanthaler, C. Guetl, Hydra: a vocabulary for hypermedia-driven web APIs, in Proceedings of
the 22nd International World Wide Web Conference (WWW2013): Workshop on Linked Data
on the Web (LDOW2013), CEUR Workshop Proceedings, vol. 996, Rio de Janeiro, Brazil,
14 May 2013

J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P.N. Mendes, S. Hellmann,
M. Morsey, P. van Kleef, S. Auer, C. Bizer, DBpedia—a large-scale, multilingual knowledge
base extracted from Wikipedia. Semant. Web J. 6(2), 167–195 (2015)

D.B. Lenat, CYC: a large-scale investment in knowledge infrastructure. Commun. ACM 38(11),
33–38 (1995)

D.B. Lenat, R.V. Guha, Building Large Knowledge-Based Systems; Representation and Inference
in the Cyc Project, 1st edn. (Addison-Wesley Longman, Reading, MA, 1989)

P. Lertvittayakumjorn, N. Kertkeidkachorn, R. Ichise, Resolving range violations in DBpedia, in
Proceedings of the 7th Joint International Semantic Technology Conference (JIST2017), Gold
Coast, Australia, 10–12 November 2017. Springer LNCS, vol. 10675

W. Li, C. Clifton, SEMINT: a tool for identifying attribute correspondences in heterogeneous
databases using neural networks. Data Knowl. Eng. 33(1), 49–84 (2000)

Y. Li, J. Gao, C. Meng, Q. Li, L. Su, B. Zhao, W. Fan, J. Han, A survey on truth discovery. ACM
SIGKDD Explor. Newsl. 17(2), 1–16 (2016)

J. Li, M. Zhou, G. Qi, N. Lao, T. Ruan, J. Du (eds.), Knowledge Graph and Semantic Computing.
Language, Knowledge, and Intelligence—Second China Conference (CCKS2017): Revised
Selected Papers, Chengdu, China, 26–29 August 2017. Springer CCIS, vol. 784

J. Liang, Y. Xiao, Y. Zhang, S. Hwang, H. Wang, Graph-based wrong IsA relation detection in a
large-scale lexical taxonomy, in Proceedings of the 31st Conference on Artificial Intelligence
(AAAI2017), 4–9 February 2017 (AAAI Press, San Francisco)

L. Ma, Z. Su, Y. Pan, L. Zhang, T. Liu, RStar: an RDF storage and query system for enterprise
resource management, in Proceedings of the 13th International Conference on Information and
knowledge Management (CIKM2004), 8–13 November 2004 (ACM, Washington)

Y. Ma, H. Gao, T. Wu, G. Qi, Learning disjointness axioms with association rule mining and its
application to inconsistency detection of linked data, in Proceedings of the 8th Chinese
Semantic Web and Web Science Conference (CSWS2014): Revised Selected Papers, Wuhan,
China, 8–12 August 2014. Springer CCIS 480

R. Mahanti, Data Quality: Dimensions, Measurement, Strategy, Management, and Governance
(ASQ Quality Press, Milwaukee, 2019)

F. Mahdisoltani, J. Biega, F.M. Suchanek, YAGO3: a knowledge base from multilingual
Wikipedias, in Proceedings of Seventh Biennial Conference on Innovative Data Systems
Research (CIDR2015), Online Proceedings, Asilomar, CA, 4–7 January 2015. www.cidrdb.org

S. Malyshev, M. Krötzsch, L. González, J. Gonsior, A. Bielefeldt, Getting the most out of Wikidata:
semantic technology usage in Wikipedia’s knowledge graph, in Proceedings of 17th Interna-
tional Semantic Web Conference (ISWC 2018), Monterey, CA, 8–12 October 2018. Springer
LNCS, vol. 11137

D.L. Martin, M. Paolucci, S.A. McIlraith, M.H. Burstein, D.V. McDermott, D.L. McGuinness,
B. Parsia, T.R. Payne, M. Sabou, M. Solanki, N. Srinivasan, K.P. Sycara, Bringing semantics to
web services: the OWL-S approach, in Proceedings of the Semantic Web Services and Web
Process Composition (SWSWPC2004): 1st International Workshop, Revised Selected Papers,
San Diego, 6 July 2004. Springer LNCS, vol. 3387

References 137

http://www.cidrdb.org

E. Marx, R. Usbeck, A.N. Ngomo, K. Höffner, J. Lehmann, S. Auer, Towards an open question
answering architecture, in Proceedings of the 10th International Conference on Semantic
Systems (SEMANTICS2014), 4–5 September 2014 (ACM, Leipzig)

E. Marx, T. Soru, D. Esteves, A.N. Ngomo, J. Lehmann, An open question answering framework,
in Proceedings of the 14th International Semantic Web Conference (ISWC2015): Posters &
Demonstrations Track, CEUR Workshop Proceedings, vol. 1486, Bethlehem, 11 October 2015

M. McTear, Z. Callejas, D. Griol, The Conversational Interface: Talking to Smart Devices
(Springer, Cham, 2016)

A. Melo, H. Paulheim, Detection of relation assertion errors in knowledge graphs, in Proceedings of
the 9th International Conference on Knowledge Capture (K-CAP2017), 4–6 December 2017
(ACM, Austin)

