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a b s t r a c t 

Mining valuable hidden knowledge from large-scale data relies on the support of reasoning technology. 

Knowledge graphs, as a new type of knowledge representation, have gained much attention in natural 

language processing. Knowledge graphs can effectively organize and represent knowledge so that it can 

be efficiently utilized in advanced applications. Recently, reasoning over knowledge graphs has become 

a hot research topic, since it can obtain new knowledge and conclusions from existing data. Herein we 

review the basic concept and definitions of knowledge reasoning and the methods for reasoning over 

knowledge graphs. Specifically, we dissect the reasoning methods into three categories: rule-based rea- 

soning, distributed representation-based reasoning and neural network-based reasoning. We also review 

the related applications of knowledge graph reasoning, such as knowledge graph completion, question 

answering, and recommender systems. Finally, we discuss the remaining challenges and research oppor- 

tunities for knowledge graph reasoning. 
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1. Introduction 

Reasoning is one of the basic forms of simulated thinking, and

a process of deducing new judgements (conclusions) from one or

several existing judgements (premises). The reason why AlphaGo

was able to win at Chinese chess is that it has super reasoning

ability and artificial intelligence to provide a new interpretation

from a small amount of data. Thus, reasoning ability is very im-

portant. The DeepMind points out that artificial intelligence algo-

rithms must have reasoning capabilities and the process of reason-

ing must rely on prior knowledge and experience 

In the era of knowledge engineering, a large number of knowl-

edge graphs (KGs), such as YAGO ( Suchanek, Kasneci, & Weikum,

2008 ), WordNet ( Miller, 1995 ), and Freebase ( Bollacker, Evans, Par-

itosh, Sturge, & Taylor, 2008 ) have been developed. KGs contain a

large amount of prior knowledge but can also effectively organize

data. They have been widely used for question-answering systems,

search engines, and recommendation systems. Knowledge graphs

are able to mine, organize, and effectively manage knowledge from

large-scale data to improve the quality of information services and

provide users with smarter services. All of these facets rely on the

support of knowledge reasoning over knowledge graphs which is

therefore one of the core technologies in the field of reasoning. 

Knowledge reasoning over knowledge graphs aims to identify

errors and infer new conclusions from existing data. New relations

among entities can be derived through knowledge reasoning and

can feed back to enrich the knowledge graphs, and then support

the advanced applications. Considering the wide application fore-

ground of knowledge graphs, the study of knowledge reasoning on

large-scale knowledge graphs has become one research focus in

natural language processing in the past few years. 

Our main contributions are as follows: First, we complement

existing work with 147 publications. Second, we identify prob-

lems faced by these methods. Finally, we discuss future direc-

tions of this research field. The rest of this paper is organized

as follows. Section 2 states the methodology used to find and

filter surveyed publications. Section 3 briefly introduces world’s

leading knowledge graphs and the definition of knowledge rea-

soning. Section 4 covers techniques that conduct reasoning based

on rules. We describe the reasoning methods based on first or-

der predicate logic rules, ontology and random walk algorithm.

Section 5 discusses reasoning techniques that further utilize rep-

resentation learning. Section 6 focuses on the techniques that

perform reasoning based on neural network and reinforcement
earning. Section 7 further explores the applications of such

nowledge in downstream tasks, such as knowledge graph com-

letion, question-answer systems, and recommendation systems.

ection 8 discusses future research directions of knowledge graph

easoning. Finally, concluding remarks end the paper. 

. Methodology 

This review follows a strict discovery methodology; inclusion

nd exclusion criteria that are used to search and restrict publi-

ations related to knowledge graph reasoning. 

Inclusion criteria Candidate articles for inclusion in the survey

eed to be part of relevant conference proceedings or search-

ble via Google Scholar. The included papers from the publication

earch engine are the first 300 results that contain ”’knowledge

raph’ AND (’reasoning’ OR ’inference’)” in the article including ti-

le, abstract and text body. Conference candidates are all publica-

ions from 2012 to 2019 in the proceedings of major natural lan-

uage processing and artificial intelligence conferences, including

CL, EMNLP, NAACL, ISWC, CIKM, AAAI, NIPS, IJCAI, ICML, WWW,

CLR and COLING. 

Exclusion criteria Works that are not related to knowledge graph

easoning are excluded, determined in a manual inspection in the

ollowing manner: First, proceeding tracks are excluded that clearly

o not contain knowledge graph reasoning related publications.

ext, publications both from proceedings and from Google Scholar

re excluded based on their title and finally on their full text. 

Result The inspection of the titles of the Google Scholar results

y three authors of this article led to 164 publications, 66 of which

elected after checking the content. The selected proceedings con-

ain 414 publications. Based on their titles, 335 of them were se-

ected and inspected, resulting in 81 publications that were catego-

ized and listed in this survey. Table 1 shows the number of pub-

ications for each source. In total, 714 candidates were found using

he inclusion criteria in Google Scholar and conference proceedings

nd then reduced according to exclusion criteria, resulting in 147

ublications. 

. Introduction to knowledge reasoning 

.1. Definition of knowledge reasoning 

Reasoning technique has a long history. As early as in ancient

reece period, the famous philosopher Aristotle proposed the syl-
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Table 1 

Sources of publication candidates along with the num- 

ber of publications in total, after excluding based on 

the title (I), and finally based on the full text (se- 

lected). Works that are found both in a conference’s 

proceedings and in Google Scholar are only counted 

once, as selected for that conference. . 

Venue All I Selected 

Google Scholar Top 300 300 164 66 

ACL 39 23 7 

EMNLP 54 49 17 

NAACL 46 27 5 

ISWC 60 42 3 

CIKM 45 29 4 

AAAI 36 36 17 

IJCAI 41 41 7 

ICML 15 14 4 

NIPS 34 34 6 

WWW 30 26 6 

ICLR 5 5 3 

COLING 9 9 2 

Conference 414 335 81 

All 714 499 147 
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Table 2 

Examples of world’s leading knowledge graphs and their 

statistics ( Paulheim, 2017 ). 

Knowledge graphs #Entities #Relations #Facts 

WordNet 0.15M 200,000 4.5M 

Freebase 50M 38,000 3B 

YAGO 17M 76 150M 

DBpedia (En) 4.8M 2800 176M 

Wikidata 16M 1673 66M 

NELL 2M 425 120M 
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ogism which is the basis of modern deductive reasoning. From the

ambda Calculus which defines computers to various intelligent

omputing platforms, and from expert system to large-scale knowl-

dge graphs, all of which are inseparable from reasoning. With re-

pect to the basic concepts of knowledge reasoning, academia has

iven different definitions. Zhang and Zhang (1992) pointed out

hat reasoning is the process of analyzing, synthesizing and mak-

ng decisions on various things, starting from collecting the exist

acts, discovering interrelationships between things, to developing

ew insight. In short, reasoning is the process of drawing conclu-

ions from existing facts by the rules. Kompridis (20 0 0) believed

hat reasoning is a collective term for a range of abilities, including

apacity of understanding things, apply logic, and calibrate or vali-

ate architecture based on existing knowledge. Tari (2013) defined

he concept of knowledge reasoning as the mechanism behind in-

erring new knowledge based on the existing facts and logic rules.

n general, knowledge reasoning is the process of using known

nowledge to infer new knowledge. 

Early reasoning studies were carried out among scholars in the

elds of logic and knowledge engineering. The scholars of logic ad-

ocated utilization of formalized methods to describe the objec-

ive world and it believed that all reasoning was based on exist-

ng logical knowledge, such as first-order logic and predicate logic

 Wu, Han, Li, Zheng, & Chen, 2018 ). They always focused on how

o draw correct conclusion from the known propositions and pred-

cates. In order to lighten the rigidity of the reasoning process,

ethods such as non-monotonic reasoning ( McCarthy, 1980 ) and

uzzy reasoning ( Zadeh, 1965 ) were developed for the purpose of

sing it in the more complicated situations. 

Unlike scholars from the Logic field who used propositions or

rst-order predicates to represent concepts in the objective world,

he scholars from the knowledge engineering field used semantic

etworks to represent richer concepts and knowledge for describ-

ng the relationships between entities and attributes. Nevertheless,

arly knowledge graphs were totally relied on expert knowledge.

he entities, attributes, and relationships in knowledge graph were

ntirely handcrafted by the experts in the fields, such as CyC ( Lenat

 Guha, 1989 ). 

With the explosive growth of Internet data scale, traditional

ethods based on artificially built knowledge bases (KBs) cannot

dapt to the need to mine a large amount of knowledge in the era

f big data. For this reason, data-driven machine reasoning meth-

ds have gradually become the main stream of knowledge reason-

ng research. 
.2. Introduction of leading knowledge graphs 

In 2012, Google introduced its Knowledge Graph ( Singhal, 2012 )

roject and took advantage of it to improve query result rele-

ancy and users’ search experience. Due to the increasing amount

f Web resources and release of linked open data (LOD) projects,

any knowledge graphs have been constructed. In this section, we

ill present a brief introduction of the world’s leading knowledge

raphs. Table 2 shows examples of leading knowledge graphs and

heir statistics. 

WordNet WordNet is a lexical database for the English lan-

uage. WordNet was created by the Cognitive Science Laboratory

f Princeton University in 1985. Nouns, verbs, adjectives, and ad-

erbs are grouped into sets of cognitive synonyms (synsets), each

xpressing a distinct concept. Synsets are interlinked by means of

onceptual-semantic and lexical relations, like the IS-A relation be-

ween dog and mammal or the PART-WHOLE relation between car

nd engine. WordNet has been used for a number of purposes in

nformation systems, including word-sense disambiguation, infor-

ation retrieval, text classification, text summarization, machine

ranslation, and even crossword puzzle generation. WordNet ver-

ion 3.0 is the latest version available and contains more than

50,0 0 0 words and 20 0,0 0 0 semantic relations. 

Freebase Freebase is a large collaborative knowledge base con-

isting of data composed mainly by its community members. It

as constructed by Metaweb. Freebase contains data harvested

rom sources such as Wikipedia, NNDB, Fashion Model Directory,

nd MusicBrainz, as well as data contributed by its users. Free-

ase’s subjects are called ’topics’, and the data stores about them

epended on their ’type’, types themselves are grouped into ’do-

ains’. Google’s Knowledge Graph is powered in part by Freebase.

here are about 3 billion triples currently in Freebase. 

YAGO YAGO ( Suchanek, Kasneci, & Weikum, 2007 ) is an open

ource knowledge base developed by the Max Planck Institute.

he information in YAGO is extracted from Wikipedia (e.g., cat-

gories, redirects, infoboxes), WordNet (e.g., synsets, hyponymy),

nd GeoNames. YAGO combines the clean taxonomy of WordNet

ith the richness of the Wikipedia category system, assigning the

ntities to more than 350,0 0 0 classes. YAGO attaches a temporal

imension and a spatial dimension to many of its facts and enti-

ies. It extracts and combines entities and facts from 10 Wikipedias

n different languages. Currently, YAGO has knowledge of more

han 17 million entities (like persons, organizations, cities, etc.) and

ontains more than 150 million facts about these entities. YAGO

as been used in the Watson artificial intelligence system. 

DBpedia DBpedia is a cross-language project aiming to extract

tructured content from the information created in the Wikipedia

roject. There are more than 45 million interlinks between DB-

edia and external datasets including Freebase, OpenCyc, etc. DB-

edia uses the resource description framework (RDF) to represent

xtracted information. The entities of DBpedia are classified in a

onsistent ontology, including persons, places, music albums, films,

ideo games, organizations, species, and diseases. DBpedia was

sed as one of the knowledge sources in IBM Watson’s Jeopardy!
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winning system and can be integrated into Amazon Web Services

applications. 

