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Abstract—Knowledge graph (KG) embedding is to embed components of a KG including entities and relations into continuous vector
spaces, so as to simplify the manipulation while preserving the inherent structure of the KG. It can benefit a variety of downstream
tasks such as KG completion and relation extraction, and hence has quickly gained massive attention. In this article, we provide a
systematic review of existing techniques, including not only the state-of-the-arts but also those with latest trends. Particularly, we make
the review based on the type of information used in the embedding task. Techniques that conduct embedding using only facts observed
in the KG are first introduced. We describe the overall framework, specific model design, typical training procedures, as well as pros
and cons of such techniques. After that, we discuss techniques that further incorporate additional information besides facts. We focus
specifically on the use of entity types, relation paths, textual descriptions, and logical rules. Finally, we briefly introduce how KG
embedding can be applied to and benefit a wide variety of downstream tasks such as KG completion, relation extraction, question
answering, and so forth.

Index Terms—Statistical relational learning, knowledge graph embedding, latent factor models, tensor/matrix factorization models.
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1 INTRODUCTION

R Ecent years have witnessed rapid growth in knowledge
graph (KG) construction and application. A large num-

ber of KGs, such as Freebase [1], DBpedia [2], YAGO [3],
and NELL [4], have been created and successfully applied
to many real-world applications, from semantic parsing [5],
[6] and named entity disambiguation [7], [8], to information
extraction [9], [10] and question answering [11], [12]. A KG
is a multi-relational graph composed of entities (nodes) and
relations (different types of edges). Each edge is represented
as a triple of the form (head entity, relation, tail entity), also
called a fact, indicating that two entities are connected by
a specific relation, e.g., (AlfredHitchcock, DirectorOf,
Psycho). Although effective in representing structured da-
ta, the underlying symbolic nature of such triples usually
makes KGs hard to manipulate.

To tackle this issue, a new research direction known as
knowledge graph embedding has been proposed and quickly
gained massive attention [13], [14], [15], [16], [17], [18], [19].
The key idea is to embed components of a KG including
entities and relations into continuous vector spaces, so as
to simplify the manipulation while preserving the inherent
structure of the KG. Those entity and relation embeddings
can further be used to benefit all kinds of tasks, such as
KG completion [14], [15], relation extraction [20], [21], entity
classification [13], [22], and entity resolution [13], [18].

Most of the currently available techniques perform the
embedding task solely on the basis of observed facts. Given
a KG, such a technique first represents entities and rela-
tions in a continuous vector space, and defines a scoring
function on each fact to measure its plausibility. Entity and
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relation embeddings can then be obtained by maximizing
the total plausibility of observed facts. During this whole
procedure, the learned embeddings are only required to be
compatible within each individual fact, and hence might not
be predictive enough for downstream tasks [23], [24]. As a
result, more and more researchers have started to further
leverage other types of information, e.g., entity types [25],
[26], relation paths [27], [28], [29], textual descriptions [30],
[31], [32], [33], and even logical rules [23], [34], [35], to learn
more predictive embeddings.

In this article, we provide a thorough review of currently
available KG embedding techniques, including those that
use facts alone, as well as those that further leverage ad-
ditional information. We further introduce how the learned
embeddings can be applied to and benefit a wide variety of
entity-oriented tasks. Nickel et al. [36] have made a survey
of statistical relational learning methods on KGs, including
embedding techniques, path ranking algorithms [37], [38],
[39], and Markov logic networks [40], [41], [42]. In contrast
to their work, we focus specifically on KG embedding, and
make a systematic review of existing techniques, including
not only the state-of-the-arts but also those with latest
trends. Particularly, we make the review based on the type
of information used in these techniques.

The rest of this article is organized as follows. Section 2
briefly introduces basic notations. Section 3 reviews tech-
niques that conduct embedding using only facts observed in
KGs. We describe the overall framework, specific model de-
sign, typical training procedures, as well as pros and cons of
such techniques. Section 4 discusses embedding techniques
that further incorporate other information besides facts. We
focus on the use of entity types, relation paths, textual
descriptions, and logical rules. Section 5 further explores
the application of KG embedding in downstream tasks like
KG completion, relation extraction and question answering.
Finally, we present our concluding remarks in Section 6.
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2 NOTATIONS

Throughout this article, we use a boldface lower-case letter
x to represent a vector, with its i-th entry denoted as [x]i.
The ℓp norm of a vector for p ≥ 1 is denoted as ∥x∥p, and
∥x∥1/2 means either the ℓ1 norm or the ℓ2 norm. Let diag(x)
be a diagonal matrix, the i-th diagonal entry of which is
[x]i. Let |x| denote the absolute value function, tanh(x)
the hyperbolic tangent function, and ReLU(x) the rectified
linear unit. All of them are entry-wise operations. A matrix
is represented by a boldface upper-case letter X, with its ij-
th entry denoted as [X]ij . ∥X∥F is the Frobenius norm of
a matrix, tr(X) and det(X) the trace and determinant of a
square matrix, respectively. We use an underlined boldface
capital letter X to represent a three-mode tensor. The ijk-th
entry of a tensor is denoted as [X]ijk. We further use X[i,:,:],
X[:,j,:], and X[:,:,k] to denote the i-th, j-th, and k-th slice
along the first, second, and third mode, respectively.

Let ◦ : Rn × Rn → Rn denote the Hadamard product
between two vectors, i.e.,

[a ◦ b]i = [a]i · [b]i,

and ⋆ : Rn × Rn → Rn the circular correlation,1 i.e.,

[a ⋆ b]i =
n−1∑
k=0

[a]k · [b](k+i) modn.

For details about these operations, refer to [43], [44].

3 KG EMBEDDING WITH FACTS ALONE

Suppose we are given a KG consisting of n entities and m
relations. Facts observed in the KG are stored as a collection
of triples D+ = {(h, r, t)}. Each triple is composed of a head
entity h ∈ E, a tail entity t ∈ E, and a relation r∈R between
them, e.g., (AlfredHitchcock, DirectorOf, Psycho).
Here, E denotes the set of entities, and R the set of relations.
KG embedding aims to embed entities and relations into a
low-dimensional continuous vector space, so as to simplify
computations on the KG. Most of the currently available
techniques use facts stored in the KG to perform the embed-
ding task, enforcing embedding to be compatible with the
facts.

A typical KG embedding technique generally consists of
three steps: (i) representing entities and relations, (ii) defin-
ing a scoring function, and (iii) learning entity and relation
representations. The first step specifies the form in which
entities and relations are represented in a continuous vector
space. Entities are usually represented as vectors, i.e., deter-
ministic points in the vector space [13], [14], [15], [16], [19].
Recent work in [45] further takes into account uncertainties
of entities, and models them through multivariate Gaussian
distributions. Relations are typically taken as operations in
the vector space, which can be represented as vectors [14],
[15], matrices [16], [18], tensors [19], multivariate Gaussian
distributions [45], or even mixtures of Gaussians [46]. Then,
in the second step, a scoring function fr(h, t) is defined on
each fact (h, r, t) to measure its plausibility. Facts observed
in the KG tend to have higher scores than those that have
not been observed. Finally, to learn those entity and relation

1. For notational brevity, we use zero-indexed vectors.

representations (i.e., embeddings), the third step solves an
optimization problem that maximizes the total plausibility
of observed facts (i.e., facts contained in D+).

We roughly categorize such embedding techniques into
two groups: translational distance models and semantic match-
ing models. The former use distance-based scoring functions,
and the latter similarity-based ones. In this section, we first
introduce these two groups of embedding techniques, and
then discuss the training process for them. After that, we
compare these embedding techniques in terms of efficiency
and effectiveness.

3.1 Translational Distance Models

Translational distance models exploit distance-based scor-
ing functions. They measure the plausibility of a fact as the
distance between the two entities, usually after a translation
carried out by the relation.

3.1.1 TransE and Its Extensions
TransE. TransE [14] is the most representative translational
distance model. It represents both entities and relations as
vectors in the same space, say Rd. Given a fact (h, r, t), the
relation is interpreted as a translation vector r so that the
embedded entities h and t can be connected by r with low
error, i.e., h+r ≈ t when (h, r, t) holds. The intuition here o-
riginates from [47], which learns distributed word represen-
tations to capture linguistic regularities such as Psycho −
AlfredHitchcock ≈ Avatar−JamesCameron. In multi-
relational data, such an analogy holds because of the certain
relation of DirectorOf, and through this relation we can
get AlfredHitchcock + DirectorOf ≈ Psycho and
JamesCameron+DirectorOf ≈ Avatar. Fig. 1(a) gives a
simple illustration of this idea. The scoring function is then
defined as the (negative) distance between h+ r and t, i.e.,

fr(h, t) = −∥h+ r− t∥1/2.