P.N. Mendes, H. Mühleisen, C. Bizer, Sieve: linked data quality assessment and fusion, in Pro-
ceedings of the 2nd International Workshop on Linked Web Data Management (LWDM 2012),
in Conjunction with the 15th International Conference on Extending Database Technology
(EDBT2012): Workshops, 30 March 2012 (ACM, Berlin)

D. Menestrina, S. Whang, H. Garcia-Molina, Evaluating entity resolution results. Proc. Very Large
Data Bases Endow. 3(1–2), 208–219 (2010)

P. Mika, On Schema.org and why it matters for the web. IEEE Internet Comput. 19(4), 52–55
(2015)

D. Milward, M. Beveridge, Ontology-based dialogue systems, in Proceedings of the 3rd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI2013): Workshop on Knowledge and
Reasoning in Practical Dialogue Systems, Acapulco, Mexico, 10 August 2003

T.M. Mitchell, W.W. Cohen, E.R. Hruschka Jr., P.P. Talukdar, B. Yang, J. Betteridge, A. Carlson,
B.D. Mishra, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed,
N. Nakashole, E.A. Platanios, A. Ritter, M. Samadi, B. Settles, R.C. Wang, D. Wijaya,
A. Gupta, X. Chen, A. Saparov, M. Greaves, J. Welling, Never-ending learning. Commun.
ACM 61(5), 103–115 (2018)

B. Mohit, Named entity recognition, in Natural Language Processing of Semitic Languages, ed. by
I. Zitouni, (Springer, Berlin, 2014), pp. 221–245

A. Moschitti, K. Tymoshenko, P. Alexopoulos, A.D. Walker, M. Nicosia, G. Vetere, A. Faraotti,
M. Monti, J.Z. Pan, H. Wu, Y. Zhao, Question answering and knowledge graphs, in Exploiting
Linked Data and Knowledge Graphs in Large Organisations, ed. by J. Z. Pan, G. Vetere, J. M.
Gómez-Pérez, H. Wu, (Springer, Cham, 2017)

E. Motta, J. Domingue, L. Cabral, M. Gaspari, IRS-II: a framework and infrastructure for Semantic
Web services, in Proceedings of the 2nd International Semantic Web Conference (ISWC 2003),
Sanibel Island, 20–23 October 2003. Springer LNCS, vol. 2870

E. Muñoz, A. Hogan, A. Mileo, Triplifying Wikipedia’s tables, in Proceedings of the 1st Interna-
tional Workshop on Linked Data for Information Extraction (LD4IE2013) Co-Located with the
12th International Semantic Web Conference (ISWC2013), CEUR Workshop Proceeding, vol.
1057, Sydney, Australia, 21 October 2013

A. Newell, The knowledge level. Artif. Intell. 18(1), 87–127 (1982)
A.N. Ngomo, S. Auer, LIMES—a time-efficient approach for large-scale link discovery on the web

of data, in Proceedings of the 22nd International Joint Conference on Artificial Intelligence
(IJ-CAI2011), 16–22 July 2011 (AAAI Press, Barcelona)

A. Nikolov, V.S. Uren, E. Motta, A.N.D. Roeck, Integration of semantically annotated data by the
KnoFuss architecture, in Proceedings of the 16th International Conference on Knowledge
Engineering and Knowledge Management (EKAW2008): Practice and Patterns, Acitrezza,
Italy, 29 September–2 October 2008. Springer LNCS, vol. 5268

N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, J. Taylor, Industry-scale knowledge graphs:
lessons and challenges. ACM Queue 17(2), 48–75 (2019)

A.G. Nuzzolese, A. Gangemi, V. Presutti, P. Ciancarini, Type inference through the analysis of
Wikipedia links, in Proceedings of the 21st International Conference on World Wide Web

138 References

http://schema.org

(WWW2012): Workshop on Linked Data on the Web (LDOW2012), CEUR Workshop Pro-
ceedings, vol. 937, Lyon, France, 16 April 2012

M.J. O’Connor, C. Halaschek-Wiener, M.A. Musen, Mapping master: a flexible approach for
mapping spreadsheets to OWL, in Proceedings of the 9th International Semantic Web Confer-
ence (ISWC2010): Revised Selected Papers, Shanghai, China, 7–11 November 2010. Springer
LNCS, vol. 6497

J.Z. Pan, D. Calvanese, T. Eiter, I. Horrocks, M. Kifer, F. Lin, Y. Zhao (eds.), Reasoning Web:
Logical Foundation of Knowledge Graph Construction and Query Answering—12th Interna-
tional Summer School 2016: Tutorial Lectures, Aberdeen, UK, 5–9 September 2017a. Springer
LNCS, vol. 9885

J. Z. Pan, G. Vetere, J. M. Gómez-Pérez, H. Wu (eds.), Exploiting Linked Data and Knowledge
Graphs in Large Organisations (Springer, Cham, 2017b)

O. Panasiuk, E. Kärle, U. Şimşek, D. Fensel, Defining tourism domains for semantic annotation of
web content, in Proceedings of the Conference on Information and Communication Technol-
ogies in Tourism (ENTER2018): Research Notes, Jönköping, Sweden, 24–26 January 2018a

O. Panasiuk, Z. Akbar, T. Gerrier, D. Fensel, Representing GeoData for tourism with Schema.org,
in Proceedings of the 4th International Conference on Geographical Information Systems
Theory, Applications and Management (GISTAM2018), 17–19 March 2018b (SciTePress,
Funchal, Portugal)