Wikidata Wikidata is a multilingual, open, linked, structured

knowledge base that can be read and edited by both humans

and machines. It supports more than 280 language versions of

Wikipedia with common source of structured data. Wikidata in-

herits crowdsourcing collaboration mechanism from Wikipedia and

also supports editing based on triples. It relies on the notions

of item and statement. An item represents an entity. A state-

ment is composed of one main property-value pair that encodes

the fact like ”taxon name is Pantera Leo” and optional qualifiers

to add information about it like ”taxon author is Carl Linnaeus”

( Pellissier Tanon, Vrande ̌ci ́c, Schaffert, Steiner, & Pintscher, 2016 ). 

NELL Never-Ending Language Learning system (NELL) is a se-

mantic machine learning system that runs 24/7, forever, learning

to read the web. It is developed by a research team at Carnegie

Mellon University. The inputs to NELL include (1) an initial on-

tology defining hundreds of categories and relations that NELL is

expected to read about, and (2) 10 to 15 seed examples of each

category and relation. Given these inputs, NELL automatically ex-

tracts triple facts from the Web. So far, NELL has accumulated over

120 million candidate beliefs by reading the web, and it is consid-

ering these at different levels of confidence, along with hundreds

of learned phrasings, morphological features, and web page struc-

tures that NELL uses to extract beliefs from the web. 

3.3. Knowledge reasoning oriented knowledge graph 

With the development of knowledge graphs, reasoning over

knowledge graphs has also increased a general concern. Referring

to the definition of reasoning, we give the definition of reasoning

over knowledge graphs as follows: 

Definition 1Knowledge reasoning over KGs:. Given a knowledge

graph KG = < E, R, T > and the relation path P , where E, T represent

the set of entities, R denotes the set of relations, and the edges in R

link two nodes to form a triple ( h, r, t ) ∈ T , generating a triplet that

does not exist in the KG G 

′ = { (h, r, t) | h ∈ E, r ∈ R, t ∈ T , (h, r, t) /∈
G } . 

Its goal is to use machine learning methods to infer potential

relations between entity pairs and identify erroneous knowledge

based on existing data automatically with the purpose of comple-

menting KGs. For examples, if the KG contains a fact like ( Microsoft,

IsBasedIn, Seattle ), ( Seattle, StateLocatedIn, Washington ) and ( Wash-

ington, CountryLocatedIn, USA ), then we obtain the missing link ( Mi-

crosoft, HeadquarterLocatedIn, USA ). The object of knowledge rea-

soning is not only the attributes and relations between entities,

but also the attribute values of entities and the conceptual hier-

archy of ontology. For example, if an entity’s identity card number

attribute is known, the entity’s gender, age, and other attributes

can be obtained through reasoning. 

KG is basically a semantic network and a structured semantic

knowledge base which can formally interpret concepts and their

relations in the real world ( Xu, Sheng, He, & Wang, 2016 ). There

is no need for knowledge graph to adopt cumbersome structure

such as framework ( Minsky, 1988 ) and script ( Norenzayan, Smith,

Kim, & Nisbett, 2002 ) in structed expressions, instead of simple

triples with more flexible forms. Therefore, reasoning over knowl-

edge graph is not limited to traditional reasoning methods based

on logic and rules, but also can be diverse. At the same time,

knowledge graph consists of instances, which makes the reasoning

methods more concrete. 

In recent years, researchers have implemented many open in-

formation extraction (OIE) systems, such as TextRunner ( Banko, Ca-

farella, Soderland, Broadhead, & Etzioni, 2007 ), WOE ( Wu &

Weld, 2010 ), which greatly expands the data source for knowledge
raph construction Akbik and Löser (2012) ; Banko et al. (2007) ;

ader, Soderland, and Etzioni (2011) ; Kertkeidkachorn and

chise (2017) ; Wu and Weld (2010) and Zhang et al. (2019a) .

o, the rich contents of knowledge bases provide new opportuni-

ies and challenges for the development of knowledge reasoning

echnology. With the popularity of knowledge representation

earning, neural networks and other technologies, a series of new

easoning methods have been coming out. 

. Knowledge reasoning based on logic rules 

Early knowledge reasoning approaches including ontology rea-

oning have received much attention and produced a series of rea-

oning methods. Furthermore, these methods including predicate

ogic reasoning, ontology reasoning, and random walk reasoning,

an be applied for reasoning over knowledge graphs. 

.1. Knowledge reasoning based on first-order predicate logic rules 

Reasoning mainly relies on first-order predicate logic rules in

he early stage of statistical relational learning study. First-order

redicate logic uses propositions as the basic unit for reasoning,

hile propositions contain individuals and predictions. Individuals

hat can exist independently correspond to entity objects in the

nowledge base. They can be a concrete thing or an abstract con-

ept. The predicate is used to describe the nature and things of

he individual. For example, interpersonal relationships can be rea-

oned using first-order predicate logic by regarding relationships

s predicates, characters as variables, and using logical operators

o express interpersonal relationships, and then setting the logic

nd constraints of relational reasoning to perform simple reason-

ng. The process of reasoning using first-order predicate logic is

iven in the following formula, 

( YaoMing, wasBornIn, Shanghai ) ∧ ( Shanghai, locatedIn,

hina ) ⇒ ( YaoMing, nationality, China ) 

First-Order Inductive Learner (FOIL) ( Schoenmackers, Etzioni,

eld, & Davis, 2010 ) is a typical work of predicate logic, which

ims to search all the relations in the KG and acquire the Horn

lauses set of each relation as a feature pattern for predicting

hether the correspondence exists. Finally, the relation discrim-

nation model is obtained using the machine learning method.

here are a large number of related works about FOIL. For ex-

mple, nFOIL and tFOIL ( Landwehr, Kersting, & Raedt, 2007 ) in-

egrate the naïve Bayes learning scheme and a tree augmented

aïve Bayes with FOIL respectively. nFOIL guides the structure

earch by the probabilistic score of naïve Bayes. tFOIL relaxes the

aïve Bayes assumption to allow additional probabilistic depen-

encies between clauses. kFOIL ( Landwehr, Passerini, De Raedt, &

rasconi, 2010 ) combines FOIL’s rule learning algorithm and ker-

el methods to derive a set of features from a relational rep-

esentation. So, FOIL searches relevant clauses that can be used

s features in kernel methods. Nakashole, Sozio, Suchanek, and

heobald (2012) present a query-time first-order reasoning ap-

roach for uncertain RDF knowledge bases with a combination of

oft deduction rules and hard rules. Soft rules are used for deriv-

ng new facts, while hard rules are used to enforce consistency

onstraints among both KG and inferred facts. Galárraga, Teflioudi,

ose, and Suchanek (2013) propose the AMIE system for min-

ng Horn rules on a knowledge graph. By applying these rules to

he KBs, new facts can be derived for complementing knowledge

raphs and detecting errors. 

Traditional FOIL algorithms achieve high inference accuracy

n small-scale knowledge bases. In addition, experimental results

how that the ”entity-relation” association model has strong rea-

oning ability. However, it is difficult to exhaust all inference pat-

erns due to the complexity and diversity of entities and relations
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n large-scale knowledge graphs. In addition, the high complex-

ty and the low efficiency of exhaustive algorithms make orig-

nal FOIL algorithm inappropriate for reasoning over large-scale

raphs. To solve this problem, Galárraga, Teflioudi, Hose, and

uchanek (2015) extend AMIE to AMIE+ by a series of pruning and

uery rewriting techniques for mining even larger KBs. Addition-

lly, AMIE+ increases the precision of the predictions by consider-

ng type information and using joint reasoning. Demeester, Rock-

äschel, and Riedel (2016b) present a scalable method to incor-

orate first-order implications into relation representations to im-

rove large scale KG inference. While AMIE+ mines a single rule

t a time, Wang and Li (2015) propose a novel rule learning ap-

roach named RDF2Rules. RDF2Rules mines Frequent Predicate Cy-

les (FPCs) to parallelize this process. It is more efficient to deal

ith large-scale KBs than AMIE+ due to a proper pruning strategy. 

To formalize the semantic web and inference efficiently, some

esearchers proposed a tractable language, called description logic

DL). Description logic is a crucial foundation for ontology rea-

oning that was developed on the basis of propositional logic

nd first-order predicate logic. The goal of description logic is

o balance representation power and reasoning complexity. It

an provide well-defined semantics and powerful reasoning tools

or knowledge graphs and satisfy the needs of ontology con-

truction, integration and evolution. Therefore, it is an ideal

ntology language. A KB expressed using a DL is composed

f terminological axioms (TBox) and assertional axioms (ABox)

 Lee, Lewicki, Girolami, & Sejnowski, 1999 ). The TBox is composed

f a collection of inclusion assertions stating general properties

f concepts and roles. For instance, an assertion is the one that

tates that a concept denotes a specialization of another concept.

he ABox consists of assertions on individual objects. The con-

istency of the knowledge base is the basic problem in knowl-

dge graph reasoning. The complex entity or relation reasoning

n a knowledge graphs can be transformed into a consistency de-

ection problem through TBox and ABox, thus refining and re-

lizing knowledge reasoning. Halaschek-Wiener, Parsia, Sirin, and

alyanpur (2006) present an description logic reasoning algorithm

or complementing knowledge graphs under both the addition

nd removal of ABoxes assertions. It provides a critical step to-

ards reasoning over fluctuating/streaming data. Calvanese, De Gi-

como, Lembo, Lenzerini, and Rosati (2006) propose the language

QL based on an epistemic first-order query language, which is

ble to reason about incompleteness for querying description logic

nowledge graphs. A large number of fuzzy description logics

re proposed to extend classical description logics with fuzzy ca-

ability. Li, Xu, Lu, and Kang (2006) propose a novel discrete

ableau algorithm for satisfiability of FSHI knowledge bases with

eneral TBoxes, which supports a new way to achieve reason-

ng with general TBoxes in fuzzy DLs. Furthermore, Stoilos, Sta-

ou, Pan, Tzouvaras, and Horrocks (2007) extend DL with fuzzy

et theory in order to represent knowledge and perform rea-

oning tasks. To equip description logics for dealing with meta-

nowledge, Krötzsch, Marx, Ozaki, and Thost (2018) enrich DL con-

epts and roles with finite sets of attribute-value pairs, called at-

ributed description logics, for knowledge graph reasoning. Existing

L reasoners do not provide users explanation services. To address

his problem, Bienvenu, Bourgaux, and Goasdoué (2019) develop a

ramework to equip reasoning system with explanation ability un-

er inconsistency-tolerant semantics. 

.2. Knowledge reasoning based on rule 

The basic idea of rule-based knowledge reasoning models is to

eason over KG by applying simple rules or statistical features. The

easoning component of Never-Ending Language Learning system

NELLs) ( Mitchell et al., 2015 ) learns the probability rule and then
nstantiates the rule after manual screening, finally inferring a new

elationship instance from other learned relation instances. Spass-

AGO expands the knowledge graph by abstracting the triples into

quivalent rule classes. Paulheim and Bizer (2014) propose SD-

ype and SDValidate that exploit statistical distributions of prop-

rties and types for type completion and error detection. SDType

ses the statistical distribution of types in the head entity and tail

ntity position of the property for predicting the entities’ types.