The score is expected to be large if (h, r, t) holds.
Despite its simplicity and efficiency, TransE has flaws in

dealing with 1-to-N, N-to-1, and N-to-N relations [15], [16].
Take 1-to-N relations for example. Given such a relation r,
i.e., ∃i = 1, · · · , p such that (h, r, ti) ∈ D+, TransE enforces
h+ r ≈ ti for all i = 1, · · · , p, and then t1 ≈ · · · ≈ tp. That
means, given a 1-to-N relation, e.g., DirectorOf, TransE
might learn very similar vector representations for Psycho,
Rebecca, and RearWindow which are all films directed by
AlfredHitchcock, even though they are totally different
entities. Similar disadvantages exist for N-to-1 and N-to-N
relations.

Introducing Relation-Specific Entity Embeddings. To over-
come the disadvantages of TransE in dealing with 1-to-N, N-
to-1, and N-to-N relations, an effective strategy is to allow
an entity to have distinct representations when involved in
different relations. In this way, even if the embeddings of
Psycho, Rebecca, and RearWindow might be very similar
given the relation DirectorOf, they could still be far away
from each other given other relations.

TransH [15] follows this general idea, by introducing
relation-specific hyperplanes. As shown in Fig. 1(b), TransH
models entities again as vectors, but each relation r as a
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Fig. 1. Simple illustrations of TransE, TransH, and TransR. The figures are adapted from [15], [16].

vector r on a hyperplane with wr as the normal vector.
Given a fact (h, r, t), the entity representations h and t are
first projected onto the hyperplane, resulting in

h⊥ = h−w⊤
r hwr, t⊥ = t−w⊤

r twr.

The projections are then assumed to be connected by r on
the hyperplane with low error if (h, r, t) holds, i.e., h⊥+r ≈
t⊥. The scoring function is accordingly defined as

fr(h, t) = −∥h⊥ + r− t⊥∥22,

similar to the one used in TransE. By introducing the mech-
anism of projecting to relation-specific hyperplanes, TransH
enables different roles of an entity in different relations.

TransR [16] shares a very similar idea with TransH. But it
introduces relation-specific spaces, rather than hyperplanes.
In TransR, entities are represented as vectors in an entity s-
pace Rd, and each relation is associated with a specific space
Rk and modeled as a translation vector in that space. Given
a fact (h, r, t), TransR first projects the entity representations
h and t into the space specific to relation r, i.e.,

h⊥ = Mrh, t⊥ = Mrt.

Here Mr ∈ Rk×d is a projection matrix from the entity space
to the relation space of r. Then, the scoring function is again
defined as

fr(h, t) = −∥h⊥ + r− t⊥∥22.

Fig. 1(c) gives a simple illustration of TransR. Although
powerful in modeling complex relations, TransR introduces
a projection matrix for each relation, which requires O(dk)
parameters per relation. So it loses the simplicity and effi-
ciency of TransE/TransH (which model relations as vectors
and require only O(d) parameters per relation). An even
more complicated version of the same approach was later
proposed in [48], [49]. In this version, each relation is associ-
ated with two matrices, one to project head entities and the
other tail entities.

TransD [50] simplifies TransR by further decomposing
the projection matrix into a product of two vectors. Specif-
ically, for each fact (h, r, t), TransD introduces additional
mapping vectors wh,wt ∈ Rd and wr ∈ Rk, along with the
entity/relation representations h, t ∈ Rd and r ∈ Rk. Two
projection matrices M1

r and M2
r are accordingly defined as

M1
r = wrw

⊤
h + I, M2

r = wrw
⊤
t + I.

These two projection matrices are then applied on the head
entity h and the tail entity t respectively to get their projec-
tions, i.e.,

h⊥ = M1
rh, t⊥ = M2

rt.

With the projected entities, the scoring function is defined in
the same way as in TransR. TransD requiresO(nd+mk) pa-
rameters and is more efficient than TransR (which requires
O(nd+mdk) parameters).

TranSparse [51] is another work that simplifies TransR
by enforcing sparseness on the projection matrix. It has two
versions: TranSparse (share) and TranSparse (separate). The
former uses the same sparse projection matrix Mr(θr) for
each relation r, i.e.,

h⊥ = Mr(θr)h, t⊥ = Mr(θr)t.

The latter introduces two separate sparse projection matri-
ces M1

r(θ
1
r) and M2

r(θ
2
r) for that relation, one to project head

entities, and the other tail entities, i.e.,

h⊥ = M1
r(θ

1
r)h, t⊥ = M2

r(θ
2
r)t.

Here, θr , θ1r , and θ2r denote sparseness degrees of these
projection matrices. The scoring function is again the same
with that used in TransR. By introducing sparse projection
matrices, TranSparse reduces the number of parameters to
O(nd + (1 − θ)mdk), where θ is the average sparseness
degree of projection matrices.

Relaxing Translational Requirement h+ r ≈ t. Besides al-
lowing entities to have distinct embeddings when involved
in different relations, another line of research improves
TransE by relaxing the overstrict requirement of h + r ≈ t.
TransM [52] associates each fact (h, r, t) with a weight θr
specific to the relation, and defines the scoring function as

fr(h, t) = −θr∥h+ r− t∥1/2.

By assigning lower weights to 1-to-N, N-to-1, and N-to-N
relations, TransM allows t to lie farther away from h+ r in
those relations. ManifoldE [53] relaxes h + r ≈ t to ∥h +
r − t∥22 ≈ θ2r for each (h, r, t) ∈ D+. As such, t can lie
approximately on a manifold, i.e., a hyper-sphere centered
at h + r with a radius of θr, rather than close to the exact
point of h+ r. The scoring function is hence defined as

fr(h, t) = −(∥h+ r− t∥22 − θ2r)
2.

TransF [54] uses a similar idea. Instead of enforcing the strict
translation h+r ≈ t, TransF only requires t to lie in the same
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direction with h+r, and meanwhile h in the same direction
with t−r. The scoring function then is to match t with h+r,
and also h with t− r, i.e.,

fr(h, t) = (h+ r)⊤t+ (t− r)⊤h.

TransA [55] introduces for each relation r a symmetric non-
negative matrix Mr , and defines the scoring function using
an adaptive Mahalanobis distance, i.e.,

fr(h, t) = −(|h+ r− t|)⊤Mr(|h+ r− t|).

By learning the distance metric Mr, TransA is more flexible
in dealing with complex relations.2

3.1.2 Gaussian Embeddings

Methods introduced so far model entities as well as relations
as deterministic points in vector spaces. Some recent works
take into account their uncertainties, and model them as
random variables [45], [46]. KG2E [45] represents entities
and relations as random vectors drawn from multivariate
Gaussian distributions, i.e.,

h ∼ N (µh,Σh),

t ∼ N (µt,Σt),

r ∼ N (µr,Σr),

where µh,µt,µr ∈ Rd are mean vectors, and Σh,Σt,Σr ∈
Rd×d covariance matrices. Then, inspired by the translation-
al assumption, KG2E scores a fact by measuring the distance
between the two random vectors of t−h and r, i.e., the two
distributions of N (µt − µh,Σt +Σh) and N (µr,Σr). Two
types of distance measures are used. One is the Kullback-
Leibler divergence [58] which defines

fr(h,t)=−
∫
Nx(µt−µh,Σt+Σh)ln

Nx(µt−µh,Σt+Σh)

Nx(µr,Σr)
dx

∝−tr(Σ−1
r (Σh+Σt))−µ⊤Σ−1

r µ−ln det(Σr)

det(Σh+Σt)
,

and the other is the probability inner product [59] which
introduces

fr(h,t)=

∫
Nx(µt−µh,Σt+Σh) · Nx(µr,Σr)dx

∝−µ⊤Σ−1µ− ln(det(Σ)).

Here µ = µh + µr − µt and Σ = Σh +Σr +Σt. With the
help of Gaussian embeddings, KG2E can effectively model
uncertainties of entities and relations in KGs.

TransG [46] also models entities with Gaussian distribu-
tions, i.e.,

h ∼ N (µh, σ
2
hI), t ∼ N (µt, σ

2
t I).

But it believes that a relation can have multiple semantics,
and hence should be represented as a mixture of Gaussian
distributions, i.e.,

r =
∑
i

πi
rµ

i
r, µi

r ∼ N
(
µt − µh, (σ

2
h + σ2

t )I
)
.

2. To make fr(h, t) a Mahalanobis distance, Mr ought to be positive
semidefinite. But [55] did not impose this constraint, and only required
Mr to be symmetric and non-negative.

Here, µi
r is the embedding for the i-th semantic, and πi

r the
weight of that semantic. The scoring function is accordingly
defined as

fr(h, t) =
∑
i

πi
r exp

(−∥µh + µi
r − µt∥22

σ2
h + σ2

t

)
,

which is a mixture of translational distances introduced by
different semantics of the relation. These semantic compo-
nents can be learned automatically from the data using the
Chinese restaurant process [60], [61].

3.1.3 Other Distance Models
Unstructured model (UM) [56] is a naive version of TransE
by setting all r = 0, leading to a scoring function

fr(h, t) = −∥h− t∥22.

Obviously, it cannot distinguish different relations. Struc-
tured embedding (SE) [57] uses two separate matrices M1

r

and M2
r to project head and tail entities for each relation r,

and the score is

fr(h, t) = −∥M1
rh−M2

rt∥1.