O. Panasiuk, Z. Akbar, U. Şimşek, D. Fensel, Enabling conversational tourism assistants through
Schema.org mapping, in Proceedings of the European Semantic Web Conference (ESWC2018):
Satellite Event, Revised Selected Papers, Hersonissos, Greece, 3–7 June 2018c. Springer LNCS,
vol. 11155

O. Panasiuk, O. Holzknecht, U. Şimşek, E. Kärle, D. Fensel, Verification and validation of semantic
annotations, in Proceedings of the 12th A.P. Ershov Informatics Conference (PSI 2019),
Novosibirsk, Russia, 2–5 July 2019 (Springer). Preprint. https://arxiv.org/abs/1904.01353

L. Papaleo, N. Pernelle, F. Saïs, C. Dumont, Logical detection of invalid SameAs statements in
RDF data, in Proceedings of the 19th International Conference on Knowledge Engineering and
Knowledge Management (EKAW2014), Linköping, Sweden, 24–28 November 2014. Springer
LNCS, vol. 8876

P. Paritosh, The missing science of knowledge curation: improving incentives for large-scale
knowledge curation, in Proceedings of the International World Wide Web Conference
(WWW2018), 23–27 April 2018 (ACM, Lyon)

P.F. Patel-Schneider, Analyzing Schema.org, in Proceedings of the 13th International Semantic
Web Conference (ISWC2014), Riva del Garda, Italy, 19–23 October 2014. Springer LNCS, vol.
8796

P.F. Patel-Schneider, I. Horrocks, Position paper: a comparison of two modelling paradigms in the
Semantic Web, in Proceedings of the 15th International World Wide Web Conference
(WWW2006), 23–26 May 2006 (ACM, Edinburgh)

A.A. Patil, S.A. Oundhakar, A.P. Sheth, K. Verma, METEOR-S web service annotation frame-
work, in Proceedings of the 13th International Conference on World Wide Web (WWW2004),
17–20 May 2004 (ACM, New York)

H. Paulheim, Identifying wrong links between datasets by multi-dimensional outlier detection, in
Proceedings of the 3rd International Workshop on Debugging Ontologies and Ontology
Mappings (WoDOOM2014) Co-Located with the 11th Extended Semantic Web Conference
(ESWC2014), CEUR Workshop Proceedings, vol. 1162, Hersonissou, Greece, 26 May 2014

H. Paulheim, Knowledge graph refinement: a survey of approaches and evaluation methods.
Semant. Web J. 8(3), 489–508 (2017)

H. Paulheim, Machine learning with and for Semantic Web knowledge graphs, ed. by C. d’Amato,
M. Theobald, in Proceedings of the 14th International Summer School 2018: Reasoning Web.
Learning, Uncertainty, Streaming, and Scalability: Tutorial Lectures, Esch-sur-Alzette, Lux-
embourg, 22–26 September 2018a. Springer LNCS, vol. 11078

References 139

http://schema.org
http://schema.org
https://arxiv.org/abs/1904.01353
http://schema.org

H. Paulheim, How much is a triple? Estimating the cost of knowledge graph creation, in Pro-
ceedings of the 17th International Semantic Web Conference (ISWC2018): Posters & Demon-
strations, Industry and Blue Sky Ideas Tracks, CEUR Workshop Proceedings, vol. 2180,
Monterey, 8–12 October 2018b

H. Paulheim, C. Bizer, Type inference on noisy RDF data, in Proceedings of the 12th International
Semantic Web Conference (ISWC2013), Sydney, Australia, 21–25 October 2013. Springer
LNCS, vol. 8218

H. Paulheim, C. Bizer, Improving the quality of linked data using statistical distributions.
Int. J. Semant. Web Inf. Syst. 10(2), 63–86 (2014)

H. Paulheim, M. Sabou, M. Cochez, W. Beek, Evaluation of knowledge graphs, ed. by
P.A. Bonatti, S. Decker, A. Polleres, V. Presutti, in Knowledge Graphs: New Directions for
Knowledge Representation on the Semantic Web (Dagstuhl Seminar 18371), Dagstuhl Rep. 8
(9), 29–111 (2019)

N. Pernelle, J. Raad, F. Saıs, Detection of invalid identity links statements in RDF knowledge
graphs. Presented in the 21st International Conference on Knowledge Engineering and Knowl-
edge Management (EKAW2018): Workshops: Symbolic methods for data-interlinking, Nancy,
France, 12–16 November 2018. https://project.inria.fr/ekaw2018/workshops/

L. Pipino, Y.W. Lee, R.Y. Wang, Data quality assessment. Commun. ACM 45(4), 211–218 (2002)
J. Plu, G. Rizzo, R. Troncy, ADEL: ADaptable Entity Linking: a hybrid approach to link entities

with linked data for information extraction. Semant. Web J. (Special Issue on Linked Data for
Information Extraction) 1, 1–5 (2017)

G. Qi, J. Tang, J. Du, J.Z. Pan, Y. Yu (eds.), Linked Data and Knowledge Graph—7th Chinese
Semantic Web Symposium and 2nd Chinese Web Science Conference (CSWS2013): Revised
Selected Papers, Shanghai, China, 12–16 August 2013. Springer CCIS, vol. 406

G. Qi, H. Chen, K. Liu, H. Wang, Q. Ji, T. Wu, Knowledge Graph (Springer, Cham, 2020)
J. Raad, N. Pernelle, F. Saïs, Detection of contextual identity links in a knowledge base, in