DValidate computes the relative predicate frequency (RPF) for

ach statement, with a low RPF value meaning incorrect. Jang and

egawati (2015) present a new approach for evaluating the quality

f knowledge graph. They choose the patterns appearing more fre-

uently as the generated test patterns for evaluating the quality of

nowledge graph after analyzing the data patterns. Wang, Mazaitis,

nd Cohen (2013) and Wang, Mazaitis, Lao, and Cohen (2015) pro-

ose Programming with Personalized PageRank (ProPPR) for rea-

oning over a knowledge graph. Reasoning for ProPPR is based on

 personalized PageRank process over the proof constructed by

LD resolution theorem-prover. Catherine and Cohen (2016) have

hown that ProPPR can be used for performing knowledge graph

ecommendations. They formulate the problem as a probabilis-

ic inference and learning task. Cohen (2016) propose TensorLog,

here inference uses a differentiable process. Inspired by Tensor-

og, Yang, Yang, and Cohen (2017) describe a framework, neural

ogic programming, in which the structure and parameter learn-

ng of logical rules are combined in an end-to-end differentiable

odel. 

Rule-based reasoning methods can also combine manually de-

ned logic rules with various probability graph models and then

btain new facts by performing knowledge reasoning based on

he constructed logical network. For example, Jiang, Lowd, and

ou (2012) propose a Markov logic-based system for cleaning

ELL. This allows knowledge bases to make use of joint probabilis-

ic reasoning, or, applies Markov logic network (MLN) ( Richardson

 Domingos, 2006 ) to a web-scale problem. It uses only the on-

ological constraints and confidence scores of the initial system,

nd labelled data. Chen and Wang (2014) present a probabilistic

nowledge base (ProbKB), which allows an efficient SQL-based in-

erence algorithm for knowledge completion that applies MLN in-

erence rules in batches. Kuželka and Davis (2019) theoretically

tudy the suitability of learning the weights of a Markov logic

etwork from a KB in the presence of missing data. After learn-

ng the weights, an MLN could be used to infer additional facts

o complete knowledge graphs. However, it is difficult to intro-

uce clause confidence into MLN, because the clause value in logic

ules must be Boolean variables. Moreover, various combinations

f Boolean variable assignments make learning and reasoning dif-

cult to optimize. To solve this problem, probabilistic soft logic

PSL) ( Kimmig, Bach, Broecheler, Huang, & Getoor, 2012 ) is pro-

osed. PSL uses FOIL rules as a template language for graphical

odels over random variables with soft truth values ranging in the

nterval [0,1]. Reasoning in this setting is considered as a continu-

us optimization task, which can be handled efficiently. For this

eason, Pujara, Miao, Getoor, and Cohen (2013a) use PSL to rea-

on candidate facts and their relevant extraction confidences col-

ectively, recognize co-referent entities, and incorporate ontologi-

al constraints. Furthermore, they propose a partitioning technique

 Pujara, Miao, Getoor, & Cohen, 2013b ) to reason over large-scale

nowledge graph with considering balancing the reasoning speed

nd accuracy. The method first generates a knowledge graph where

ntities and relations are nodes, ontological constraints are edges.

hen the edge min-cut, a clustering technique, is used to parti-

ion the relations and labels. Finally, it uses PSL to define a joint

robability distribution over knowledge graphs to accomplish col-

ective reasoning. Bach, Broecheler, Huang, and Getoor (2017) pro-

ose Hinge-Loss Markov Random Fields (HL-MRFs), which can
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capture relaxed, probabilistic inference with Boolean logic and ex-

act, probabilistic inference with fuzzy logic, making them useful

models for both discrete and continuous data. They also introduce

PSL to make HL-MRFs easy to define and use for large KGs. 

4.3. Knowledge reasoning based on ontology 

Knowledge reasoning over knowledge graphs, which is inti-

mately bound up with ontology languages such as Resource De-

scription Framework Schema (RDFS) and Web Ontology Language

(OWL), is closely related to ontology. A knowledge graph can be re-

garded as a data structure of knowledge storage. Although it does

not have formal semantics, it can reason by applying RDFS or OWL

rules to a KG. Pujara et al. (2013b) have proven that the ontology

represented by OWL EL is suitable for being transformed into a

KG and perform reasoning on it efficiently. The reasoning method

based on ontology mainly uses the more abstract frequent pat-

terns, constraints or paths to infer. When reasoning through the

ontology conceptual layer, the concept is mainly described by the

OWL. OWL is able to provide rich statements and is capable of

knowledge representation. 

Zou, Finin, and Chen (2004) propose an inference engine F-OWL

which use a Frame-based system to reason with OWL ontologies.

F-OWL supports consistency checking of the knowledge base, ex-

tracts hidden knowledge via resolution and supports further com-

plex reasoning by importing rules. Sirin, Parsia, Grau, Kalyanpur,

and Katz (2007) present the OWL-DL reasoner Pellet to support

incremental reasoning against dynamic knowledge graphs through

reusing the reasoning results from previous steps to update the

process incrementally. Chen, Goldberg, Wang, and Johri (2016) pro-

pose the ontological pathfinding (OP) algorithm that generalizes

to web-scale KBs through a range of optimization and paralleliza-

tion technologies: a relational KB model to use reasoning rules in

turn, a novel rule mining algorithm to divide the mining tasks

into smaller sole child tasks, and a pruning strategy to remove

noisy and resource-consuming rules before using them. Wei, Luo,

and Xie (2016a) propose and implement a distributed knowledge

graph reasoning system (KGRL) based on OWL2 RL inference rules.

KGRL has a more powerful reasoning ability due to more expres-

sive rules. It can eliminate redundant data and make the reasoning

result more compact through optimization. In addition, it can also

find the inconsistent data within a knowledge graph. 

For reasoning methods based on ontology to be efficient, it is

important that they are scalable to large-scale knowledge graphs.

Zhou et al. (2006) present a storage and inference system Min-

erva for large-scale OWL ontologies. Minerva combines a DL rea-

soner and a rule engine for ontology inference to improve effi-

ciency. In order to improve the scalability and performance of rea-

soning, Soma and Prasanna (2008) propose two methods to par-

allelize the inference process for OWL knowledge bases. In the

data partitioning approach, knowledge graph is partitioned and the

complete rule-base is applied to each subset of the KG. In the rule-

base partitioning approach, the rule-base is partitioned and each

node of a parallel system applies one subset of rules to the origi-

nal KG. Chen, Chen, Zhang, Chen, and Wu (2013b) present an OWL

reasoning framework for massive and complex biomedical knowl-

edge graph, which takes advantage of MapReduce algorithm and

OWL property chain reasoning method. Recently, Marx, Krötzsch,

and Thost (2017) present a simpler, rule-based fragment of multi-

attributed predicate logic that can be used for ontological reason-

ing on a large knowledge graph. 

4.4. Knowledge reasoning based on random walk algorithm 

A line of research has proven that incorporating path rules into

knowledge reasoning can improve inference performance. Inspired
y this, many researchers have injected path rules into knowl-

dge reasoning tasks. The path ranking algorithm (PRA) ( Lao &

ohen, 2010 ) is a general technique for performing reasoning in

 graph. To learn an inference model for a particular edge type

n a KB, PRA finds sequences of edge types that frequently link

odes that are instances of the edge type being predicted. PRA

hen use those types as features in a logistic regression model to

redict missing edges in the graph. A typical PRA model is com-

osed of three components: feature extraction, feature computa-

ion, and relation-specific classification. The first step is to find

 set of latent valuable path types that link the entity pairs. To

his end, PRA performs a path constraint random walk over the

raph to record those starting from h and ending at t with limited

engths. The second step is to compute the values in the feature

atrix by calculating random walk probabilities. Given a node pair

 h, t ), and a path π , PRA computes the feature value as a random

alk probability p ( t | h, π ), i.e., the likelihood of reaching t when

iven a random starting from h and following relations contained

n π . It is calculated as follows: 

p(t| h, π) = 

∑ 

e ′ ∈ range ( π ′ ) 
p 
(
h, e ′ ;π ′ )P 

(
t| e ′ ; r l 

)

here P 
(
t| e ′ ; r l 

)
= 

r l ( e ′ ,t ) | r l ( e ′ ,t ) | . Then, the probability of a specific rela-

ion r between an entity pair ( h, t ) is calculated. The last step is to

rain each relation and obtain the weight of path features using a

ogistic regression algorithm. 

The PRA model not only has high accuracy but also significantly

mproves the computational efficiency, and provides an effective

olution to solve the problem of reasoning over large-scale knowl-

dge graphs. Lao, Mitchell, and Cohen (2011) have shown that a

oft reasoning procedure based on a combination of constrained,

eighted, random walks through the KG can be used to reliably

redict new beliefs for the KB. They describe a data-driven path-

nding method, while the original PRA algorithm generates paths

y enumeration. To make PRA applicable to reason on large-scale

Gs, they modify the path generation procedure in PRA to only

enerate paths that are potentially useful for the task. Specifically,

hey demand that a path is contained in the PRA model only if it

etrieves at least a target entity in the training set, as well as being

f length less than l , because a small number of possible relation

aths are beneficial for inference. Finally, the weighted probability

nd score of all paths between two entities is a measure of the

ikelihood that a relation exists between two entities. Furthermore,

ao, Subramanya, Pereira, and Cohen (2012) have also shown that

ath-constrained random walk models can effectively predict new

eliefs when taking advantage of combining a large-scale parsed

ext corpus and background knowledge. Experimental results show

hat the model can infer new beliefs with high accuracy by com-

ining syntactic patterns in parsed text and semantic patterns in

he background knowledge. 

Although the PRA method has good interpretability, one main

roblem of random walk inference is the feature sparsity. To

ddress this problem, Gardner, Talukdar, Krishnamurthy, and

itchell (2014) incorporate vector similarity into random walk

nference over KGs, to reduce the feature sparsity inherent us-

ng surface text. Namely, when following a series of edge types

n a random walk, they permit the walk to follow edges that

re semantically harmonious to the given edge types, as defined

y some vector space embedding of the edge types. This com-

ines notions of distributional similarity and symbolic logical in-

erence, resulting in reducing the sparsity of the feature space con-

tructed by PRA. On the one hand, reasoning on the whole knowl-

dge graph is time-consuming, and inference is usually related to

ocal information, so inference can be performed locally on the

G. On the other hand, global information is coarser in size and,
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Fig. 1. Simple illustration of TRWA. 
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hen combined with fine-grained locality information, can im-

rove the accuracy of reasoning. Based on the above two reasons,

ardner and Mitchell (2015) define a simpler and more efficient

lgorithm called subgraph feature extraction (SFE). SFE does only

he first step of PRA. They first perform a local search to charac-

erize the graph around the entity node when some node pairs are

iven. Then, they run a set of feature extractors over these local

ubgraphs to obtain feature vectors for each entity pair. It greatly

utperforms PRA, not only in time complexity but also in inference

erformance. 

Liu, Han, Jiang, Liu, and Geng (2017b) study the two potential

roblems of the basic assumptions adopted by the existing random

alk models. First, the algorithm extracts the relation path features

hrough random sampling, which improves the computational ef-

ciency while sacrificing the utilization of existing information in

he KG. Second, using the supervised learning method to establish

he relational inference model, the effectiveness of the model de-

ends on the training data, especially those affected by data spar-

ity. Accordingly, the bidirectional semantics hypothesis and the in-

erential of relational-specific graph hypothesis were proposed, and

he two-tier random walk algorithm (TRWA) was designed and im-

lemented. The model is shown in Fig. 1 . The main idea of TRWA

s to combine two different feature modeling methods, subdivide

he topological structure of the KG into global graph and local sub-

raph, and perform feature extraction separately. Finally, weight-

ng and merging the global module and the local module to obtain

omplete logic rule inference algorithm. 