Table 1 summarizes entity/relation representations and s-
coring functions used in these translational distance models.
For all the models, there are constraints imposed on them,
e.g., enforcing vector embeddings to have, at most, a unit ℓ2
norm. Some of the constraints are converted into regulariza-
tion terms during optimization.

3.2 Semantic Matching Models
Semantic matching models exploit similarity-based scoring
functions. They measure plausibility of facts by matching
latent semantics of entities and relations embodied in their
vector space representations.

3.2.1 RESCAL and Its Extensions
RESCAL. RESCAL [13] (a.k.a. the bilinear model [17]) asso-
ciates each entity with a vector to capture its latent seman-
tics. Each relation is represented as a matrix which models
pairwise interactions between latent factors. The score of a
fact (h, r, t) is defined by a bilinear function

fr(h, t) = h⊤Mrt =
d−1∑
i=0

d−1∑
j=0

[Mr]ij · [h]i · [t]j ,

where h, t ∈ Rd are vector representations of the entities,
and Mr ∈ Rd×d is a matrix associated with the relation.3

This score captures pairwise interactions between all the
components of h and t (see also Fig. 2(a)), which requires
O(d2) parameters per relation. [17] further assumes that all
Mr decompose over a common set of rank-1 matrices, i.e.,
Mr =

∑
i π

i
ruiv

⊤
i . TATEC [64] models not only the three-

way interaction h⊤Mrt but also two-way interactions, e.g.,
those between an entity and a relation. The scoring function
is fr(h, t) = h⊤Mrt + h⊤r + t⊤r + h⊤Dt, where D is a
diagonal matrix shared across all different relations.4

3. Note that we use zero-indexed vectors and matrices for notation
brevity in this section.

4. TATEC can actually use different entity representations in the 2-
way and 3-way terms. Here we omit this for notation brevity.
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TABLE 1
Summary of Translational Distance Models (See Section 3.1 for Details)

Method Ent. embedding Rel. embedding Scoring function fr(h, t) Constraints/Regularization

TransE [14] h, t ∈ Rd r ∈ Rd −∥h + r − t∥1/2 ∥h∥2 = 1, ∥t∥2 = 1

TransH [15] h, t ∈ Rd r,wr ∈ Rd −∥(h − w⊤
r hwr) + r − (t − w⊤

r twr)∥2
2

∥h∥2 ≤ 1, ∥t∥2 ≤ 1

|w⊤
r r|/∥r∥2 ≤ ϵ, ∥wr∥2 = 1

TransR [16] h, t ∈ Rd r ∈ Rk,Mr ∈ Rk×d −∥Mrh + r − Mrt∥2
2

∥h∥2 ≤ 1, ∥t∥2 ≤ 1, ∥r∥2 ≤ 1

∥Mrh∥2 ≤ 1, ∥Mrt∥2 ≤ 1

TransD [50]
h,wh ∈ Rd

t,wt ∈ Rd r,wr ∈ Rk −∥(wrw
⊤
h + I)h + r − (wrw

⊤
t + I)t∥2

2

∥h∥2 ≤ 1, ∥t∥2 ≤ 1, ∥r∥2 ≤ 1

∥(wrw
⊤
h + I)h∥2 ≤ 1

∥(wrw
⊤
t + I)t∥2 ≤ 1

TranSparse [51] h, t ∈ Rd r ∈ Rk,Mr(θr) ∈ Rk×d

M1
r(θ

1
r),M

2
r(θ

2
r) ∈ Rk×d

−∥Mr(θr)h + r − Mr(θr)t∥2
1/2

−∥M1
r(θ

1
r)h + r − M2

r(θ
2
r)t∥

2
1/2

∥h∥2 ≤ 1, ∥t∥2 ≤ 1, ∥r∥2 ≤ 1

∥Mr(θr)h∥2 ≤ 1, ∥Mr(θr)t∥2 ≤ 1

∥M1
r(θ

1
r)h∥2 ≤ 1, ∥M2

r(θ
2
r)t∥2 ≤ 1

TransM [52] h, t ∈ Rd r ∈ Rd −θr∥h + r − t∥1/2 ∥h∥2 = 1, ∥t∥2 = 1

ManifoldE [53] h, t ∈ Rd r ∈ Rd −(∥h + r − t∥2
2 − θ2

r)
2 ∥h∥2 ≤ 1, ∥t∥2 ≤ 1, ∥r∥2 ≤ 1

TransF [54] h, t ∈ Rd r ∈ Rd (h + r)⊤t + (t − r)⊤h ∥h∥2 ≤ 1, ∥t∥2 ≤ 1, ∥r∥2 ≤ 1

TransA [55] h, t ∈ Rd r ∈ Rd,Mr ∈ Rd×d −(|h + r − t|)⊤Mr(|h + r − t|)
∥h∥2 ≤ 1, ∥t∥2 ≤ 1, ∥r∥2 ≤ 1

∥Mr∥F ≤ 1, [Mr]ij = [Mr]ji ≥ 0

KG2E [45]

h∼N (µh,Σh) −tr(Σ−1
r (Σh+Σt))−µ⊤Σ−1

r µ−ln
det(Σr)

det(Σh+Σt)
∥µh∥2 ≤ 1, ∥µt∥2 ≤ 1, ∥µr∥2 ≤ 1

t∼N (µt,Σt) r ∼ N (µr,Σr) −µ⊤Σ−1µ − ln(det(Σ)) cminI ≤ Σh ≤ cmaxI

µh,µt∈Rd µr ∈ Rd,Σr ∈ Rd×d µ = µh + µr − µt cminI ≤ Σt ≤ cmaxI

Σh,Σt∈Rd×d Σ = Σh + Σr + Σt cminI ≤ Σr ≤ cmaxI

TransG [46]
h∼N (µh,σ

2
hI) µi

r ∼N
(
µt−µh,(σ

2
h+σ

2
t )I

)
r =

∑
i π

i
rµ

i
r ∈ Rd

∑
i π

i
r exp

(
− ∥µh+µi

r−µt∥
2
2

σ2
h
+σ2

t

)
∥µh∥2 ≤ 1, ∥µt∥2 ≤ 1, ∥µi

r∥2 ≤ 1t∼N (µt,σ
2
t I)

µh,µt∈Rd

UM [56] h, t ∈ Rd —— −∥h − t∥2
2 ∥h∥2 = 1, ∥t∥2 = 1

SE [57] h, t ∈ Rd M1
r,M

2
r ∈ Rd×d −∥M1

rh − M2
rt∥1 ∥h∥2 = 1, ∥t∥2 = 1

h t

Mr

(a) RESCAL.

h t

r

(b) DistMult.

h t

r

(c) HolE.

Fig. 2. Simple illustrations of RESCAL, DistMulti, and HolE. The figures are adapted from [62].

DistMult. DistMult [65] simplifies RESCAL by restricting
Mr to diagonal matrices. For each relation r, it introduces a
vector embedding r ∈ Rd and requires Mr = diag(r). The
scoring function is hence defined as

fr(h, t) = h⊤diag(r)t =
d−1∑
i=0

[r]i · [h]i · [t]i.

This score captures pairwise interactions between only the
components of h and t along the same dimension (see also
Fig. 2(b)), and reduces the number of parameters to O(d)
per relation. However, since h⊤diag(r)t = t⊤diag(r)h for
any h and t, this over-simplified model can only deal with
symmetric relations which is clearly not powerful enough
for general KGs.

Holographic Embeddings (HolE). HolE [62] combines the
expressive power of RESCAL with the efficiency and sim-
plicity of DistMult. It represents both entities and relations
as vectors in Rd. Given a fact (h, r, t), the entity representa-
tions are first composed into h⋆t ∈ Rd by using the circular
correlation operation [44], namely

[h ⋆ t]i =
d−1∑
k=0

[h]k · [t](k+i) mod d.

The compositional vector is then matched with the relation
representation to score that fact, i.e.,

fr(h, t) = r⊤(h ⋆ t) =
d−1∑
i=0

[r]i

d−1∑
k=0

[h]k · [t](k+i) mod d.
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Fig. 3. Neural network architectures of SME, NTN, MLP, and NAM. The figures are adapted from [18], [19], [63].

Circular correlation makes a compression of pairwise inter-
actions (see also Fig. 2(c)). So HolE requires only O(d) pa-
rameters per relation, which is more efficient than RESCAL.
Meanwhile, since circular correlation is not commutative,
i.e., h⋆t ̸= t⋆h, HolE is able to model asymmetric relations
as RESCAL does.

Complex Embeddings (ComplEx). ComplEx [66] extends
DistMult by introducing complex-valued embeddings so as
to better model asymmetric relations. In ComplEx, entity
and relation embeddings h, r, t no longer lie in a real space
but a complex space, say Cd. The score of a fact (h, r, t) is
defined as

fr(h, t) = Re
(
h⊤diag(r)t̄

)
= Re

( d−1∑
i=0

[r]i · [h]i · [t̄]i
)
,

where t̄ is the conjugate of t and Re(·) means taking the
real part of a complex value. This scoring function is not
symmetric any more, and facts from asymmetric relations
can receive different scores depending on the order of enti-
ties involved. [67] recently showed that every ComplEx has
an equivalent HolE, and conversely, HolE is subsumed by
ComplEx as a special case in which the conjugate symmetry
is imposed on embeddings.