Proceedings of the Knowledge Capture Conference (K-CAP2017), 4–6 December 2017
(ACM, Austin)

J. Raad, W. Beek, F. van Harmelen, N. Pernelle, F. Saïs, Detecting erroneous identity links on the
web using network metrics, in Proceeding of the 17th International Semantic Web Conference
(ISWC2018), Monterrey, 8–12 October 2018. Springer LNCS, vol. 111

Y. Raimond, C. Sutton, M.B. Sandler, Automatic interlinking of music datasets on the Semantic
Web, in Proceedings of the 17th International World Wide Web Conference (WWW2008):
Workshop on Linked Data on the Web (LDOW2008), CEUR Workshop Proceedings, vol.
369, Beijing, China, 22 April 2008

R. Ramakrishnan, J.D. Ullman, A survey of deductive database systems. J. Log. Program. 23(2),
125–149 (1995)

S.K. Reed, A. Pease, Reasoning from imperfect knowledge. Cogn. Syst. Res. 41, 56–72 (2017)
W. Reisig, Understanding Petri Nets—Modeling Techniques, Analysis Methods, Case Studies

(Springer, Cham, 2013)
T. Rekatsinas, X. Chu, I.F. Ilyas, C. Ré, HoloClean: holistic data repairs with probabilistic

inference. Proc. Very Large Data Bases Endow. 10(11), 1190–1201 (2017)
D. Roman, J. de Bruijn, A. Mocan, H. Lausen, J. Domingue, C. Bussler, D. Fensel, WWW:

WSMO, WSML, and WSMX in a nutshell, in Proceedings of the 1st Asian Semantic Web
Conference (ASWC2006), Beijing, China, 3–7 September 2006. Springer LNCS, vol. 4185

D. Roman, J. Kopecký, T. Vitvar, J. Domingue, D. Fensel, WSMO-Lite and hRESTS: lightweight
semantic annotations for web services and RESTful APIs. J. Web Semant. 31, 39–58 (2015)

M. Rubiolo, M.L. Caliusco, G. Stegmayer, M. Gareli, M. Coronel, Knowledge source discovery: an
experience using ontologies, WordNet and artificial neural networks, in Proceedings of the 13th
International Conference on Knowledge-Based and Intelligent Information and Engineering
Systems (KES2009), Santiago, Chile, 28–30 September 2009. Springer LNCS, vol. 5712

A. Rula, M. Palmonari, S. Rubinacci, A.N. Ngomo, J. Lehmann, A. Maurino, D. Esteves, TISCO:
temporal scoping of facts. J. Web Semant. 54, 72–86 (2019)

140 References

https://project.inria.fr/ekaw2018/workshops/

A.T. Schreiber, B. Wielinga, J. Breuker, KADS: A Principled Approach to Knowledge-Based
System Development, Knowledge-Based Systems, vol 11 (Academic, London, 1993)

A.T. Schreiber, G. Schreiber, H. Akkermans, A. Anjewierden, N. Shadbolt, R. de Hoog, W. Van de
Velde, N.R. Shadbolt, B. Wielinga, Knowledge Engineering and Management: The
CommonKADS Methodolog (MIT Press, Cambridge, MA, 2000)

A. Schultz, A. Matteini, R. Isele, P.N. Mendes, C. Bizer, C. Becker, LDIF—a framework for large-
scale linked data integration, in Proceedings of the 21st International World Wide Web
Conference (WWW2012): Developers Track, Lyon, France, 18–20 April 2012

S. Shehata, F. Karray, M.S. Kamel, An efficient concept-based mining model for enhancing text
clustering. IEEE Trans. Knowl. Data Eng. 22(10), 1360–1371 (2010)

H.A. Simon, Models of Man: Social and Rational-Mathematical Essays on Rational Human
Behavior in a Social Setting (Wiley, New York, 1957)

U. Şimşek, D. Fensel, Intent generation for goal-oriented dialogue systems based on Schema.org
annotations. Presented in the 1st International Workshop on Chatbots Co-Located with the 12th
International Conference on Web and Social Media (ICWSM2018), Stanford, 25–28 June
2018a. http://datainnovation.soic.indiana.edu:8080/chatbot/index.html

U. Şimşek, D. Fensel, Now we are talking! Flexible and open goal-oriented dialogue systems for
accessing touristic services, in Proceedings of the Conference on Information and Communi-
cation Technologies in Tourism (ENTER2018): Research Notes, Jönköping, Sweden, 24–-
26 January 2018b

U. Şimşek, E. Kärle, O. Holzknecht, D. Fensel, Domain specific semantic validation of schema.org
annotations, in Proceedings of the 11th International A. P. Ershov Informatics Conference (PSI
2017), Moscow, Russia, 27–29 June 2017. Springer LNCS, vol. 10742 (2018a)

U. Şimşek, E. Kärle, D. Fensel, Machine readable web APIs with Schema.org action annotations, in
Proceedings of the 14th International Conference on Semantic Systems (SEMANTICS 2018),
10–13 September 2018b (Elsevier, Vienna)

U. Şimşek, E. Kärle, D. Fensel, RocketRML—a NodeJS implementation of a use-case specific
RML mapper, in Proceedings of 1st Knowledge Graph Building Workshop Co-Located with the
16th Extended Semantic Web Conference (ESWC2019), CEUR Workshop Proceedings,
Portoroz, Slovenia, 3 June 2019a