A pure random walk without guidence has poor efficiency when

nding useful formulas, and may even mislead inference due to in-

roduced noise. Although some heuristic rules have been proposed

o guide random walks, they still do not perform well because

f the variety of formulas. To solve this problem, Wei, Zhao, and

iu (2016b) propose a novel goal-oriented inference algorithm that

mploys the specific inference target as the direction at each step

n the process of random walk. Specifically, to accomplish such a

oal-guided mechanism, the algorithm dynamically estimates the

otentials for each neighbour at each step of random walk. There-

ore, the algorithm is more inclined to traverse structures that are

elpful in inferring the target and preventing transfer to noisy

tructures. Previous works on PRA usually neglect meaningful asso-

iations among certain relations, and cannot obtain enough train-

ng data for less frequent relations. Wang, Liu, Luo, Wang, and

in (2016) propose a new multi-task learning framework for PRA,

alled coupled PRA (CPRA). CPRA performs inference using a multi-

ask mechanism. It consists of two modules: relation clustering

nd relation coupling. The former is used to discover highly cor-

elated relations automatically, and the latter is used for coupling

he learning of these relations. Through further coupling these re-

ations, CPRA significantly outperforms PRA in terms of inference

erformance. 

In general, the trend of knowledge reasoning based on logic

ules is to abandon the manual rules gradually and then use pat-
ern recognition to mine rules or features automatically for train-

ng models with machine learning methods. This type of model

epresents the knowledge graph as a complex heterogeneous net-

ork, so the reasoning tasks can be completed by the trans-

er probability, shortest path, and breadth-first search algorithms.

owever, this representation method has defects yet. First, the

omputational complexity of logic rule-based reasoning methods

s still high, and their scalability is poor. Second, the nodes in

he knowledge graph tend to obey the long-tailed distribution,

hat is to say, only a few entities and relations have a higher

requency of occurrence, and most of the entities and relations

ppear less frequently. Therefore, sparsity seriously affects the in-

erence performance. In addition, how to handle multi-hop reason-

ng problem remains a greater challenge for logical models. Con-

equently, Lin et al. (2015a) and Das, Neelakantan, Belanger, and

cCallum (2017) restrict the length of paths to 3-steps at most, so

hat it can reflect the logical connection between different objects.

herefore, scholars mainly focus on the reasoning methods based

n distributed representation, which is not sensitive to data spar-

ity and is more expandable. 

. Knowledge reasoning based on distributed representation 

Previous works to mine and discover unknown knowledge have

elied on logic rules and random walk over the graph for lack

f parallel corpora. Recently, embedding-based approaches have

ained much attention in natural language processing. As is shown

n Fig. 2 , these models project the entities, relations, and attributes

n the semantic network into continuous vector space to get dis-

ributed representation. Researchers have proposed a large num-

er of reasoning methods based on distributed representation, in-

luding tensor decomposition, distance, and semantic matching

odels. 

.1. Knowledge reasoning based on tensor factorization 

In the inference process, KG is often represented as a ten-

or and then is used for inferring unknown facts by tensor de-

omposition. Tensor decomposition is the process of decomposing

igh-dimensional arrays into multiple low-dimensional matrices. A

hree-way tensor X in which two nodes are identically formed by

he concatenated entities of the domain and the third mode holds

he relations is employed. A tensor entry X i jk = 1 represents that

he fact ( i th entity, k th predicate, j th entity) exists. If not, for un-

nown and unseen relations, the entry is set to zero. Then, the

riplet score is calculated by the vector obtained through factor-

zation, and the candidate with the high score is selected as the

nference result. 

The RESCAL model ( Nickel, Tresp, & Kriegel, 2011 ) is a represen-

ative method of the tensor factorization model. Fig. 3 provides an

llustration of this method. RESCAL decomposes high-dimensional

nd multi-relational data into a third-order tensor, which reduces
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Fig. 2. Translations operating on the low-dimensional embeddings of the entities from knowledge graph. 

Fig. 3. Simple illustration of RESCAL. 
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the data dimension and retains the characteristics of the origi-

nal data. It can be used for reasoning over knowledge graphs and

achieve better results. Nickel, Tresp, and Kriegel (2012) demon-

strate that tensor decomposition in the form of RESCAL factoriza-

tion is a fit reasoning method for the binary relational data of

the semantic web and demonstrate that the factorization is capa-

ble of successfully reasoning unseen triples on YAGO. Chang, Yih,

Yang, and Meek (2014) propose a new knowledge inference model,

TRESCAL, which is highly efficient and scalable. They promote

the tensor decomposition model with two innovations. First, they

remove the triples that do not satisfy the relation constraints

from the loss. Second, they introduce a mathematical technique

that significantly reduces the time computational complexity and

space computational complexity. Nickel and Tresp (2013) also ex-

tend the RESCAL tensor factorization based on logistic regression.

RESCAL-Logit uses different optimization strategies to improve in-

ference accuracy. In Wu, Zhu, Liao, Zhang, and Lin (2017) , PRESCAL

based on paths of tensor factorization is proposed. It employs PRA

to find all paths connecting the source and target nodes. Then,

these paths are decomposed by tensor factorization for reasoning.

Jainet al. (2017) develop a novel combination of matrix factoriza-

tion (MF) and tensor factorization (TF) for knowledge base infer-

ence. It shows that the inference algorithm works robustly across

diverse data, and model combination can gain better inference

performance. 

5.2. Knowledge reasoning based on distance model 

TransE ( Bordes, Usunier, Garcia-Duran, Weston, & Yakhnenko,

2013 ) is a commonly used embedding models and is the moti-

vating base model. Since the time this model was proposed, a
reat deal of work has promoted it due to its simplicity and ef-

ciency. Structured embedding (SE) method ( Bordes, Weston, Col-

obert, & Bengio, 2011 ) is a simple version of TransE. SE uses two

eparate matrices to project head and tail entity for each rela-

ion and uses topology information of KG to model entities and

elations. Since SE models relations with two separate matrices,

here is a problem of poor coordination between entities. In ad-

ition, SE performs poorly on large-scale KGs. Therefore, Bordes

t al. propose a more simplified model called TransE. The model

s inspired by the results in Mikolov, Chen, Corrado, and Dean , in

hich the model learns distributed word representations such as

ing − Man ≈ Queen − W oman . TransE model translates the poten-

ial feature representations by a relation-specific offset instead of

ransforming them through matrix multiplication. In particular, the

core function of TransE is defined as: 

f (h, r, t) = ‖ h + r − t ‖ l 1 /l 2 

here ‖ · ‖ is the l 1 or l 2 norm of the difference vector. When rea-

oning is performed, the candidate entity or relation with a small

core is the inference result. 

Despite its simplicity and efficiency, TransE cannot deal with

ne-to-N, N-to-One, and N-to-N relations effectively. For example,

iven an N-to-One relation, e.g., PresidentOf , TransE might learn in-

istinguishable representations for Trump and Obama , who have

oth been president of the United States, although they are com-

letely different entities. There are similar problems in N-to-One

nd N-to-N relations. To overcome the disadvantage of TransE in

ealing with complex relations, a useful idea is to allow an entity

o have different representations when involved in different rela-

ions. 
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Fig. 4. Simple illustration of TransH ( Wang et al., 2014c ). 
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TransH ( Wang, Zhang, Feng, & Chen, 2014c ) follows this thought

y introducing a relation-specific hyperplane. As is shown in Fig. 4 ,

ransH projects entities on a hyperplane with w r as the normal

ector. Given a triple ( h, r, t ), the entity vectors h and t are pro-

ected onto the hyperplane, resulting in: 

 r = h − w 

T 
r h w , t r = t − w 

T 
r t w 

The projections are then translated by r on the hyperplane. If

 h, r, t ) holds, then h r + r ≈ t r . The scoring function is accordingly

efined as: 

f r (h, r, t) = ‖ 

h r + r − t r ‖ l 1 /l 2 

TransH enables distinct representations of an entity in different

elations by projecting an entity to a relation-specific hyperplane.

en, Li, Mao, Chen, and Zhang (2016) present a canonical repre-

entation of KBs containing multi-fold relations. Using this repre-

entation, TransH is generalized to a new model, m-TransH. In ad-

ition, Fan, Zhou, Chang, and Zheng (2014) propose TransM which

everages the structure of the KG by pre-calculating the different

eights for each training sample in respect of its relational map-

ing property. TransR ( Lin, Liu, Sun, Liu, & Zhu, 2015b ) shares a

imilar idea with TransH. But it introduces relation-specific spaces,

nstead of hyperplanes. In TransR, entities and relations are pro-

ected into different vector spaces. Fig. 5 shows a simple illus-

ration of TransR. Given a triple ( h, r, t ), TransR first projects

ntity vectors h and t using the space-specific matrix M r , i.e.,

 r = M r h , t r = M r t , and then h r + r ≈ t r . The space-specific ma-

rix makes entities close with each other if they hold the relation

nd keeps apart from those that do not hold the relation. TransR

earns a unique vector for every relation, which may be under-

epresentative to fit all entity pairs with this relation. Moreover,

hey extend TransR through clustering various entity pairs into

roups and learning different relation embeddings for each group,

alled cluster-based TransR (CTransR). Previous methods, including

ransE, TransH, and TransR, consider only direct links in knowl-

dge graph reasoning. Lin et al. (2015a) think that multiple-hop

aths also contain a large number of inference patterns between

ntities and propose path-based TransE (PTransE). In PTransE, path

mbeddings are obtained via composition of relation embeddings,

nd inference patterns are used to infer relations of entity pairs.

TransE ( García-Durán, Bordes, & Usunier, 2015 ) also takes relation

aths into account. 