ANALOGY. ANALOGY [68] extends RESCAL so as to fur-
ther model the analogical properties of entities and relations,
e.g., “AlfredHitchcock is to Psycho as JamesCameron
is to Avatar”. It follows RESCAL and employs a bilinear
scoring function

fr(h, t) = h⊤Mrt,

where h, t ∈ Rd are vector embeddings for the entities, and
Mr ∈ Rd×d is a linear map associated with the relation. To
model the analogical structures, it further requires relations’
linear maps to be normal and mutually commutative, i.e.,

normality: MrM
⊤
r = M⊤

r Mr, ∀r ∈ R;

commutativity: MrMr′ = Mr′Mr, ∀r, r′ ∈ R.

Although ANALOGY represents relations as matrices, these
matrices can be simultaneously block-diagonalized into a set
of sparse almost-diagonal matrices, each of which consists of
onlyO(d) free parameters. It has been shown that the previ-
ously introduced methods of DistMult, HolE, and ComplEx
can all be subsumed by ANALOGY as special cases in a
principled manner.

3.2.2 Matching with Neural Networks

Semantic Matching Energy (SME). SME [18] conducts se-
mantic matching using neural network architectures. Given
a fact (h, r, t), it first projects entities and relations to their
vector embeddings in the input layer. The relation r is then
combined with the head entity h to get gu (h, r), and with
the tail entity t to get gv (t, r) in the hidden layer. The score
of a fact is finally defined as matching gu and gv by their dot
product, i.e.,

fr(h, t) = gu(h, r)
⊤gv(t, r).

There are two versions of SME: a linear version as well as a
bilinear version. SME (linear) defines

gu(h, r) = M1
uh+M2

ur+ bu,

gv(t, r) = M1
vt+M2

vr+ bv,

while SME (bilinear) defines

gu(h, r) = (M1
uh) ◦ (M2

ur) + bu,

gv(t, r) = (M1
vt) ◦ (M2

vr) + bv.

Here, M1
u,M

2
u,M

1
v,M

2
v ∈ Rd×d are weight matrices and

bu,bv ∈ Rd bias vectors shared across different relations.5

Fig. 3(a) provides a simple illustration of SME.

Neural Tensor Network (NTN). NTN [19] is another neural
network architecture. Given a fact, it first projects entities to
their vector embeddings in the input layer. Then, the two
entities h, t ∈ Rd are combined by a relation-specific tensor
Mr ∈ Rd×d×k (along with other parameters) and mapped
to a non-linear hidden layer. Finally, a relation-specific linear
output layer gives the score

fr(h, t) = r⊤ tanh(h⊤Mrt+M1
rh+M2

rt+ br),

where M1
r,M

2
r ∈ Rk×d and br ∈ Rk are relation-specific

weight matrices and bias vectors, respectively. The bilinear
tensor product h⊤Mrt results in a vector, with the i-th entry
computed as h⊤M[;,;,i]

r t. Fig. 3(b) gives a simple illustration
of NTN. By setting all Mr = 0 and br = 0, NTN degen-
erates to the single layer model (SLM) [19]. NTN might be
the most expressive model to date. But it requires O(d2k)
parameters per relation, and is not sufficiently simple and
efficient to handle large-scale KGs.

5. In [18], SME (bilinear) is defined with three-mode tensors instead
of matrices. The two forms are equivalent [70]. Note also that M1

u, M2
u,

M1
v , M2

v are not necessarily square matrices.
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TABLE 2
Summary of Semantic Matching Models (See Section 3.2 for Details)

Method Ent. embedding Rel. embedding Scoring function fr(h, t) Constraints/Regularization

RESCAL [13] h, t ∈ Rd Mr ∈ Rd×d h⊤Mrt
∥h∥2 ≤ 1, ∥t∥2 ≤ 1, ∥Mr∥F ≤ 1

Mr =
∑

i π
i
ruiv

⊤
i (required in [17])

TATEC [64] h, t ∈ Rd r ∈ Rd,Mr ∈ Rd×d h⊤Mrt + h⊤r + t⊤r + h⊤Dt
∥h∥2 ≤ 1, ∥t∥2 ≤ 1, ∥r∥2 ≤ 1

∥Mr∥F ≤ 1

DistMult [65] h, t ∈ Rd r ∈ Rd h⊤diag(r)t ∥h∥2 = 1, ∥t∥2 = 1, ∥r∥2 ≤ 1

HolE [62] h, t ∈ Rd r ∈ Rd r⊤(h ⋆ t) ∥h∥2 ≤ 1, ∥t∥2 ≤ 1, ∥r∥2 ≤ 1

ComplEx [66] h, t ∈ Cd r ∈ Cd Re
(
h⊤diag(r)t̄

)
∥h∥2 ≤ 1, ∥t∥2 ≤ 1, ∥r∥2 ≤ 1

ANALOGY [68] h, t ∈ Rd Mr ∈ Rd×d h⊤Mrt

∥h∥2 ≤ 1, ∥t∥2 ≤ 1, ∥Mr∥F ≤ 1

MrM
⊤
r = M⊤

r Mr

MrMr′ = Mr′Mr

SME [18] h, t ∈ Rd r ∈ Rd (M1
uh + M2

ur + bu)
⊤(M1

vt + M2
vr + bv) ∥h∥2 = 1, ∥t∥2 = 1(

(M1
uh)◦(M

2
ur) + bu

)⊤(
(M1

vt)◦(M
2
vr) + bv

)
NTN [19] h, t ∈ Rd r,br ∈Rk,Mr ∈Rd×d×k

M1
r,M

2
r ∈ Rk×d r⊤tanh(h⊤Mrt + M1

rh + M2
rt + br)

∥h∥2 ≤ 1, ∥t∥2 ≤ 1, ∥r∥2 ≤ 1

∥br∥2 ≤ 1, ∥M[:,:,i]
r ∥F ≤ 1

∥M1
r∥F ≤ 1, ∥M2

r∥F ≤ 1

SLM [19] h, t ∈ Rd r ∈ Rk,M1
r,M

2
r ∈ Rk×d r⊤tanh(M1

rh + M2
rt)

∥h∥2 ≤ 1, ∥t∥2 ≤ 1, ∥r∥2 ≤ 1

∥M1
r∥F ≤ 1, ∥M2

r∥F ≤ 1

MLP [69] h, t ∈ Rd r ∈ Rd w⊤tanh(M1h + M2r + M3t) ∥h∥2 ≤ 1, ∥t∥2 ≤ 1, ∥r∥2 ≤ 1

NAM [63] h, t ∈ Rd r ∈ Rd

fr(h, t) = t⊤z(L)

——z(ℓ) = ReLU(a(ℓ)), a(ℓ) = M(ℓ)z(ℓ−1) + b(ℓ)

z(0) = [h; r]

Multi-Layer Perceptron (MLP). MLP [69] is a simpler ap-
proach where each relation (as well as entity) is associated
with a single vector. As illustrated in Fig. 3(c), given a fact
(h, r, t), the vector embeddings h, r, and t are concatenated
in the input layer, and mapped to a non-linear hidden layer.
The score is then generated by a linear output layer, i.e.,

fr(h, t) = w⊤tanh(M1h+M2r+M3t).

Here, M1,M2,M3 ∈ Rd×d are the first layer weights, and
w ∈ Rd the second layer weights, all shared across different
relations.6

Neural Association Model (NAM). NAM [63] conducts
semantic matching with a “deep” architecture. Given a fact
(h, r, t), it first concatenates the vector embeddings of the
head entity and the relation in the input layer, which gives
z(0) = [h; r] ∈ R2d. The input z(0) is then fed into a deep
neural network consisting of L rectified linear hidden layers
such that

a(ℓ) = M(ℓ)z(ℓ−1) + b(ℓ), ℓ = 1, · · · , L,
z(ℓ) = ReLU(a(ℓ)), ℓ = 1, · · · , L,

where M(ℓ) and b(ℓ) represent the weight matrix and bias
for the ℓ-th layer respectively. After the feedforward process,
the score is given by matching the output of the last hidden
layer and the embedding of the tail entity, i.e.,

fr(h, t) = t⊤z(L).

6. M1, M2, M3 are not necessarily square matrices.

Fig. 3(d) provides a simple illustration of NAM. It has a
more complicated version which connects the relation em-
bedding r to all hidden layers in the network. Table 2 sum-
marizes entity/relation representations and scoring func-
tions used in these semantic matching models. Constraints
imposed on these models are also presented.7

3.3 Model Training
This section discusses routine training procedures for KG
embedding models. We consider two widely used assump-
tions: the open world assumption and closed world assumption.