U. Şimşek, K. Angele, E. Kärle, O. Panasiuk, D. Fensel, A formal approach for customization of
schema.org based on SHACL, Technical Report (2019b). https://arxiv.org/abs/1906.06492

K. Singh, A.S. Radhakrishna, A. Both, S. Shekarpour, I. Lytra, R. Usbeck, A. Vyas,
A. Khikmatullaev, D. Punjani, C. Lange, M.E. Vidal, J. Lehmann, S. Auer, Why reinvent the
wheel: let’s build question answering systems together, in Proceedings of the 2018 Interna-
tional World Wide Web Conference (WWW2018), Lyon, France, 23–27 April 2018

J. Sleeman, T. Finin, Type prediction for efficient coreference resolution in heterogeneous semantic
graphs, in Proceedings of the 7th International Conference on Semantic Computing
(ICSC2013), IEEE Computer Society, Irvine, 16–18 September 2013

J. Sleeman, T. Finin, A. Joshi, Topic modeling for RDF graphs, in Proceedings of the 3rd
International Workshop on Linked Data for Information Extraction (LD4IE2015) Co-Located
with the 14th International Semantic Web Conference (ISWC2015), CEUR Workshop Pro-
ceedings, vol. 1467, Bethlehem, 12 October 2015

R. Socher, D. Chen, C.D. Manning, A.Y. Ng, Reasoning with neural tensor networks for knowl-
edge base completion, in Proceedings of the 26th International Conference on Neural Infor-
mation Processing Systems (NIPS2013)—Volume 1, Lake Tahoe, 05–10 December 2013

D. Sonntag, R. Engel, G. Herzog, A. Pfalzgraf, N. Pfleger, M. Romanelli, N. Reithinger, SmartWeb
handheld—multimodal interaction with ontological knowledge bases and Semantic Web ser-
vices. Artif. Intell. Hum. Comput., 272–295 (2007)

J.F. Sowa, Semantic networks, in Encyclopedia of Artificial Intelligence, ed. by S. C. Shapiro, 2nd
edn., (Wiley, New York, 1992). http://www.jfsowa.com/pubs/semnet.pdf

M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, N. Lindström (eds.), JSON-LD 1.0. W3C
recommendation, 16 January 2014. https://www.w3.org/TR/json-ld/

References 141

http://schema.org
http://datainnovation.soic.indiana.edu:8080/chatbot/index.html
http://schema.org
http://schema.org
http://schema.org
https://arxiv.org/abs/1906.06492
http://www.jfsowa.com/pubs/semnet.pdf
https://www.w3.org/TR/json-ld/

S. Staab, R. Studer, Ontology Handbook (Springer, Berlin, 2010)
F. Stegmaier, U. Gröbner, M. Döller, H. Kosch, G. Baese, Evaluation of current RDF database

solutions, in Proceedings of the 10th International Workshop on Semantic Multimedia Data-
base Technologies (SeMuDaTe2009) in Conjunction with the 4th International Conference on
Semantics and Digital Media Technologies (SAMT2009), CEUR Workshop Proceedings, vol.
539, Graz, Austria, 2 December 2009

G. Stegmayer, M.L. Caliusco, O. Chiotti, M.R. Galli, ANN-agent for distributed knowledge source
discovery, in Proceedings of the on the Move to Meaningful Internet Systems (OTM2007):
Confederated International Workshops and Posters, AWeSOMe, CAMS, OTM Academy Doc-
toral Consortium, MONET, OnToContent, ORM, PerSys, PPN, RDDS, SSWS, and SWWS 2007,
Vilamoura, Portugal, 25–30 November 2007. Springer LNCS, vol. 4805

R.J. Sternberg, K. Sternberg, Cognitive Psychology, 6th edn. (Wadsworth, Cengage Learning,
Belmont, CA, 2009)

A. Stolz, M. Hepp, Integrating product classification standards into Schema.org: eCl@ss and
UNSPSC on the web of data, in Proceedings of on the Move to Meaningful Internet Systems.
OTM 2017 Workshops, Rhodes, Greece, 23–28 October 2017 (2018). Springer LNCS, vol.
10697

R. Studer, V.R. Benjamins, D. Fensel, Knowledge engineering: principles and methods. Data
Knowl. Eng. 25(1–2), 161–197 (1998)

F.M. Suchanek, G. Kasneci, G. Weikum, Yago: a core of semantic knowledge, in Proceedings of
the 16th International World Wide Web Conference (WWW2007), 8–12 May 2007 (ACM,
Banff, Canada)

G. Töpper, M. Knuth, H. Sack, DBpedia ontology enrichment for inconsistency detection, in
Proceedings of the 8th International Conference on Semantic Systems (SEMANTICS2012),
5–7 September 2012 (ACM, Graz)

V. Uren, P. Cimiano, J. Iria, S. Handschuh, M. Vargas-Vera, E. Motta, F. Ciravegna, Semantic
annotation for knowledge management: requirements and a survey of the state of the art. Web
Semant. Sci. Serv. Agents World Wide Web Arch. 4(1), 14–28 (2006)

D. Van Deursen, C. Poppe, G. Martens, E. Mannens, R. Van de Walle, XML to RDF conversion: a
generic approach, in Proceedings of the 4th International Conference on Automated solutions
for Cross Media Content and Multi-Channel Distribution (AXMEDIS2008), 17–19 November
2008 (IEEE, Florence)