In methods such as TransE, TransH, and TransR, each relation

as only one semantics, but in reality, r may have different mean-

ngs. As is shown in Fig. 6 , for relation location , it not only repre-

ents the mountain-state relation but also represents the regional-

ountry relation. Ji, He, Xu, Liu, and Zhao (2015) propose TransD

hich is based on a dynamic matrix to solve this problem. For

 triplet ( h, r, t ), TransD utilizes two vectors to represent an en-

ity or relation. The first one represents the meaning of entity,

nd the second one is used for constructing a mapping matrix.

herefore, mapping matrices are determined by both entities and

elations. Compared with TransR/CTransR, TransD is less compli-

ated and has no matrix-vector multiplication operations, which
akes it train faster and can be applied on large-scale knowl-

dge graphs. The heterogeneity (some relations connect many en-

ities while others do not) and the imbalance (the number of

ead entities and that of tail entities in a relation may be differ-

nt) of KGs are the two issues that affect inf erence performance.

ranSparse ( Ji, Liu, He, & Zhao, 2016 ), which consists of TranSparse

share) model and TranSparse (separate) model, is proposed as a

ay to address these problems. To overcome the heterogeneity, in

ranSparse (share), the sparse degrees of transfer matrices are de-

ermined by the count of entity pairs connected by relations, and

he two sides of relations share the same transfer matrices. To han-

le the issue of imbalance of relations, in TranSparse (separate),

ach relation has two separate sparse transfer matrixces, one for

ead and the other for tail. Xiao, Huang, Hao, and Zhu (2015) think

hat current translation-based methods suffer from the oversimpli-

ed loss metric, and treat each dimension identically. To address

his issue, they propose TransA, an adaptive metric approach for

mbedding, which takes advantage of adaptive Mahalanobis met-

ic and elliptical equipotential surfaces to provide a more flexi-

le reasoning method. TransE utilizes inflexible Euclidean distance

s a metric and has a limitation in dealing with complex rela-

ions. To solve these flaws simultaneously, Fang, Zhao, Tan, Yang,

nd Xiao (2018) extend TransA to TransAH, a revised translation-

ased method for knowledge graph inference. It replaces the Eu-

lidean distance with weighted Euclidean distance by adding a di-

gonal weight matrix which assigns different weights to each fea-

ure dimension, and introduces the relation-oriented hyperplane.

inally, empirical experiments on large-scale knowledge graphs

erify that TransAH is suitable for inference. Notably, Xiao, Huang,

nd Zhu (2016) propose a generative Bayesian non-parametric in-

nite mixture, called TransG, to address the issue of multiple rela-

ion semantics. Instead of assigning only one translation vector for

ne relation, they leverage a Gaussian distribution to handle mul-

iple relation semantics by producing multiple translation compo-

ents for a relation. Thus, TransG avoids mixing up semantic com-

onents of r , and different semantics are characterized by different

omponents in TransG, which promotes the inference performance.

he score function of TransG is defined as: 

f (h, r, t) = 

M r ∑ 

m =1 

πr,m 

e 
− ‖ v h + v r,m −v t ‖ 2 2 

σ2 
h 

+ σ2 
t 

Entities and relations may contain uncertainties that are often

gnored in previous models. However, it is important to incorporate

ncertainty information into knowledge reasoning because uncer-

ainty can enhance precision of inference. Therefore, He, Liu, Ji, and

hao (2015a) propose KG2E for modelling the certainty of entities

nd relations in the space of multi-dimensional Gaussian distribu-

ions. In KG2E, each entity or relation is represented by a Gaussian

istribution, where the mean represents its position and the co-

ariance denotes its certainty. Experimental results show that KG2E

an effectively model the uncertainties of entities and relations in

he process of knowledge inference. Chen, Chen, Shi, Sun, and Zan-

olo (2019) propose a novel uncertain KG reasoning model UGKE,

hich preserves the uncertainty information. They also introduce

robabilistic soft logic to infer confidence scores for triples out of

G during training. 

Existing models solely learn from time-unknown fact triples but

eglect the temporal information in the knowledge graph. How-

ver, facts in the knowledge base always change dynamically over

ime. Recently, a line of research has incorporated time informa-

ion into the reasoning procedure. t-TransE ( Jiang et al., 2016b )

earns time-aware embedding by learning relation ordering jointly

ith TransE. They make an effort to impose temporal order on

ime-sensitive relations, e.g., wasBornIn → workAt → diedIn . To bet-

er model knowledge evolution, TAE-TransE ( Jiang et al., 2016a )
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Fig. 5. Simple illustration of TransR ( Lin et al., 2015b ). 

Fig. 6. Multiple types of entities of relation location (the relation HasPart has at least two latent semantics: composition related as ( Table, HasPart, Leg ) and location related 

as ( Atlantic, HasPart, NewYorkBay )) ( Ji et al., 2015 ) . 
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assumes that temporal ordering relations are relevant to each

other and evolve dynamically. Know-Evolve ( Trivedi, Dai, Wang, &

Song, 2017 ) models the non-linear temporal evolution of knowl-

edge components by using a bilinear embedding learning ap-

proach. They use a deep recurrent architecture to capture dy-

namical characteristics of the entities. Chekol, Pirrò, Schoenfisch,

and Stuckenschmidt (2017) present an MLN-based approach for

reasoning over uncertain temporal knowledge graphs. Leblay and

Chekol (2018) try to use side information from the atempo-

ral part of the graph for learning temporal embedding. HyTE

( Dasgupta, Ray, & Talukdar, 2018 ) directly encodes time informa-

tion to learn the temporally aware embedding. 

5.3. Knowledge reasoning based on semantic matching model 

SE uses two separate matrices to project head and tail enti-

ties for each relation r , which cannot effectively represent the se-

mantic connection between entities and relations. Semantic match-

ing energy (SME) ( Bordes, Glorot, Weston, & Bengio, 2012; 2014 )
rst represents entities and relations with vectors respectively,

nd then models correlations between entities and relations as

emantic matching energy functions. SME defines a linear form

or semantic matching energy functions and also a bilinear form.

atent factor model ( Jenatton, Roux, Bordes, & Obozinski, 2012 )

aptures various orders of interaction of the data using a bilinear

tructure. DistMult ( Yang, Yih, He, Gao, & Deng, 2015 ) simplifies

ESCAL by restricting M r to be a diagonal matrix, which reduces

he number of parameters and shows good reasoning ability and

calability in terms of validating unseen facts on the existing KB.

ickel, Rosasco, and Poggio (2016b) propose holographic embed-

ings (H ol E) to learn compositional vector space representation

f knowledge graphs. H ol E applies circular correlation to gener-

te compositional representations. Through using correlation as the

ompositional operator, H ol E can capture rich interactions but re-

ains efficient to reason and easy to train at the same time. The

ajor problem of current representation-based relational inference

odels is that they often ignore the semantical diversity of entities

nd relations, which will constrain the reasoning ability. Liu, Han,



X. Chen, S. Jia and Y. Xiang / Expert Systems With Applications 141 (2020) 112948 11 

Fig. 7. The matrix factorization framework for learning first-order logic embeddings ( Wang & Cohen, 2016 ). 
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ang, Liu, and Wu (2017c) propose a new assumption for relation

easoning in knowledge graphs, which claims that each relations

eflects the semantical connection of some specific attention as-

ects of the corresponding entities and could be modelled by se-

ectively weighting on the constituent of the embeddings to help

lleviate the semantic resolution problem. Accordingly, a semantic

spect-aware relation inference algorithm is proposed that can ef-

ectively improve the accuracy of relation inference on knowledge

raphs. 

Liu, Wu, and Yang (2017a) study the solutions of knowledge

nference from the perspective of analogical inference. They for-

ulate analogical structures and leverage them in a scoring func-

ion for optimizing the latent representations of entities and rela-

ions. In order to handle a large variety of dyadic relations, includ-

ng symmetric and antisymmetric relations, Trouillon et al. (2017) ;

rouillon, Welbl, Riedel, Gaussier, and Bouchard (2016) propose

omplEx, based on complex embeddings. In ComplEx, each entity

nd relation is represented by a complex vector, and the scoring

unction is: 

(r, s, o; θ) = Re ( < w r , e s , e o > ) 

= Re 

( 

K ∑ 

k =1 

w r,k e sk e ok 

) 

= < Re ( w r ) , Re ( e s ) , Re ( e o ) > 

+ < Re ( w r ) , Im ( e s ) , Im ( e o ) > 

+ < Im ( w r ) , Re ( e s ) , Im ( e o ) > 

− < Im ( w r ) , Im ( e s ) , Re ( e o ) > 

here w r ∈ C K is a complex vector, Re ( x ) means taking the real part

f x and Im ( x ) means taking the imaginary part of x . The score

unction represents the product of conjugate vector of r , s , o , and

hen retains the real part of the final result. It uses only the Her-

itian dot product, as it involves the conjugate-transpose of one

f the two vectors. As a consequence, facts about antisymmetric

elations can be handled well. 

.4. Knowledge reasoning based on multi-source information 

Various auxiliary information, e.g., logical rules, textual descrip-

ions and entity types can be combined to further enhance the per-

ormance. In this section, we discuss how such information can be

ntegrated. 

Logic rules can capture the rich semantics of natural language

nd support complex reasoning but often do worse in reasoning
ver large-scale knowledge graphs due to their dependence on log-

cal background knowledge. In contrast, distributional representa-

ions are efficient and enable generalization. Therefore, injecting

ogic rules into embeddings for inference has received wide atten-

ion. 

Rocktäschel, Bošnjak, Singh, and Riedel (2014) use first-order

ogic rule to guide entities and relations learning and then per-

orm logic reasoning. Furthermore, they propose a paradigm for

earning embeddings of entity pairs and relations that combine

he strengths of matrix factorization and first-order logic domain

nowledge ( Rocktäschel, Singh, & Riedel, 2015 ). Two techniques,

re-factorization inference and joint optimization, for injecting log-

cal background knowledge are presented. For pre-factorization in-

erence, they first perform logical inference on the training data

nd infer facts as additional data. They propose a joint objec-

ive that rewards predictions that satisfy given logical knowledge,

hus learning embeddings that do not require logical inference

t test time. Demeester, Rocktäschel, and Riedel (2016a) present

 highly efficient method based on matrix factorization for in-

orporating implication rules into distributed representations for

B inference. In the model, external commonsense knowledge is

sed for relation inference. Wang and Cohen (2016) propose a ma-

rix factorization method to learn first-order logic embeddings. An

verview of the framework is shown in Fig. 7 . In detail, they first

se ProPPR’s structural gradient method ( Wang, Mazaitis, & Cohen,

014a ) to generate a set of inference formulas from knowledge

raphs. Then, they use this set of formulas, background graphs,

nd training examples to generate ProPPR proof graphs. To per-

orm reasoning on the formulas, they map the training examples

nto the rows of a two-dimensional matrix, and inference formu-

as into the columns. Finally, these learned embeddings are trans-

ormed into parameters for the formulas, which makes first-order

ogic infer with learned formula embeddings. Guo, Wang, Wang,

ang, and Guo (2016) propose KALE, a novel method that learns

ntity and relation for reasoning by jointly modelling knowledge

nd logic. KALE consists of three key components: triple mod-

lling module, rule modelling module, and joint learning mod-

le. For triple modelling, they follow TransE to model triples. To

odel rules, they use t-norm fuzzy logics ( Hájek, 2013 ), which de-

nes the truth value of a complex formula as a composition of

he truth values of its constituents through specific t-norm based

n logical connectives. After unifying triplets and rules as atomic

nd complex formulas, KALE minimizes a global loss to learn en-

ity and relation embeddings. The larger the truth value is, the

etter the ground rules are satisfied. Embedding in this way can

redict new facts that cannot even be directly inferred by pure
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logical inference. Recently, Ho, Stepanova, Gad-Elrab, Kharlamov,

and Weikum (2018) have proposed an end-to-end rule learning

system guided by external sources. It can learn high-quality rules

with embedding support. pLogicNet ( Qu & Tang, 2019 ) is proposed

to combine existing rule-based methods and knowledge graph em-

bedding methods. It models the distribution of all possible triplets

with a Markov logic network, which is efficiently optimized with

the variational EM algorithm. In the E-step, a knowledge graph em-

bedding model is used to infer the hidden triplets, whereas in the

M-step, the weights of rules are updated based on the observed

and inferred triplets. Zhang et al. (2019b) propose IterE that learns

embeddings and rules iteratively at the same time for knowledge

graph reasoning. 

Multi-source information like textual information and type in-

formation, considered as supplements for the structured infor-

mation embedded in triples, is significant for inference in KGs.