3.3.1 Training under Open World Assumption
The open world assumption (OWA) states that KGs contain
only true facts and non-observed facts can be either false
or just missing [72]. In this case, D+ stores only positive
examples. Negative examples can be generated by heuristics
such as the local closed world assumption [69] (detailed
later in this section). Given the positive set D+ and a
negative set D− constructed accordingly, we can learn entity
and relation representations Θ by minimizing, for instance,
the logistic loss, i.e.,

min
Θ

∑
τ∈D+∪D−

log (1 + exp(−yhrt · fr(h, t))) , (1)

where τ = (h, r, t) is a training example in D+ ∪ D−, and
yhrt = ±1 the label (positive or negative) of that example.
It has been shown that minimizing the logistic loss can help

7. Instead of imposing constraints or regularization terms, NAM
adopts the dropout approach [71] during training to avoid over-fitting.
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to find compact representations for some complex relational
patterns such as transitive relations [73]. Besides the logistic
loss, we can also use a pairwise ranking loss such as

min
Θ

∑
τ+∈D+

∑
τ−∈D−

max (0, γ − fr(h, t) + fr′(h
′, t′)) (2)

to make the scores of positive facts higher than those of
negative ones.8 Here, τ+ = (h, r, t) is a positive example,
τ− = (h′, r′, t′) a negative one, and γ a margin separating
them. Minimizing the pairwise ranking loss has an addition-
al advantage: it does not assume that negative examples are
necessarily false, just that they are more invalid than those
positive ones [36]. Note that in both types of optimization,
there are constraints and/or regularization terms specified
by different embedding models (see Table 1 and Table 2 for
details). Trouillon et al. [66] have shown that the logistic loss
generally yields better results for semantic matching models
such as DistMult and ComplEx, while the pairwise ranking
loss may be more suitable for translational distance models
like TransE.

The optimization Eq. (1) and Eq. (2) can be easily carried
out by stochastic gradient descent (SGD) [74] in minibatch
mode. After initializing entity and relation embeddings, at
each iteration, a small set of positive facts is sampled from
D+, and for each positive fact, one or more negative facts
are generated accordingly. These positive and negative facts
then serve as training examples in a minibatch. After the
minibatch, embeddings are updated by a gradient step with
constant or adaptive learning rates. AdaGrad [75] is usually
used to tune the learning rate. Algorithm 1 summarizes this
training procedure, where a single negative is generated for
each positive fact. Next, we discuss the initialization step
(line 1) and negative example generation step (line 6).

Algorithm 1 Training under Open World Assumption

Input: Observed facts D+ = {(h, r, t)}
1: Initialize entity and relation embeddings
2: loop
3: P← a small set of positive facts sampled from D+

4: B+ ← ∅, B− ← ∅
5: foreach τ+ = (h, r, t) ∈ P do
6: Generate a negative fact τ− = (h′, r′, t′)
7: B+ ← B+ ∪ {τ+}, B− ← B− ∪ {τ−}
8: end for
9: Update entity and relation embeddings w.r.t. the gra-

dients of
∑

τ∈B+∪B− log (1 + exp(−yhrt · fr(h, t))) or∑
τ+∈B+,τ−∈B− max (0, γ − fr(h, t) + fr′(h

′, t′))
10: Handle additional constraints or regularization terms
11: end loop
Output: Entity and relation embeddings

Initializing Entity and Relation Embeddings. Embeddings
for entities and relations are usually initialized randomly
from uniform distributions [14] or Gaussian distribution-
s [66]. Some complicated models also initialize their em-
beddings with results of simple models such as TransE [16].
Another solution is to represent an entity as the average

8. Sometimes a sigmoid function is imposed on fr(h, t) to make the
score a probability within the range of (0, 1).

word vector of its name [19] or description [76], and initial-
ize word vectors with those pre-trained on a text corpus.

Generating Negative Training Examples. Given a positive
fact τ+ = (h, r, t) ∈ D+, negative facts can be generated by
replacing either the head h or the tail t with a random entity
sampled uniformly from E [14], i.e.,

D− = {(h′, r, t)|h′ ∈ E ∧ h′ ̸= h ∧ (h, r, t) ∈ D+}
∪ {(h, r, t′)|t′ ∈ E ∧ t′ ̸= t ∧ (h, r, t) ∈ D+}.

Sometimes, negative facts can also be generated by random-
ly corrupting the relation [18], [45], i.e.,

D− = {(h′, r, t)|h′ ∈ E ∧ h′ ̸= h ∧ (h, r, t) ∈ D+}
∪ {(h, r, t′)|t′ ∈ E ∧ t′ ̸= t ∧ (h, r, t) ∈ D+}
∪ {(h, r′, t)|r′ ∈ R ∧ r′ ̸= r ∧ (h, r, t) ∈ D+}.

However, this way of uniformly sampling might introduce
false-negative training examples, e.g., (AlfredHitchcock,
Gender, Male) might be a false-negative example generated
for (JamesCameron, Gender, Male) by replacing the head.

To reduce such false-negative examples, [15] proposed to
set different probabilities for replacing the head and the tail,
i.e., to give more chance to replacing the head if the relation
is 1-to-N and the tail if the relation is N-to-1. Consider, for
example, the relation Gender. For triples from this relation,
replacing the tail is obviously more likely to generate true-
negative examples. Specifically, given a relation and all its
positive facts, [15] first calculates (i) the average number of
tail entities per head (denoted as tph), and (ii) the average
number of head entities per tail (denoted as hpt). Then, for
any positive fact from that relation, [15] corrupts the fact by
replacing the head with probability tph/(tph+hpt), and the
tail with probability hpt/(tph+hpt). [77] adopted a different
strategy to generate negative facts. Given a positive fact, it
corrupts a position (i.e. head or tail) using only entities that
have appeared in that position with the same relation. That
means, given (JamesCameron, Gender, Male), it could
generate a negative fact (JamesCameron, Gender, Female)
but never (JamesCameron, Gender, Avatar), as Avatar
never appears as a tail entity of the relation.

Trouillon et al. [66] further investigated the influence of
the number of negative facts generated for each positive one.
Their study showed that generating more negatives usually
leads to better results, and 50 negatives per positive example
is a good trade-off between accuracy and training time.

3.3.2 Training under Closed World Assumption
The closed world assumption (CWA) assumes that all facts
that are not contained in D+ are false. In this case, we can
learn entity and relation representations Θ by minimizing,
for instance, the squared loss, i.e.,

min
Θ

∑
h,t∈E,r∈R

(yhrt − fr(h, t))
2
, (3)

where yhrt = 1 if (h, r, t) ∈ D+, and yhrt = 0 otherwise. The
squared loss sums over all h, t ∈ E and r ∈ R, enforcing
observed facts to have scores close to 1, while non-observed
facts scores close to 0. Other possible loss functions include
the logistic loss [78] and absolute loss [79], [80].

Minimizing the squared loss amounts to factorization of
a three-mode tensor represented by the KG. For example,
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using the squared loss, the optimization for RESCAL be-
comes a tensor factorization (or collective matrix factoriza-
tion) problem

min
E,{Mr}

∑
r∈R

∥Y[:,:,r]−EMrE
⊤∥2F +λ1∥E∥2F +λ2

∑
r∈R

∥Mr∥2F .

Here, Y ∈ {0, 1}n×n×m is a three-mode tensor encoding
the KG whose entries are set such that [Y]hrt = 1 if and
only if (h, r, t) ∈ D+; Y[:,:,r] ∈ {0, 1}n×n is the slice holding
all facts from relation r; E ∈ Rn×d stores entity embeddings
where each row is a vector representation of an entity; Mr ∈
Rd×d holds the embedding for relation r; and λ1, λ2 ≥ 0 are
regularization coefficients. This optimization problem can
be solved efficiently via an alternating least squares (ALS)
algorithm, which alternately fixes {Mr} to update E and
then fixes E to update {Mr}. Besides RESCAL, other tensor
factorization models such as the CANDECOMP/PARAFAC
decomposition [81] and Tucker decomposition [82] have also
been applied on KGs to model multi-relational data [83],
[84], [85]. For more details about tensor representation of
KGs and tensor factorization models, refer to [13], [36] and
references therein.

The closed world assumption has several disadvantages.
First, it will not hold for incomplete KGs where a lot of true
facts are missing from observed data. However, despite their
seemingly huge size, most KGs (e.g., Freebase, DBpedia, and
YAGO) are highly incomplete [86], making the open world
assumption a better choice in this case. In fact, it has been
shown that CWA-based models generally perform worse
than OWA-based ones in downstream tasks [87]. And [62]
has also demonstrated that the CWA-based RESCAL model
can perform substantially better if trained under the open
world assumption, i.e., minimizing the pairwise ranking
loss defined in Eq. (2) rather than the squared loss defined in
Eq. (3). Second, the closed world assumption will introduce
a huge number of negative examples, which might lead to
scalability issues in model training.