M. Van Erp, S. Hellmann, J.P. McCrae, C. Chiarcos, K. Choi, J. Gracia, Y. Hayashi, S. Koide,
P.N. Mendes, H. Paulheim, H. Takeda (eds.), Knowledge graphs and language technology, in
Proceedings of the 15th International Semantic Web Conference (ISWC2016): International
Workshops: KEKI and NLP&DBpedia, Kobe, Japan, 17–21 October 2016. Revised selected
papers. Springer LNCS, vol. 10579 (2017)

M.Y. Vardi, How the hippies destroyed the Internet. Commun. ACM 61(7), 9 (2018)
R. Verborgh, T. Steiner, D.V. Deursen, J.D. Roo, R.V. de Walle, J.G. Vallés, Capturing the

functionality of web services with functional descriptions. Multimed. Tools Appl. 64(2),
365–387 (2013)

R. Verborgh, A. Harth, M. Maleshkova, S. Stadtmüller, T. Steiner, M. Taheriyan, R. Van de Walle,
Survey of semantic description of REST APIs, in REST: Advanced Research Topics and
Practical Applications, ed. by C. Pautasso, E. Wilde, R. Alarcon, (Springer, Berlin, 2014),
pp. 69–89

S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview.
Int. J. Comput. Sci. Commun. Netw. 5(1), 7–16 (2015)

B. Villazón-Terrazas, N. García-Santa, Y. Ren, A. Faraotti, H. Wu, Y. Zhao, G. Vetere, J.Z. Pan,
Knowledge graph foundations, in Exploiting Linked Data and Knowledge Graphs in Large
Organisations, ed. by J. Z. Pan, G. Vetere, J. M. Gómez-Pérez, H. Wu, (Springer, Cham, 2017)

J. Volz, C. Bizer, M. Gaedke, G. Kobilarov, Discovering and maintaining links on the web of data,
in Proceedings of the 8th International Semantic Web Conference (ISWC2009), Chantilly,
25–29 October 2009. Springer LNCS, vol. 5823

142 References

http://schema.org

D. Vrandečić, M. Krötzsch, Wikidata: a free collaborative knowledge base. Commun. ACM 57(10),
78–85 (2014)

R.Y. Wang, A product perspective on total data quality management. Commun. ACM 41(2), 58–65
(1998)

R.Y. Wang, D.M. Strong, Beyond accuracy: what data quality means to data consumers. J. Manag.
Inf. Syst. 12(4), 5–33 (1996)

R.Y. Wang, M. Ziad, Y.W. Lee, Data Quality (Kluwer Academic Publisher, Norwell, MA, 2001)
R. West, E. Gabrilovich, K. Murphy, S. Sun, R. Gupta, D. Lin, Knowledge base completion via

search-based question answering, in Proceedings of the 23rd International World Wide Web
Conference (WWW2014), 07–11 April 2014 (ACM, Seoul)

D. Wienand, H. Paulheim, Detecting incorrect numerical data in DBpedia, in Proceedings of the
11th International European Semantic Web Conference (ESWC2014), Anissaras, Greece,
25–29 May 2014. Springer LNCS, vol. 8465

M.D. Wilkinson, M. Dumontier, I.J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg,
J.-W. Boiten, L.B. da Silva Santos, P.E. Bourne, J. Bouwman, A.J. Brookes, T. Clark,
M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C.T. Evelo, R. Finkers, A. Gonzalez-Beltran,
A.J. Gray, P. Groth, C. Goble, J.S. Grethe, J. Heringa, P.A. ‘t Hoen, R. Hooft, T. Kuhn, R. Kok,
J. Kok, S.J. Lusher, M.E. Martone, A. Mons, A.L. Packer, B. Persson, P. Rocca-Serra, M. Roos,
R. van Schaik, S.-A. Sansone, E. Schultes, T. Sen-gstag, T. Slater, G. Strawn, M.A. Swertz,
M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg,
K. Wolsten-croft, J. Zhao, B. Mons, The FAIR guiding principles for scientific data manage-
ment and stewardship. Sci. Data 3, 160018 (2016)

W.E. Winkler, Overview of Record Linkage and Current Research Directions. Research report
series: Statistics #2006-2, Bureau of the Census (2006). https://www.census.gov/srd/papers/pdf/
rrs2006-02.pdf

World Travel & Tourism Council, Travel & Tourism Economic Impact 2018 World (2018). https://
www.wttc.org/-/media/files/reports/economic-impact-research/regions-2018/world2018.pdf

M. Wu, A. Marian, Corroborating answers from multiple web sources, in Proceedings of the 10th
International Workshop on the Web and Databases (WebDB2007), Beijing, China, 15 June
2007

H. Zafar, G. Napolitano, J. Lehmann, Formal query generation for question answering over
knowledge bases, in Proceedings of the 15th European Semantic Web Conference
(ESWC2018), Hersonissos, Crete, 3–7 June 2018. Springer LNCS, vol. 10843

A. Zaveri, D. Kontokostas, M.A. Sherif, L. Bühmann, M. Morsey, S. Auer, J. Lehmann, User-
driven quality evaluation of DBpedia, in Proceedings of the 9th International Conference on
Semantic Systems (I-SEMANTICS2013), 4–6 September 2013 (ACM, Graz)

A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, S. Auer, Quality assessment for linked
data: a survey. Semant. Web J. 7(1), 63–93 (2016)