Wang, Zhang, Feng, and Chen (2014b) introduce a novel method

of jointly embedding knowledge graphs and a text corpus so that

entities and words or phrases are represented in the same vec-

tor space. Specifically, they define a coherent probabilistic TransE

model (pTransE), which consists of three components: the knowl-

edge model, the text model, and the alignment model. The knowl-

edge model is used for fact modelling, and the alignment model

guarantees that the embeddings of entities and words or phrases

lie in the same space and impels two models to enhance each

other. Experimental results show that the proposed method is

very effective in reasoning new facts and capable of analogical

reasoning. Furthermore, Wang and Li (2016) propose a new text-

enhanced knowledge embedding (TEKE) method by making use of

rich context information in a text corpus. The rich textual infor-

mation is incorporated to expand the semantic structure of the

knowledge graph to better support reasoning. In TEKE, they first

annotate the entities in the corpus and construct a co-occurrence

network composed of entities and words to bridge the knowledge

graph and text information together. Based on the co-occurrence

network, they define the textual contexts for entities and relations

and incorporate the contexts into the knowledge graph structure.

Finally, a normal translation-based optimization procedure is used

for knowledge inference. Experiments on multiple datasets show

that TEKE successfully solves the issue of structure sparseness that

limits knowledge inference. He, Feng, Zou, and Zhao (2015b) in-

tegrate different knowledge graphs to infer new facts simultane-

ously. They present two improvements to the quality of reason-

ing over knowledge graphs. First, to reduce the data sparsity, they

utilize the type consistency constraints between relations and en-

tities to initialize negative data in the matrix. Second, they in-

corporate the similarity of relations between different knowledge

bases into a matrix factorization model to make use of the com-

plementarity of diverse knowledge bases. Xie, Liu, Jia, Luan, and

Sun (2016) propose a novel method TKRL to take advantage of

rich information located in hierarchical entity types. They use re-

cursive hierarchical encoder and weighted hierarchical encoder to

construct type-specific projection matrices for entities. Experimen-

tal results show that type information is significant in both pre-

dictive tasks. Tang, Chen, Cui, and Wei (2019) further propose a

novel model named MKRL to predict potential triples, which inte-

grate multi-source information, including entity descriptions, hier-

archical types, and textual relations. 

Generally, representation learning develops rapidly, and it has

shown great potential in knowledge representation and reason-

ing over large-scale knowledge graphs. Knowledge representation

learning can effectively solve the issue of data sparseness, and

the efficiency in knowledge reasoning and semantic computing is

higher than that of logic-based model. Based on TransE model,

a number of improved knowledge graph inference methods have

been proposed. However, the interpretability of these methods is
oor ( Xie, Ma, Dai, & Hovy, 2017 ). Specifically, the values of entity

nd relation vectors lack clear physical meaning. Therefore, there

s still a long way for reasoning methods based on distributed rep-

esentation to go. 

. Knowledge reasoning based on neural network 

As an important machine learning algorithm, neural network

asically imitates the human brain for perception and cognition.

t has been widely used in the fields of natural language pro-

essing and has achieved remarkable results. The neural network

as a strong ability to capture features. It can transform the fea-

ure distribution of input data from the original space into another

eature space through nonlinear transformation and automatically

earn the feature representation. Therefore, it is suitable for ab-

tract tasks, such as knowledge reasoning. 

Neural network has been used for knowledge graph inference

or a long time ( Nickel, Murphy, Tresp, & Gabrilovich, 2016a ). In

E model, the parameters of the two entity vectors do not interact

ith each other. To alleviate the problems of the distance model,

ocher, Chen, Manning, and Ng (2013) introduce a single layer

odel (SLM) which connects the entity vectors implicitly through

he nonlinearity of a standard, single layer neural network. SLM

an be used for reasoning relations between two entities. How-

ver, the non-linearity provides only a weak interaction between

ntity vectors. To this end, Socher et al. (2013) introduce an ex-

ressive neural tensor network (NTN) for reasoning that is illus-

rated in Fig. 8 . The NTN model replaces a standard linear neu-

al network layer with a bilinear tensor layer that directly relates

he two entity vectors across multiple dimensions. NTN initializes

he representation of each entity by averaging the word vectors,

hich results in improving performance. Chen, Socher, Manning,

nd Ng (2013a) improve NTN by initializing entity representations

ith word vectors learned in an unsupervised manner from text,

nd when doing this, existing relations can even be queried for

ntities that are unseen in the knowledge graphs. The increas-

ng size of knowledge graph and complex feature space make

he parameter size of reasoning methods extremely large. ( Shi &

eninger, 2017b ) present a shared variable neural network model

alled ProjE, and through a simple change in the architecture,

chieves a smaller parameter size. Liu et al. (2016a) propose a new

eep learning approach, called neural association model (NAM),

or probabilistic reasoning in artificial intelligence. They investi-

ate two NAM structures, namely, deep neural network (DNN) and

elation-modulated neural network (RMNN). In the NAM frame-

ork, all symbolic events are represented in low-dimensional vec-

or space to solve the problem of insufficient representation ability

aced by existing methods. Experiments on several reasoning tasks

ave demonstrated that both DNN and RMNN can outperform con-

entional methods. 

.1. Knowledge reasoning based on convolutional neural networks 

With the rise of deep learning, attempts are being made to in-

roduce deep learning technology into the field of knowledge rea-

oning ( Collobert et al., 2011 ). Xie et al. (2016) assert that most

xisting translation-based inference methods concentrate only on

he structural information between entities, regardless of rich in-

ormation encoded in entity description. For example, the phrase

ao Ming is a famous basketball player in China that contains the

ationality information and occupational information of the entity

ao Ming simultaneously, and these multi-source heterogeneous

nformation can be used for handling the problem of data spar-

ity effectively and enhancing the ability of distinguishing between

ntities and relation. Accordingly, they propose a novel method
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Fig. 8. Visualization of NTN ( Socher et al., 2013 ). 
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or knowledge inference, named description-embodied knowledge

epresentation learning (DKRL), which is able to make use of both

act triples and entity description. DKRL uses two encoders to

epresent semantics of entity descriptions, including a continu-

us bag-of-words (CBOW) model and a deep convolutional neural

odel, which can reduce the effect of data sparsity on the perfor-

ance of inference models. DKRL also takes the zero-shot scenario

nto consideration, in which knowledge graphs contain some novel

ntities with only descriptions. It can learn representation for these

ovel entities automatically from their descriptions. The experi-

ents in the zero-shot scenario show that the DKRL model can

till achieve favourable results on the reasoning tasks. In order to

nfer new entities out of knowledge graph, ( Shi & Weninger, 2017a )

urther propose a new open-world KGC task and introduce a model

alled ConMask to solve this task. It uses a relationship-dependent

ontent masking to highlight words that are relevant to the task

nd then trains a fully convolutional neural network (FCN) for tar-

et fusion. Experiments on both open-world datasets and closed-

orld datasets show that ConMask can achieve good performance.

owever, these reasoning methods ignore the rich attribute infor-

ation in the knowledge graph, such as age and gender can char-

cterize entities in the knowledge graph. To this end, ( Tay, Tuan,

han, & Hui, 2017 ) first propose a novel multi-task neural network

MT-KGNN), which learns representations of entities, relations and

ttributes by encoding attribute information in the process of rea-

oning. MT-KGNN consists of RelNet and AttrNet. RelNet models

he structure and relation of knowledge graph, while AttrNet mod-

ls entities and corresponding properties. Notably, it is necessary

o predefine relation and attribute. Otherwise, a large number of

nvalid calculations will occur and seriously affect the inference ac-

uracy. 

Annervaz, Chowdhury, and Dukkipati (2018) introduce a

onvolution-based model for knowledge inference. First, they use

he DKRL encoding scheme, as it emphasizes the semantic descrip-

ion of the text. Afterward, entity and relation vectors are com-

uted by the weighted sum with the attention mechanism. Exper-

ments show significant improvement in performance on the nat-

ral language inference (SNLI) dataset. Dettmers, Minervini, Stene-

orp, and Riedel (2018) propose ConvE, a multi-layer convolutional

etwork model for knowledge inference, which can scale to large

nowledge graphs. The architecture of ConvE is illustrated in Fig. 9 .

n ConvE, embedding representation of ( s, r ) pair is converted

nto a matrix and is regarded as a picture for extracting features

ith a convolution kernel. Unlike other inference methods, they

se 1-N scoring to increase convergence speed. Ravishankar, Taluk-

ar et al. (2017) observe that using a predefined scoring func-

ion, as in ConvE, might not perform well across all datasets.

hey define a simple neural network based score function ER-

LP-2d to fit different datasets. ER-MLP-2d, a variant of ER-MLP
 a  
 Schlichtkrull et al., 2018 ), translates concatenated head and tail

mbeddings using the relation embedding of size 2d, which can

chieve competitive performance on different datasets. 

.2. Knowledge reasoning based on recurrent neural network 

Knowledge reasoning techniques that fuse relation paths and

eural networks are also worth exploring. Neelakantan, Roth, and

cCallum (2015) propose an approach composing the implications

f a path using a recurrent neural network (RNN) called Path-

NN that reasons about conjunctions of multi-hop relations non-

tomically. Path-RNN uses PRA to find distinct paths for each re-

ation type and then takes embeddings of binary relation in the

ath as inputs vector. It outputs a vector in the semantic neigh-

ourhood of the relation between the first and last entity of the

ath. For example, as shown in Fig. 10 , after consuming the rela-

ion vectors along the path Microsoft → Seattle → Washington →
SA , Path-RNN produces a vector semantically close to the relation

ountryofHeadquarters . Shen, Huang, Chang, and Gao (2016) pro-

ose Implicit ReasoNets (IRNs) that learns to traverse knowledge

raphs in vector space and infer missing triples. Rather than us-

ng human-designed relation paths in symbolic space and training

 model separately, they propose to learn relation paths in vec-

or space jointly with model training without using any additional

nformation. Implicit ReasoNets also provides ways to understand

he inference process. Das et al. (2017) note that the Path-RNN

odel has three defects: (1) It reasons about chains of relations,

ut not the entities that make up the nodes of the path. (2) It

akes only a single path as evidence in predicting new predictions.

3) Path-RNN makes it impractical to be used in downstream tasks,

ince it requires training and maintaining a model for each rela-

ion type. Therefore, they present Single-Model which shares the

elation type representation and the composition matrices of the

ecurrent neural network across all target relations, enabling the

ame training data to be represented by a reduced number of pa-

ameters. The Single-Model significantly increases the accuracy and

racticality of RNN-based reasoning on Horn clause chains in large-

cale KBs. Wang, Li, Zeng, and Chen (2018c) introduce an attention

echanism for the multi-hop reasoning problem. After finding rea-

oning paths between entities, they aggregate these paths’ embed-

ings into one according to their attentions, and infer the relation

ased on the combined embedding. 

Triples are not natural language. They model the complex struc-

ure with a fixed expression ( h, r, t ). Such short sequences may

e under-representative to provide enough information for infer-

nce. Meanwhile, it is costly and difficult to construct useful long

equences from massive paths. It is inappropriate to treat them as

he same type. To solve the above problems, Guo, Zhang, Ge, Hu,

nd Qu (2018) propose DSKG that employs respective multi-layer
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Fig. 9. Simple illustration of ConvE ( Dettmers et al., 2018 ). 

Fig. 10. Inference instance of Path-RNN. 
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RNN to process entities and relations. More specifically, DSKG uses

independent RNN cells for the entity layer and the relation layer

because this KG-specific architecture is capable of achieving better

performance when relations are diverse and complex. Additionally,

the DSGE model not only predicts entities but also has the ability

to infer the triples. 