3.4 Model Comparison

Table 3 compares space and time complexity of the different
models we have discussed. Here, n and m are the number of
entities and relations respectively; d and k the dimensional-
ity of entity and relation embedding space respectively (we
usually have d = k); θ in TranSparse the average sparseness
degree of projection matrices; c in TransG the average num-
ber of semantic components per relation; and L in NAM the
total number of hidden layers in the network. See Section 3.1
and Section 3.2 for details. During the analysis we assume
that d, k ≪ n and all the models are trained under the open
world assumption. We can draw the following conclusions.
First, models which represent entities and relations as vec-
tors (e.g., TransE, TransH, DistMult, and ComplEx) are more
efficient. They usually have space and time complexity that
scales linearly with d. HolE is an exception, as it computes
circular correlation via the discrete Fourier transform whose
time complexity is O(d log d). Second, models which rep-
resent relations as matrices (e.g., TransR, SE, and RESCAL)
or tensors (e.g., NTN) usually have higher complexity in
both space and time, scaling quadratically or cubically with
the dimensionality of embedding space. Here ANALOGY

TABLE 3
Comparison of Models in Space and Time Complexity

Method Space complexity Time complexity

TransE [14] O(nd+md) O(d)

TransH [15] O(nd+md) O(d)

TransR [16] O(nd+mdk) O(dk)

TransD [50] O(nd+mk) O(max(d, k))

TranSparse [51] O(nd+ (1− θ)mdk) O(dk)

TransM [52] O(nd+md) O(d)

ManifoldE [53] O(nd+md) O(d)

TransF [54] O(nd+md) O(d)

TransA [55] O(nd+md2) O(d2)

KG2E [45] O(nd+md) O(d)

TransG [46] O(nd+mdc) O(dc)

UM [56] O(nd) O(d)

SE [57] O(nd+md2) O(d2)

RESCAL [13] O(nd+md2) O(d2)

TATEC [64] O(nd+md2) O(d2)

DistMult [65] O(nd+md) O(d)

HolE [62] O(nd+md) O(d log d)

ComplEx [66] O(nd+md) O(d)

ANALOGY [68] O(nd+md) O(d)

SME (linear) [18] O(nd+md) O(d2)

SME (bilinear) [18] O(nd+md) O(d3)

NTN [19] O(nd+md2k) O(d2k)

SLM [19] O(nd+mdk) O(dk)

MLP [69] O(nd+md) O(d2)

NAM [63] O(nd+md) O(Ld2)

is an exception, since the relational matrices can be block-
diagonalized into a set of sparse almost-diagonal matrices,
each of which consists of only O(d) free parameters. Finally,
models based on neural network architectures (e.g., SME,
NTN, MLP, and NAM) generally have higher complexity in
time, if not in space, since matrix or even tensor computa-
tions are often required in these models.

After comparison in complexity, we discuss performance
of these models in downstream tasks. Clearly which model
is best depends on the task, and also the data. We limit our
discussion to the link prediction task (see Section 5.1.1 for
details) and WordNet and Freebase data, which is standard
practice in previous studies. An interesting observation is
that those seemingly more expressive models do not neces-
sarily have better performance. For instance, it was demon-
strated that the NTN model performed slightly worse than
the simpler MLP model [69], and it even performed worse
than TransE and DistMult [65], which are almost the sim-
plest KG embedding models. The reason could be that ex-
pressive models often require a large number of parameters
and tend to overfit on small- and medium-sized datasets.
Nickel et al. [62] recently reimplemented some of the models
and compared them in the identical setting, i.e., using the
ranking loss of Eq. (2) solved by SGD with AdaGrad. They
found that HolE performed substantially better than TransE,
TransR, RESCAL, and MLP. Trouillon et al. [66] later showed
that ComplEx which defines complex-valued embeddings
performed even better than HolE. ANALOGY, which sub-
sumes DistMult, HolE, and ComplEx as special cases, gave
the best link prediction results to date reported on WordNet
and Freebase data.
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3.5 Other Approaches

Besides the aforementioned models, there are other works
which learn representations for head-tail entity pairs rather
than individual entities [21]. Specifically, given a triple
(h, r, t), the relation r is represented as a vector r ∈ Rd, and
the entity pair (h, t) another vector p ∈ Rd. The plausibility
of the fact can be measured by the inner product of r and p.
These vector representations are then learned by minimizing
a pairwise ranking loss similar to the one defined in Eq. (2).
Such entity pair representation is particularly prevalent in
relation extraction, which aims to identify possible relations
holding between a pair of entities [88]. Similarly, one can
also model the head entity h as a vector h ∈ Rd and the
relation-tail entity pair (r, t) as another vector p ∈ Rd [89],
[90]. Nevertheless, such paired formulations have their dis-
advantages. For instance, if the head-tail entity pairs (h1, t)
and (h2, t) are modeled via different vector representations,
the information that they share the same tail entity t will be
lost. And also, relations between unpaired entities, e.g., h3

and t, cannot be effectively discovered. It also leads to an
increased space complexity, since a vector representation is
computed for each entity pair which requires O(n2d+md)
parameters in total.

4 INCORPORATING ADDITIONAL INFORMATION

The methods introduced so far conduct the embedding task
using only facts observed in the KG. In fact, there is a wide
variety of additional information that can be incorporated
to further improve the task, e.g., entity types, relation paths,
textual descriptions, as well as logical rules. In this section,
we discuss how such information can be integrated.

4.1 Entity Types

The first kind of additional information we consider is entity
types, i.e., semantic categories to which entities belong. For
example, AlfredHitchcock has the type of Person, and
Psycho the type of CreativeWork. This kind of informa-
tion is available in most KGs, usually encoded by a specific
relation and stored also in the form of triples, e.g., (Psycho,
IsA, CreativeWork).9 A straightforward method to model
such information, as investigated in [22], is to take IsA as an
ordinary relation and the corresponding triples as ordinary
training examples.

Guo et al. [25] proposed semantically smooth embedding
(SSE), which requires entities of the same type to stay close
to each other in the embedding space, e.g., Psycho is sup-
posed to stay closer to Avatar than to JamesCameron. SSE
employs two manifold learning algorithms, i.e., Laplacian
eigenmaps [91] and locally linear embedding [92] to model
this smoothness assumption. The former requires an entity
to lie close to every other entity in the same category, giving
a smoothness measure of

R1 =
1

2

n∑
i=1

n∑
j=1

∥ei − ej∥22w1
ij ,

9. Here we use “IsA” to denote the relation that links entities to their
semantic categories. Different KGs actually name this relation in their
own way, e.g., Freebase adopts /type/object/type and NELL uses
Generalization.

where ei and ej are the vector embeddings of entities ei
and ej respectively; w1

ij =1 if the two entities belong to the
same category and w1

ij=0 otherwise. By minimizingR1, we
expect a small distance between ei and ej whenever w1

ij=1.
The latter represents an entity as a linear combination of its
nearest neighbors, i.e., entities within the same category. The
smoothness measure is defined as

R2 =
n∑

i=1

∥ei −
∑

ej∈Nei

w2
ijej∥22,

where Nei is the set containing nearest neighbors of entity
ei; w2

ij = 1 if ej ∈ Nei and w2
ij = 0 otherwise.10 By minimiz-

ing R2, we expect each entity to be linearly reconstructed
from its nearest neighbors with low error. R1 and R2 are
then incorporated as regularization terms to constrain the
embedding task. SSE was proved to perform better than the
straightforward method in both KG embedding and down-
stream tasks. A major limitation of SSE is that it assumes
entities’ semantic categories are non-hierarchical and each
entity belongs to exactly one category. This is obviously not
the case in typical real-world KGs.

Xie et al. [26] devised type-embodied knowledge rep-
resentation learning (TKRL), which can handle hierarchical
entity categories and multiple category labels. TKRL is a
translational distance model with type-specific entity pro-
jections. Given a fact (h, r, t), it first projects h and t with
type-specific projection matrices, and then models r as a
translation between the two projected entities. The scoring
function is accordingly defined as

fr(h, t) = −∥Mrhh+ r−Mrtt∥1,

where Mrh and Mrt are projection matrices for h and t.
To handle multiple category labels, Mrh is represented as a
weighted sum of all possible type matrices, i.e.,

Mrh =

∑nh

i=1 αiMci∑nh

i=1 αi
, αi =

{
1, ci ∈ Crh ,

0, ci ̸∈ Crh ,

where nh≥1 is the number of categories to which h belongs;
ci the i-th category among them; Mci the projection matrix
of ci; αi the corresponding weight; and Crh the set of types
that a head entity can have in relation r. To further handle
hierarchical categories, Mci is represented as a composition
of the projection matrices associated with all sub-categories
of ci. Two types of composition operations are used, i.e.,

addition: Mci = β1Mc
(1)
i

+ · · ·+ βℓMc
(ℓ)
i
;

multiplication: Mci = M
c
(1)
i
◦ · · · ◦M

c
(ℓ)
i
.

Here c
(1)
i , · · · , c(ℓ)i are sub-categories of ci in the hierarchy;

M
c
(1)
i
, · · · ,M

c
(ℓ)
i

their projection matrices; and β1, · · · , βℓ

the corresponding weights. Mrt is defined in a similar way.
Although TKRL achieves good performance in downstream
tasks such as link prediction and triple classification, it has
a relatively high space complexity since it associates each
category with a specific projection matrix.