A. Zaveri, S. Dastgheib, C. Wu, T. Whetzel, R. Verborgh, P. Avillach, G. Korodi, R. Terryn,
K.M. Jagodnik, P. Assis, M. Dumontier, smartAPI: towards a more intelligent network of web
APIs, in Proceedings of the 14th European Semantic Web Conference (ESWC2017), Portoroz,
Slovenia, 28 May–1 June 2017. Springer LNCS, vol. 10250

References 143

https://www.census.gov/srd/papers/pdf/rrs2006-02.pdf
https://www.census.gov/srd/papers/pdf/rrs2006-02.pdf
https://www.wttc.org/-/media/files/reports/economic-impact-research/regions-2018/world2018.pdf
https://www.wttc.org/-/media/files/reports/economic-impact-research/regions-2018/world2018.pdf

Index

A
ABox, 4, 36, 37, 52, 82
Active data, 63, 79, 83, 105
Annotations, ix, x, 10, 14–17, 23, 24, 28–32,

34, 38, 46, 69, 72, 74, 83, 85, 91, 100,
103

API, 8–10, 24, 32, 34, 35, 64, 85, 86, 108
Artificial intelligence (AI), ix, 6, 69–79, 85, 96

B
Bot, ix, 1, 96

C
Chatbot, 80, 95–97, 100, 101, 108, 109, 111
Conversational interface, vi, 97, 98, 104, 107,

110, 111
Conversational platform, 96, 99
Cyc, 9

D
DACH-KG, 67
Data assessment, 42
Data curation, 35
Data integration, ix, 4, 32, 53, 100, 103
Data quality, 4, 37, 39, 41–45, 50, 52, 53
Design pattern, 11, 16
Dialog system, x, 2, 64, 70, 85, 87, 90

Domain specification, xi, 14–17, 21, 23, 28, 29,
85

Dynamic data, 63, 79, 83
Dynamic information, 105

E
E-commerce, ix, x, 5, 68, 74, 75, 111
E-marketing, ix, x, 5, 68, 74, 111
Entity resolution, 55, 56, 58, 61, 106
Evaluation, 15, 20, 28

F
Formal reasoning, 70

G
Golden standard, 28, 37
Google’s Knowledge Graph, 7, 74, 87
GraphDB, 34, 35, 63, 82

H
HTML, 10, 23, 31, 74, 84

I
Inference engine, 4, 79
Intelligent assistant, vi, 87

© Springer Nature Switzerland AG 2020
D. Fensel et al., Knowledge Graphs, https://doi.org/10.1007/978-3-030-37439-6

145

https://doi.org/10.1007/978-3-030-37439-6

Intelligent machine, 70
Internet of Things, 6, 115

J
JSON-LD, 5, 15, 20, 21, 23, 24, 27, 28,

32–35, 74

K
Knowledge access layer, 78–85

conversational interface, 82
input layer, 82
output layer, 82
storage layer, 82

Knowledge acquisition, 5, 12, 14, 15, 72, 74
Knowledge assessment, 12, 35, 37–46

completeness, 4, 6, 16, 28, 37, 38, 41–43,
52, 55, 57

correctness, 4, 6, 16, 28, 37, 38, 40, 42, 43,
46, 47, 50, 51, 57

evaluation, 42, 47, 57
Knowledge base, 4–11, 38–41, 45, 50, 74, 79,

100
Knowledge cleaning, 28, 35, 46, 49, 104

error correction, x, 46, 48
error detection, 35, 46, 47, 51, 53

Knowledge creation, 13–31, 100
automatic annotation, 20, 24, 32
manual editing, 20
mapping, 20, 23, 24
semi-automatic editing, 23, 32

Knowledge curation, 12, 35, 36, 43, 62
knowledge assessment, 37, 42, 46
knowledge cleaning, 46, 49, 104
knowledge enrichment, 52, 53, 55, 61

Knowledge engineering, 11, 12, 28, 71
Knowledge enrichment, 51–55, 61, 66

duplicate detection, 59, 61
knowledge source detection, 52
knowledge source integration, 52
resolving conflicting property value

assertions, 55, 58
Knowledge Graph Lifecycle, x, 95
Knowledge graph maintenance, 13

knowledge creation, 14–15, 20
knowledge curation, 12, 35–62, 66
knowledge deployment, 11, 62–68
knowledge hosting, 11, 31–35

Knowledge Graph Platform, 99
Knowledge Graph Systems (KGS), 114, 115
Knowledge Graph Technology, 68, 101
Knowledge hosting, 31–35
Knowledge infrastructure, 82
Knowledge learning, 11

Knowledge representation formalism, 4, 23, 36,
37, 42, 47, 55, 61, 62, 70

Knowledge Vault, 10

L
Lexical gap, 88, 89
Linked data, 6, 23, 62, 84
Linked Open Data (LOD), 6, 34, 50, 62,

63, 67
Logic reasoning, 70

M
Machine learning, 2, 7, 8, 10, 23, 24, 26, 31, 49,

56, 58, 78, 100
Mapping, 8, 14, 15, 20, 23–25, 32, 34, 58, 63,

85, 87, 89, 98, 100, 107
Microdata, 5, 15, 34, 74
Microtheories, 9, 82, 114
MongoDB, 24, 32, 34, 82