6.3. Knowledge reasoning based on reinforcement learning 

When using knowledge bases to promote question-answering

system, we sometimes use only one of the triplets in the knowl-

edge base to answer the question. However, when the question is

complicated and the knowledge base is incomplete, it is necessary

for the question-answering system to be able to infer unknown an-

swer with existing triples. The process of inferring answers can be

modelled as a serialized decision problem; thus, it can be solved

with reinforcement learning. Xiong, Hoang, and Wang (2017) pro-

pose a novel reinforcement learning framework, DeepPath, for rea-

soning over a knowledge graph, which is the first to use reinforce-

ment learning methods to solve multi-hop reasoning problems. In

Deep-Path, the RL environment is modelled as a Markov decision

process (MDP). A tuple < S, A, P, R > is used for representing the

MDP. DeepPath makes use of TransE and TransH to get representa-

tion vectors of the entities and relations. All the relations in the

knowledge graph define the action space. The different embed-

dings of two entities define the state vector. Several factors con-

tribute to the quality of the paths found by the RL agent. Thus, the

reward function includes the following scoring criteria: 

r GLOBAL = 

{
+1 , if the path reaches e target 

−1 , otherwise 

r EFFICIENCY = 

1 

length 

r DIVERSITY = − 1 

| F | 
F ∑ 

i =1 

cos ( P, P i ) 

One main problem of reasoning methods based on reinforce-

ment learning is that its action space is relatively large. Addi-
ionally, these methods cannot be applied to more complex tasks

irectly where the second entity is unknown and must be ac-

uired by inferring. This problem also exists in path-based mod-

ls ( Neelakantan et al., 2015; Toutanova, Lin, Yih, Poon, & Quirk,

016 ). Das et al. (2018) present a neural reinforcement learning

pproach, MINERVA, which learns how to guide the graph depend-

ng on the input query to find predictive paths. MINERVA avoids

uch modelling requirements. It represents the environment as a

eterministic partially observed Markov decision process (POMDP)

o reduce the action space. MINERVA encodes the history of deci-

ions it has taken in the past using long short-term memory net-

orks (LSTMs). Experiments show that MINERVA can learn long

hains-of-reasoning. MINERVA treats relation selection and entity

election jointly as relation-entity pair selection via a single pol-

cy network, which underestimates the importance of entity selec-

ion when a 1-to-N or N-to-N relation appears during the path se-

ection process. However, even if the relation path is correct, the

ifferent entities filled in the path may lead to different entities.

o solve this problem, Li, Jin, Guan, Wang, and Cheng (2018) pro-

ose a multi-agent and reinforcement learning based method for

ath reasoning (MARLPaR). More specifically, they train two agents

ointly, one for relation selection and another for entity selection.

he relation selection agent is used to find common logistic paths

or specific query relation. The entity selection agent is used to

hoose the most suitable entity from the tail entity set of the re-

ations to find the candidate entity accurately. Godin, Kumar, and

ittal (2018) address the limitation of current approaches for rea-

oning over knowledge graphs that use reinforcement learning. In-

tead of simply returning a correct or incorrect answer, they allow

he model to not answer a question by introducing a ternary re-

ard structure in which a positive reward is given to a correct an-

wer, a neutral reward for not answering a question, and a negative

eward for an incorrect answer when the candidate entity cannot

e reached in the boundary number of steps taken by an agent. 

Although MINERVA has many advantages, it also has one major

rawback: it assumes that there is an inference path while being

gnostic to the scenario that no inference path exists. Deep-Path is

rained to search more efficiently for paths between two entities

hile being agnostic to whether the entity pairs are positive or

egative, whereas MINERVA learns to arrive at target nodes given

n entity-query pair while agnostic to the quality of the found

ath. To address the previously mentioned problems, Chen, Xiong,

an, and Wang (2018b) propose using variation inference to cope

ith complex reasoning. In order to increase the robustness of ex-

sting knowledge graph reasoning models and handle noisy envi-

onments, they combine ”path-finding” and ”path-reasoning” to-

ether as a whole from the perspective of the latent variable graph
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odel. The graphic model regards the paths as discrete latent vari-

bles and relation as the observed variables with a given entity

air as the condition, thus, the path-finding module can be viewed

s a prior distribution to predict the potential links in the knowl-

dge graphs. In contrast, the path-reasoning module can be re-

arded as the likelihood distribution, which categorizes potential

inks into multiple classes. With this assumption, they introduce

n approximate posterior and design a variational auto-encoder

 Kingma & Welling, 2014 ) algorithm to maximize the evidence

ower-bound. This variational framework unifies two modules into

 unified framework and jointly train them. By active co-operations

nd interactions, the path finder can take the value of searched

ath into account and resort to more useful paths. Meanwhile, the

ath reasoner module can get more various paths from the path

nder and generalizes better to unseen scenarios. Lin, Socher, and

iong (2018) propose two modelling improvements for RL-based

nowledge graph reasoning: reward shaping and action dropout.

eward shaping combines capability in modelling the semantics of

riples with the symbolic reasoning capability of the path-based

pproach. Hard action dropout is more effective in encouraging the

olicy to sample various paths. 

Reasoning methods based neural network attempt to use the

owerful learning ability of neural network to represent the triples

n knowledge graphs and thereby obtain better reasoning ability.

owever, model interpretability of neural network still exists in the

rea of knowledge graph reasoning, and how to explain the rea-

oning ability of neural network is worth studying. To date, there

as been little research on reasoning methods based on neural net-

orks. However, its powerful representation ability and outstand-

ng performance showing in other fields promise broad prospects.

n the future, it is worth exploring how to extend existing neural

etwork methods to the filed of knowledge graph reasoning. 

. Application of knowledge graph reasoning 

Knowledge graph reasoning methods infer unknown relations

rom existing triples, which not only provides efficient correla-

ion discovery ability for resources in large-scale heterogeneous

nowledge graphs but also completes knowledge graphs. Tech-

iques such as consistency inference ensure the consistency and

ntegrity of the knowledge graph. Inference techniques can perform

omain knowledge reasoning through modelling domain knowl-

dge and rules, which can support automatic decision making, data

ining and link prediction. Due to the powerful intelligent reason-

ng ability, knowledge graphs can be widely used in many down-

tream tasks. In this section, we categorize these tasks into In-KG

pplications and Out-of-KG applications, described as follows. 

.1. In-KG applications 

.1.1. KG Completion 

Constructing a large-scale knowledge graph requires constant

pdating relations between entities. However, despite their seem-

ngly immense size, these knowledge bases are missing substantial

mounts of information. For example, over 70% of people included

n Freebase have no known place of birth, and 99% have no known

thnicity ( West et al., 2014 ). One way to fill in missing facts in a

nowledge base is to infer unknown facts based on existing triples,

hich is called knowledge graph completion, also known as link

rediction ( Liu, Sun, Lin, & Xie, 2016b ). 

Due to the noisy data source and the inaccuracy of the extrac-

ion process, noisy knowledge and knowledge contradictions phe-

omena in the knowledge graph also exist ( Dong et al., 2014 ). A

ajor problem of NELL is that the accuracy of the knowledge it ac-

uires gradually decreases as it continues to operate. After the first

onth, NELL has an estimated precision of 0.9; after two months,
recision has fallen to 0.71. The underlying reason is that the ex-

raction patterns are not perfectly reliable, so false instances are

ometimes extracted. The false instances will be used to extract

ncreasing numbers of unreliable extraction patterns and false in-

tances and finally dominate the knowledge base. NELL uses peri-

dic human supervision to alleviate incorrect triples. However, hu-

an supervision is very expensive. Thus, knowledge graph reason-

ng methods are required to clean a noisy knowledge base auto-

atically. 

.1.2. Entity classification 

Entity classification aims to determine the categories (e.g., per-

on, location) of a certain entity, e.g., BarackObama is a person, and

awaii is a location. It can be treated as a special entity prediction

ask for the reason that the relation encoding entity types (denoted

s IsA) is contained in the KG and has already been included into

he embedding process. Thus, entity classification is obviously a KG

ompletion problem. 

.2. Out-of-KG applications 

.2.1. Medical domain 

At present, the medical domain has become a domain where

nowledge graphs are actively used, and it is also a research focus

n the artificial intelligence. When applied to medical knowledge

raphs, knowledge reasoning methods can help doctors to collect

ealth data, diagnose disease, and control errors ( Yuan et al., 2018 ).

or example, Kumar, Singh, and Sanyal (2009) propose a hybrid

ethod based on case-based reasoning and rule-based reasoning

o build a clinical decision support system for an intensive care

nit (ICU). García-Crespo, Rodríguez, Mencke, Gómez-Berbís, and

olomo-Palacios (2010) design an ontology-driven differential di-

gnosis system (ODDIN), which is based on logical inference and

robabilistic refinements. Martínez-Romero et al. (2013) build an

ntology-based system for intelligent supervision and treatment

f critical patients with acute cardiac disorders, where the ex-

ert’s knowledge is represented by OWL ontology and a set of

WRL rules. On the basis of this knowledge, the inference en-

ine executes the reasoning process and provides a recommenda-

ion about the patient’s treatment for the doctor. Ruan, Sun, Wang,

ang, and Yin (2016) convert the data stored in traditional Chinese

edicine knowledge graph into inference rules and then combine

hem with patient data for ancillary prescriptions inferred based

n the knowledge graph. 

Even for the same disease, the doctor may make different di-

gnoses according to the patient’s condition because of the med-

cal domain’s dependence on subjective judgment. Thus, medical

nowledge graphs must address a large amount of repetitive con-

radictory information, which increases the complexity of the med-

cal reasoning model. Although traditional knowledge reasoning

ethods promote the automatic medical diagnosis process, they

lso have the defects of insufficient learning ability and low data

tilization rates. In the face of increasing medical data, it is in-

vitable that some information will be missing and the diagnosis

ill be too time consuming. In order to solve the above problems,

e need to explore and study efficient medical reasoning models. 

.2.2. Internet finance 

Finance is also one active area in which knowledge graphs

ave been used. The investment relationship and the employ-

ent relationship in the knowledge graph can be used to iden-

ify stakeholder groups through a clustering algorithm. When some

f the nodes have changed or large events occur, associations

etween changed entities can be inferred by path sorting and

ubgraph discovery methods. In the finance industry, anti-fraud

s an important task. Through knowledge inference, people can
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verify the consistency of information to identify fraud in advance

( Kapetanakis, Samakovitis, Gunasekera, & Petridis, 2012 ). In addi-

tion, knowledge inference also plays an important role in the field

of securities investment ( He, Ni, Cao, & Ma, 2016 ). For example,

Ding, Zhang, Liu, and Duan (2016) propose a joint model to com-

bine knowledge graph information and event embedding for stock

prediction. However, this work doesn’t capture the structural in-

formation in the text, and these information is very important for

affecting stock to increase or decrease. Therefore, Liu, Zeng, Yang,

and Carrio (2018) propose a joint learning model of tuple and texts

using the TransE model and a convolution neural network to cap-

ture structured information in event tuple. The predictive results

can support business decisions and improve investment planning. 

Knowledge graph reasoning has improved the efficiency of re-

source allocation in the finance industry, strengthened the abilities

of risk management and control, and effectively promoted the de-

velopment of the financial industry. However, current data analy-

sis and reasoning methods are difficult to meet the requirements

of large-scale data analysis due to low standardization of finance

industry data and its dispersion in multiple data systems. In re-

sponse to this problem, external knowledge bases should be intro-

duced to achieve reasoning over cross-domain large-scale knowl-

edge graphs. 