Entity types can also be used as constraints of head and
tail positions for different relations, e.g., head entities of rela-
tion DirectorOf should be those with the type of Person,

10. w2
ij are further normalized so that

∑n
j=1 w

2
ij = 1 for each i.
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Fig. 4. Path representations are semantic compositions of their relation
embeddings. The figure is adapted from [27].

and tail entities those with the type of CreativeWork. [77]
and [26] tried to impose such constraints in the training pro-
cess, particularly during the generation of negative training
examples. Negative examples that violate entity type con-
straints are excluded from training [77], or generated with
substantially low probabilities [26]. [93] imposed similar
constraints on RESCAL, a tensor factorization model. The
idea is to discard invalid facts with wrong entity types, and
factorize only a sub-tensor composed of remaining facts.
See [23], [94] for other approaches in which entity type
information is also incorporated.

4.2 Relation Paths
The second kind of additional information we consider is re-
lation paths, i.e., multi-hop relationships between entities.11

A relation path is typically defined as a sequence of relations
r1 → · · · → rℓ through which two entities can be connected
on the graph. For example, BornIn → LocatedIn is a
path linking AlfredHitchcock to England, via an inter-
mediate node Leytonstone. Relation paths contain rich
semantic cues and are extremely useful for KG completion,
e.g., BornIn → LocatedIn is indicative of the relation
Nationality between AlfredHitchcock and England.

Relation paths have long been studied in multi-relational
data. For instance, the path ranking algorithms directly use
paths connecting two entities as features to predict potential
relations between them [37], [38], [39]. They have, very re-
cently, been integrated into KG embedding. A key challenge
then is how to represent such paths in the same vector space
along with entities and relations. A straightforward solution
is to represent a path as a composition of the representations
of its constituent relations, since the semantic meaning of
the path depends on all these relations. Fig. 4 provides a
simple illustration of this idea.12 Actually, almost all the ex-
isting approaches handle relation paths using composition
strategies. Typical composition operations include addition,
multiplication, and recurrent neural network (RNN) [95].

Lin et al. [27] proposed an extension of TransE to model
relation paths, referred to as path-based TransE (PTransE).
Given a path p = r1 → · · · → rℓ linking two entities h
and t, as well as the vector representations r1, · · · , rℓ of the
constituent relations, PTransE considers all the three types
of composition operations, i.e.,

addition: p = r1 + · · ·+ rℓ;

multiplication: p = r1 ◦ · · · ◦ rℓ;
RNN: ci = f (W[ci−1; ri]) .

11. Facts themselves are regarded as one-hop relationships.
12. For simplicity relations are represented as vectors in this figure.

But they can also be represented in other forms, e.g., matrices [28].

Here, ci indicates the accumulated path vector at the i-th
relation; W is a composition matrix shared by all relations;
[ci−1; ri] denotes the concatenation of ci−1 and ri; and f is
a non-linearity function. By setting c1 = r1 and recursively
traversing from left to right, one can finally get p = cℓ. The
path p is then required to be consistent with a direct relation
r between the two entities, i.e., ∥p− r∥1 tends to be small if
(h, r, t) holds. For each fact (h, r, t) ∈ D+, PTransE defines
a loss w.r.t. the paths, i.e.,

Lpath =
1

Z

∑
p∈P(h,t)

R(p|h, t) · ℓ(p, r),

where P(h, t) is the set of all paths connecting h and t;
R(p|h, t) indicates the reliability of a path p given the two
entities; Z =

∑
p∈P(h,t) R(p|h, t) is a normalization factor;

and ℓ(p, r) is a loss specified on the path-relation pair
(p, r). The path reliability R(p|h, t) can be calculated by a
network-based resource-allocation mechanism [96], and the
loss ℓ(p, r) is defined as

ℓ(p, r) =
∑
r′

max(0, γ + ∥p− r∥1 − ∥p− r′∥1),

which prefers a lower value of ∥p−r∥1 than of any ∥p−r′∥1.
Finally, to learn entity and relation representations, Lpath
is aggregated over all the facts in D+ and then combined
with the original TransE loss. Experimental results showed
that by further incorporating relation paths, PTransE can
perform substantially better than TransE in KG completion
and relation extraction.

Guu et al. [28] proposed a similar framework, the idea of
which is to build triples using entity pairs connected not on-
ly with relations but also with relation paths. For example,
given a pair of entities (h, t) and a path p = r1 → · · · → rℓ
between them, a new triple (h, p, t) can be constructed. To
model such path-connected triples, Guu et al. devised ex-
tensions of both the TransE model and the RESCAL model.
The former uses the addition composition, and defines the
score of (h, p, t) as

fp(h, t) = −∥h+ (r1 + · · ·+ rℓ)− t∥1,

while the latter chooses the multiplication composition and
defines the score as

fp(h, t) = h⊤(M1 ◦ · · · ◦Mℓ)t.

Path-connected triples are then treated the same as those
relation-connected ones during training. This approach was
shown to perform well in answering path queries on KGs.
A more limited version of the same approach was simulta-
neously introduced in [97].

While incorporating relation paths improves model per-
formance, the huge number of paths poses a critical com-
plexity challenge. Both [27] and [28] had to make approx-
imations by sampling or pruning. To enable efficient path
modeling, [29] proposed a dynamic programming algorithm
which can incorporate all relation paths of bounded length.
Moreover, in this work, not only relations but also interme-
diate nodes (i.e. entities) are modeled in compositional path
representations. For other related work, please refer to [98],
[99], [100].
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(AlfredHitchcock, DirectorOf, Psycho)

Sir Alfred Joseph Hitchcock (13 

August 1899 – 29 April 1980) 

was an English film director and 

producer, ...

Psycho is a psychological horror 

film directed and produced by 

Alfred Hitchcock, and written by 

Joseph Stefano, ...

Fig. 5. Examples of entity descriptions. The figure is adapted from [32].

4.3 Textual Descriptions
This section discusses the incorporation of textual descrip-
tions for entities. Actually, in most KGs there are concise
descriptions for entities which contain rich semantic in-
formation about them. Fig. 5 shows the descriptions for
AlfredHitchcock and Psycho in Freebase. Besides entity
descriptions stored in KGs, it can be extended to incorporate
more general textual information such as news releases [19]
and Wikipedia articles [30], [31], [33].

Embedding KGs with textual information dates back to
the NTN model [19], where textual information is simply
used to initialize entity representations. Specifically, NTN
first learns word vectors from an auxiliary news corpus, and
then initializes the representation of each entity by averag-
ing the vectors of words contained in its name. For example,
the embedding of AlfredHitchcock is initialized by the
average word vectors of “alfred” and “hitchcock”. A similar
method was later proposed in [76], which represents entities
as average word vectors of their descriptions rather than just
their names. This kind of methods model textual informa-
tion separately from KG facts, and hence fail to leverage
interactions between them.

Wang et al. [30] proposed the first joint model which can
make better use of textual information during embedding.
The key idea is to align the given KG with an auxiliary text
corpus, and then jointly conduct KG embedding and word
embedding. As such, entities/relations and words are rep-
resented in the same vector space and operations like inner
product (similarity) between them are hence meaningful.
The joint model has three components: knowledge model,
text model, and alignment model. The knowledge model is
to embed entities and relations in the KG. It is a variant of
TransE, with a loss LK to measure the fitness to KG facts.
The text model is to embed words in the text corpus. It is a
variant of Skip-gram [101], with a loss LT to measure the
fitness to co-occurring word pairs. Finally, the alignment
model guarantees the embeddings of entities/relations and
words lie in the same space. Different mechanisms of align-
ment are introduced, e.g., alignment by entity names [30],
by Wikipedia anchors [30], and by entity descriptions [31]. A
loss LA is defined to measure the quality of alignment. The
joint model then amounts to minimizing a loss aggregated
from the three components, i.e.,

L = LK + LT + LA.

Jointly embedding utilizes information from both structured
KGs and unstructured text. KG embedding and word em-
bedding can thus be enhanced by each other. Moreover, by
aligning these two types of information, jointly embedding
enables the prediction of out-of-KG entities, i.e., phrases
appearing in web text but not included in the KG yet.

Xie et al. [32] proposed description-embodied knowl-
edge representation learning (DKRL), the aim of which is
to extend TransE so as to further handle entity descriptions.
DKRL associates each entity e with two vector representa-
tions, i.e., a structure-based es and a description-based ed.
The former captures structural information conveyed in KG
facts, while the latter captures textual information expressed
in the entity description. The description-based representa-
tion is constructed by the constituent word embeddings, via
either a continuous bag-of-words encoder or a convolutional
neural network encoder. Given a fact (h, r, t), DKRL defines
the scoring function as

fr(h, t) =− ∥hs + r− ts∥1 − ∥hd + r− td∥1
− ∥hs + r− td∥1 − ∥hd + r− ts∥1,

where r is the vector representation of the relation, shared
by both structure-based hs/ts and description-based hd/td.
Entity, relation, and word embeddings can then be learned
simultaneously by minimizing the ranking loss defined in
Eq. (2). Experimental results demonstrated the superiority
of DKRL over TransE, particularly in the zero-shot scenario
with out-of-KG entities.