N
Natural language generation, 98
Natural language processing (NLP), 7, 10, 24,

31, 69, 78
Natural language understanding, 90, 92, 97,

98, 100

O
Ontologies, 2, 6, 31, 38, 40, 71, 84, 89
Open Knowledge Graph, 6, 8, 89

datacommons.org, 8
DBpedia, 6–8, 45, 47, 51, 55, 89, 104
freebase, 7, 10, 42
KBpedia, 8
NELL, 7, 8
wikidata, 8
YAGO, 7

Open Touristic Knowledge Graph, 66
OWL, 3, 7, 8, 10, 23, 83, 84, 91, 92, 100

P
Personal assistant, 16, 69, 75, 85, 90, 107,

110–112
Proprietary Knowledge Graph, 6

Cyc, 9
facebook’s entities graph, 9
google’s knowledge graph, 9
knowledge vault, 10
yahoo’s knowledge graph, 10

146 Index

Q
Query answering engine, 73

R
RDF, 31, 35, 43, 50, 59, 64, 66, 89
RDFa, 5, 15, 34, 74
Reasoner, 2, 49
Reasoning agent, 80–82
REST, 63, 83, 84, 91
RML, 25, 63
R2RML, 24

S
Schema.org, ix, xi, 1, 3–5, 8–10, 18, 19, 24, 28,

31, 32, 38, 40, 46, 52, 62, 63, 65–67, 74,
85, 89, 92, 99, 100, 108

Schema.org actions, 85
Search engine, 15, 16, 31, 42, 68, 73, 74, 87
Semantic web, 3, 5–7, 50, 70, 72, 88
Semantic web service, x, 83, 84, 92
Semantify.it, 20–22, 24, 28–30, 32–34, 63, 82, 85
Shapes Constraint Language (SHACL), 50, 62

SKOS, 20, 49
SOAP, 63, 83, 84, 91
Software agent, ix, 1
SPARQL, 7, 8, 34, 35, 37, 43, 45, 50, 56, 63,

65, 66, 87
Static data, 23, 63, 83, 108

T
TBox, 4, 36, 37, 52, 79, 82, 114
Tirol Knowledge Graph (TKG), 63

V
Validation, x, 20, 28, 29, 31, 46, 51
Verification, x, 20, 28, 46, 51, 80

W
Web API, 63, 85, 91, 92

X
XML, 23, 35, 63, 100

Index 147

	Foreword
	Preface
	Acknowledgment
	Contents
	Chapter 1: Introduction: What Is a Knowledge Graph?
	1.1 Introduction
	1.2 A Conceptual Definition of Knowledge Graphs
	1.3 An Empirical Definition of Knowledge Graphs
	1.3.1 Open Knowledge Graphs
	1.3.2 Proprietary Knowledge Graphs

	Chapter 2: How to Build a Knowledge Graph
	2.1 Introduction
	2.2 Knowledge Creation
	2.2.1 Knowledge Creation Methodology
	2.2.2 Our Modelling Language
	2.2.3 Knowledge Generation Tools
	2.2.3.1 Manual Editing
	2.2.3.2 Semi-automatic Editing
	2.2.3.3 Mapping
	2.2.3.4 Automatic Annotation Tools
	2.2.3.5 Evaluation

	2.3 Knowledge Hosting
	2.3.1 Collection, Storage, and Retrieval of Semantic Annotations
	2.3.2 Collection, Storage, and Retrieval of Knowledge Graphs

	2.4 Knowledge Curation
	2.4.1 A Maximal Simple Knowledge Representation Formalism
	2.4.2 Knowledge Assessment
	2.4.2.1 Literature
	2.4.2.2 Task Types
	2.4.2.3 Methods and Tools

	2.4.3 Knowledge Cleaning
	2.4.3.1 Literature
	2.4.3.2 Task Types
	2.4.3.3 Methods and Tools
	2.4.3.4 Summary

	2.4.4 Knowledge Enrichment
	2.4.4.1 Literature
	2.4.4.2 Task Types
	2.4.4.3 Methods and Tools
	2.4.4.4 Summary

	2.4.5 Summary on Knowledge Curation

	2.5 Knowledge Deployment: The Use of the Pudding Is in the Eating

	Chapter 3: How to Use a Knowledge Graph
	3.1 Introduction
	3.2 Merging Artificial Intelligence and the Internet
	3.2.1 60 Years of AI in a Glimpse
	3.2.2 The Web (for Bots)
	3.2.3 Summary

	3.3 Knowledge Access Layer
	3.3.1 Loosely Connected TBoxes Defining Logic-Based Views on Knowledge Graphs
	3.3.2 Dynamic and Active Data: Semantic Web Services

	3.4 Open and Service-Oriented Dialog Systems
	3.4.1 Open Dialog Systems
	3.4.2 Service-Guided Dialogs
	3.4.3 Summary

	Chapter 4: Why We Need Knowledge Graphs: Applications
	4.1 Introduction
	4.2 The Market
	4.3 Motivation and Solution
	4.4 Touristic Use Cases
	4.5 Energy Use Cases
	4.6 Further Verticals
	4.7 Summary

	Chapter 5: Conclusions
	Appendix
	A.1 Abstract Syntax and Semantics of Domain Specifications
	A.1.1 SHACL (As We Adopt)
	A.1.2 Conceptual Description of Domain Specification
	A.1.2.1 Simple Domain Specification (SDS)
	A.1.2.2 Restriction Domain Specification
	A.1.2.3 Extension Domain Specification

	A.1.3 Abstract Syntax
	A.1.4 Semantics

	References
	Index