7.2.3. Intelligent question answering system 

KB-based question and answering (KBQA) analyzes query ques-

tion and then finds the answer from the knowledge base. However,

KBQA also needs the support of reasoning techniques because the

knowledge graph is incomplete. For example, Watson defeated hu-

manity in Jeopardy, in which knowledge reasoning plays an im-

portant role. The questions of Jeopardy cover various areas and re-

quire candidates to analyze and reason entailment, irony and rid-

dles. Intelligent question-answering systems, such as Apple’s Siri,

Microsoft’s Cortana, and Amazon’s Alexa, all require the support of

knowledge graph inference. 

The development of knowledge reasoning technology has laid a

technical foundation for the development of intelligent question-

answering systems. For example, Jain (2016) present factual mem-

ory network, which answers questions by extracting and rea-

soning over relevant facts from Freebase. It represents questions

and triples in the same vector space, generates candidate facts,

then finds out the answer using multi-hop reasoning. Zhang, Dai,

Kozareva, Smola, and Song (2018a) propose an end-to-end vari-

ational reasoning network (VRN) for question answering with

knowledge graph. VRN first recognizes the topic entity. Given the

topic entity, the answer to the question can be retrieved through

multi-hop reasoning on the knowledge graph. Narasimhan, Lazeb-

nik, and Schwing (2018) ropose an algorithm based on graph con-

volution net (GCN) ( Kipf & Welling, 2016 ) for reasoning in visual

question answering. When answering questions, they combine the

visualized situation with general knowledge encoded in the form

of a knowledge base. However, there are still some problems to be

solved in the intelligent question-answering systems. First, KBQA

mainly focuses on single-fact questions. Specifically, answering the

question requires only one triple in the KG. Meanwhile, for the

complex problems that require multi-step reasoning, for example,

when answering ”What’s the name of Yao Ming’s wife’s daugh-

ter?”, KBQA performs poorly. Recently, Zhang, Dai, Toraman, and

Song (2018b) imitate human brain to solve the problem. Second,

current knowledge bases are composed of factual knowledge and

lack of common sense. However, common sense plays an impor-

tant role in the process of human brain reasoning, and common

sense knowledge is difficult to standardize. Therefore, incorporat-

ing common-sense knowledge into KBQA for reasoning is a key is-

sue in intelligent question answering. 
.2.4. Recommendation systems 

The recommendation systems based on knowledge graph con-

ect user and items, which can integrate multiple data sources

o enrich semantic information. Implicit information can be ob-

ained through reasoning techniques to improve recommendation

ccuracy. There are several typical cases for recommendation based

n knowledge graph reasoning methods, such as shopping recom-

endation, movie recommendation and music recommendation.

ang et al. (2018a) propose knowledge-aware path recurrent net-

ork (KPRN), which not only generates representations for paths

y accounting for both entities and relations but also performs

easoning based on paths to infer user preference. Unlike exist-

ng approaches that focus only on leveraging knowledge graphs for

ore accurate recommendation, Xian, Fu, Muthukrishnan, de Melo,

nd Zhang (2019) propose a policy-guided path reasoning (PGPR)

ethod, which can reason over knowledge graph for recommenda-

ion with interpretation. PGPR is a flexible graph reasoning frame-

ork and can be extended to many other graph-based tasks such

s product search and social recommendation. 

With the help of reasoning techniques, it is possible to use

ulti-source heterogeneous data in recommendation systems.

owever, it is still in the initial development stage, and faces many

hallenges. In the future, how to solve the cold start issues and ex-

licit reasoning over knowledge for recommendation systems are

orth exploring. 

.2.5. Other applications 

Knowledge reasoning techniques also play an important role

n some other intelligent scenarios. For example, knowledge rea-

oning technology can be used to understand the user’s query

ntent in search engines. In addition, it can be used for other

omputational linguistics tasks such as plagiarism detection, senti-

ent analysis, document categorization, spoken dialogue systems.

pecifically, Franco-Salvador, Gupta, Rosso, and Banchs (2016a) ;

ranco-Salvador, Rosso, and Montes-y Gómez (2016b) studied

ybrid models that combine knowledge graph reasoning ap-

roach and continuous representation methods for the task of

ross-language plagiarism detection. Cambria, Olsher, and Ra-

agopal (2014) show that how use SenticNet 3 and COGBASE

o infer the polarity of a sentence. Franco-Salvador, Cruz, Troy-

no, and Rosso (2015) propose the use of meta-learning to com-

ine and enrich current approaches by adding knowledge-based

eatures obtained through inference to solve single and cross-

omain polarity classification tasks. Franco-Salvador, Rosso, and

avigli (2014) leverage a multilingual knowledge graph, i.e., Ba-

elNet, to obtain language-independent knowledge representation

or documents to solve two tasks: comparable document retrieval

nd cross-language text categorization. Ma, Crook, Sarikaya, and

osler-Lussier (2015) propose Inference Knowledge Graph to form

art of a spoken dialogue system. Wang et al. (2018b) propose a

raph reasoning model (GRM) to reason about the relationship of

wo persons from an image based on a social knowledge graph. As

eep neural networks are widely used in natural language process-

ng tasks, knowledge inference will usher in broader prospects. 

. Discussion and research opportunities 

With the development of KG, knowledge graph reasoning has

een widely explored and utilized in multiple knowledge-driven

asks, which significantly improves their performances. In this sec-

ion, we first give a brief summary of these methods to identify the

ap, and then propose research opportunities of knowledge graph

easoning. 
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Table 3 

Summary of knowledge reasoning models. 

Methods Advantages Disadvantages Representative work Applications 

rule-based inference 

capture hidden semantic information 

in KGs, improve the accuracy of 

knowledge reasoning significantly; 

simulate human reasoning ability, 

which makes it possible to incorporate 

priori knowledge to assist in reasoning 

rules are not easy to obtain; 

rules with noise can mislead 

reasoning 

MLNs 

FOIL 

PSL 

PRA 

knowledge graph completion; 

diagnosis system; 

clinical decision support system 

distributed 

representation-based 

inference 

make full use of structural information 

existing in KGs; 

simple, easy to transfer to large-scale 

KGs 

only consider the constraints 

that satisfy the KG facts, and 

the deeper compositional 

information is not considered, 

which limits the reasoning ability 

RESCAL 

SE 

TransE 

TransH 

TransR 

TransG 

knowledge graph completion; 

stock prediction; 

plagiarism 

neural network-based 

inference 

model triples directly, strong reasoning 

ability 

high complexity and poor 

interpretability 

SLM 

NTN 

knowledge graph completion; 

question-answering system; 

recommendation system 
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.1. Summary 

In this paper, we provide a broad overview of currently

vailable techniques, including rule-based reasoning methods,

istributed representation-based reasoning methods, and neural

etwork-based reasoning methods. We give a summary of advan-

ages, disadvantages, representative works and applications of each

ype of models, which is shown in Table 3 . 

To sum up, there are differences and parallels between these

hree classes of reasoning methods, and they are complimentary

n inference tasks. The relevance lies in the fact that all of them

bstract the knowledge graph into topology and then use the topo-

ogical relations between entities to model features and learn pa-

ameters. The main difference is that knowledge inference mod-

ls based on neural network integrate CNN or RNN into the repre-

entation learning model or the logic rule model, extract features

hrough the self-learning ability of deep learning model, and then

tilize its memory reasoning ability to establish an entity relation

rediction model. The representation learning model projects en-

ities and relations into a low-dimensional vector space and per-

orms reasoning based on semantic expression. The advantage is

hat the structural information in KG can be fully utilized when

enerating knowledge representation vectors. The disadvantage is

hat prior knowledge cannot be introduced to achieve inference

hen modelling. The logic rule model uses the abstract or concrete

orn clause for reasoning model, which is essentially rule-based

easoning. Its advantage is that it can simulate human logical rea-

oning behaviour, and introduce human prior knowledge to assist

n reasoning. The disadvantage is that it has not solved a series of

roblems, including dependence on domain experts, high compu-

ational complexity, and poor generalization ability. 

.2. Research opportunities 

Although existing models have already shown their powers in

easoning over KGs, there are still many possible improvements of

hem to be explored of. In this section, we will discuss the chal-

enges of knowledge graph reasoning and give potential research

pportunities. 

.2.1. Dynamical knowledge reasoning 

Existing knowledge graph reasoning approaches mainly focus

n static multi-relational data but neglect the useful time informa-

ion contained in knowledge graphs. However, knowledge is not

tatic and will evolve with time. We note that KG facts are not

niversally true, as they tend to be valid only in a specific time

cope. For instance, ( BarackObama, PresidentOf, USA ) was true only
rom 2009 to 2016. Therefore, it is quite conceivable that taking

emporal information into accountant during reasoning. Only a few

orks address this problem, but their effort s are still preliminary

nd reasoning methods for dynamical knowledge graph still need

o be further explored. 

.2.2. Zero-shot reasoning 

Existing knowledge graph reasoning models often require a

arge number of high-quality samples for training and learning,

hile it would consume considerable time and manpower. Re-

ently, zero-shot learning has attracted much attention in many

elds such as computer vision, natural language processing and so

n. Zero-shot learning can learn from an unseen class or a class

ith only a few instances. In the reasoning process, the practical

roblem is that a large number of training samples cannot be ob-

ained, resulting in many knowledge reasoning models being in-

ffective. It is natural that additional information such as text de-

cription and multi-modal information can help to deal with the

ero-shot scenario. Besides, it’s necessary to design a new frame-

ork which is more suitable for reasoning entities out of KGs. 

.2.3. Multi-source information reasoning 

With the rapid development of mobile communication technol-

gy, people can upload and share multimedia contents including

ext, audio, images, and videos on the Web anytime. How to effi-

iently and effectively utilize these rich information is becoming a

ritical and challenging problem. And multi-source information has

hown its potential to help reason over KGs while existing meth-

ds of utilizing such information are still preliminary. We could

esign more effective and elegant models to utilize these kinds of

nformation better. 

.2.4. Multi-lingual knowledge graph reasoning 

There are many KGs, such as Freebase, DBpedia have con-

tructed multilingual versions by extracting structured information

rom Wikipedia. Multilingual KGs play important roles in many ap-

lications such as machine translation, cross-lingual plagiarism de-

ection, and information extraction. However, to the best of our

nowledge, only a few works have been done for reasoning over

ultilingual KGs. For example, ( Abouenour, Nasri, Bouzoubaa, Kab-

aj, & Rosso, 2014 ) construct an Arabic question-answering system

o support semantic reasoning, and ( Chen, Tian, Chang, Skiena, &

aniolo, 2018a ) present a cross-lingual inference method for KG

ompletion based on French and German KG. Therefore, multi-

ingual knowledge graph reasoning is also a significative but chal-

enging work to be studied. 
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9. Conclusions 

KG reasoning, which aims to infer new knowledge from existing

triplets, has played an important role in many tasks and attracted

much attention. In this paper, we give a broad overview of exist-

ing approaches with a particular focus on three types of reason-

ing methods, i.e., rule-based methods, distributed representation-

based methods and neural network-based methods. Methods that

conduct reasoning using logic rules were first introduced. We de-

scribed the model details as well as advantages and disadvantages

of such methods. After that, we discuss some more advanced ap-

proaches that perform KG reasoning with other information. The

investigation on using reinforcement learning has just started and

might receive increasing attention in the near future. Finally, we

discuss the remaining challenges of knowledge graph reasoning

and its application, and then give an oulook of the further study

of knowledge graph reasoning. We hope that this review will pro-

vide new insights for further study of KG reasoning. 
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