Wang et al. [33] recently proposed a text-enhanced KG
embedding model, referred to as TEKE. Given a KG and a
text corpus, TEKE first annotates entities in the corpus and
constructs a co-occurrence network composed of entities
and words. Then, for each entity e, TEKE defines its textual
context n(e) as its neighbors in the co-occurrence network,
i.e., words co-occurring frequently with the entity in the
text corpus. A textual context embedding n(e) is further
introduced for that entity, defined as the weighted average
of the word vectors in n(e).13 For each relation r in a fact
(h, r, t), TEKE defines its textual context as the common
neighbors of h and t, i.e., n(h, t) = n(h) ∩ n(t). A textual
context embedding n(h, t) is similarly defined for that rela-
tion. Textual context embeddings are then incorporated into
traditional methods, e.g., TransE, to learn more expressive
entity and relation representations such as

ĥ = An(h) + h,

t̂ = An(t) + t,

r̂ = Bn(h, t) + r.

Here, A, B are weight matrices, and h, t, r bias vectors.
This extension also applies for TransH and TransR. By in-
corporating textual context embeddings, TEKE was proved
to outperform the original models of TransE, TransH, and
TransR. See [102], [103], [104], [105] for other approaches
where textual information is also considered.

4.4 Logical Rules
Finally we consider the incorporation of logical rules, partic-
ularly those represented in terms of first-order Horn clauses,
e.g., ∀x, y : HasWife(x, y)⇒ HasSpouse(x, y) stating that
any two entities linked by the relation HasWife should also
be linked by the relation HasSpouse. Such logical rules
contain rich background information and have been widely
studied in knowledge acquisition and inference, usually on

13. Word vectors are pre-trained using the word2vec tool [101]. They
are not learned jointly with entity and relation embeddings.
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Facts

Rules

Entity embeddings

Relation embeddings

Truth values in [0, 1]

Logical connectives

HasWife(AlfredHitchcock,AlmaReville) HasSpouse(AlfredHitchcock,AlmaReville)

Fig. 6. Simple illustration of KALE. The figure is adapted from [34].

the basis of Markov logic networks [40], [41], [42]. There
are also systems such as WARMR [106], ALEPH [107], and
AMIE [108], [109] which can extract logical rules automati-
cally from KGs. Recently, there has been growing interest in
combining logical rules with KG embedding models.

Wang et al. [23] tried to utilize rules to refine embedding
models during KG completion. In their work, KG comple-
tion is formulated as an integer linear programming prob-
lem, with the objective function generated from embedding
models and the constraints from rules. Facts inferred in this
way will be the most preferred by the embedding models
and comply with all the rules. A similar work that combines
rules and embedding models via Markov logic networks
was later introduced in [24]. However, in [23] and [24], rules
are modeled separately from embedding models, serving as
post-processing steps, and thus will not help to obtain better
embeddings.

Guo et al. [34] proposed a joint model which embeds KG
facts and logical rules simultaneously. A key ingredient of
this approach, called KALE, is to represent and model facts
and rules in a unified framework. Specifically, a fact (h, r, t)
is taken as a ground atom, with its truth value defined as

I(h, r, t) = 1− 1

3
√
d
∥h+ r− t∥1,

where d is the dimension of the embeddings, and I(h, r, t) ∈
[0, 1] a linearly transformed version of the TransE score indi-
cating how likely the fact holds. Logical rules are first instan-
tiated into ground rules, e.g., the universally quantified rule
∀x, y : HasWife(x, y) ⇒ HasSpouse(x, y) can be ground-
ed into HasWife(AlfredHitchcock,AlmaReville) ⇒
HasSpouse(AlfredHitchcock,AlmaReville). Ground
rules are then interpreted as complex formulae constructed
by combining ground atoms with logical connectives (e.g.
∧ and ⇒), and modeled by t-norm fuzzy logics [110]. The
truth value of a ground rule is a composition of the truth
values of the constituent ground atoms, via specific t-norm
based logical connectives, e.g.,

I(f1 ⇒ f2) = I(f1) · I(f2)− I(f1) + 1,

I(f1 ∧ f2 ⇒ f3) = I(f1) · I(f2) · I(f3)− I(f1) · I(f2) + 1.

This value also lies within the range of [0, 1], indicating
to what degree the ground rule is satisfied. In this way,
KALE represents facts and rules in a unified framework, as
atomic and complex formulae respectively. Fig. 6 provides
a simple illustration of this framework. After unifying facts
and rules, KALE minimizes a global loss involving both of

them to learn entity and relation embeddings. The learned
embeddings are hence compatible not only with facts but
also with rules, which can be more effective for knowledge
acquisition and inference.

Rocktäschel et al. [35] devised a model similar to KALE.
In their work, however, vector embeddings are introduced
for entity pairs rather than individual entities, making it
particularly useful for relation extraction. Since entities do
not have their own embeddings, relations between unpaired
entities cannot be effectively discovered. Both [34] and [35]
share a common drawback: they have to instantiate uni-
versally quantified rules into ground rules before learning
their models. This grounding procedure could be extremely
time and space inefficient especially when there are a huge
number of entities in the KG and/or the rules are compli-
cated themselves. To address this drawback, Demeester et
al. [111] recently proposed an extension of [35], the key idea
of which is to impose logical implications by regularizing
relation embeddings so as to avoid grounding. For example,
given a universally quantified rule ∀x, y : HasWife(x, y)⇒
HasSpouse(x, y), [111] tried to model it by using only the
embeddings of the two relations HasWife and HasSpouse,
without instantiating x and y with concrete entities in the
KG. Nevertheless, this strategy works only for rules in the
simplest form of ∀x, y : ri(x, y) ⇒ rj(x, y), and cannot
be generalized to more complicated rules. For other related
work, please refer to [112], [113].

4.5 Other Information

Besides the four types of additional information mentioned
above, there are also a few studies which tried to incorporate
other information into KG embedding.

Entity Attributes. Nickel et al. [22] argued that relations
in KGs can indicate both relationships between entities
(e.g. (AlfredHitchcock, HasWife, AlmaReville)) and
attributes of entities (e.g. (AlfredHitchcock, Gender,
Male)), but most KG embedding techniques do not explic-
itly distinguish between relations and attributes. Take the
tensor factorization model RESCAL as an example. In this
model, each KG relation is encoded as a slice of the tensor,
no matter it indicates a true relation or just an attribute. This
naive handling of attributes will dramatically increase the
dimensionality of the tensor, while a huge amount of entries
in this tensor, however, will be wasted.14 To address this
problem, [22] proposed to explicitly distinguish attributes
from relations. Relations are still encoded in a tensor, while
attributes in a separate entity-attribute matrix. This matrix
is then factorized jointly with the tensor to learn represen-
tations simultaneously for entities, relations, and attributes.
A similar idea was later studied in a translational distance
model [114].

Temporal Information. Jiang et al. [115] observed that KG
facts are usually time-sensitive, e.g., (AlfredHitchcock,
BornIn, Leytonstone) happened in the year of 1899,
while (AlfredHitchcock, DiedIn, BelAir) took place in

14. Note that as opposed to true entities (e.g. AlfredHitchcock
and AlmaReville), attribute values (e.g. Male) might never occur as
head entities in a relation or even as tail entities in other relations except
for the specific attribute.
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the year of 1980. Based on this observation they proposed a
time-aware embedding model. The idea of this model is to
impose temporal order constraints on time-sensitive relation
pairs, e.g., BornIn and DiedIn. Given such a pair (ri, rj),
the prior relation is supposed to lie close to the subsequent
relation after a temporal transition, i.e., Mri ≈ rj , where
M is a transition matrix capturing the temporal order in-
formation between relations. After imposing such temporal
order constraints, [115] is able to learn temporally consistent
relation embeddings. Esteban et al. [116] tried to model the
temporal evolution of KGs. In their model, changes in a KG
always arrive as events, represented by labeled quadruples
such as (h, r, t, s;True) or (h, r, t, s; False), indicating that
the fact (h, r, t) appears or vanishes at time s, respectively.
Each quadruple is then modeled as a four-way interaction
among h, r, t, and s, where s is the vector representation
of the time stamp. This model was shown to perform well
in dynamic domains, e.g., medical and sensor data. Trivedi
et al. [117] recently proposed to learn non-linearly evolving
entity representations over time so as to perform temporal
reasoning over dynamic KGs. Each fact in a dynamic KG
is represented as a quadruple (h, r, t, s), indicating the cre-
ation of relation r between head entity h and tail entity t at
time s. A temporal point process [118] is then employed to
model occurrence of facts, with a bilinear scoring function to
capture multi-relational interactions between entities, and a
deep recurrent neural network to learn non-linearly evolv-
ing entity representations. This approach performed quite
well in link prediction, in particular, time prediction.

Graph Structures. Feng et al. [119] proposed a graph-aware
embedding model which learns entity and relation repre-
sentations by leveraging three types of graph structures.
The first is neighbor context, which is actually equivalent
to triples observed in a KG. The second is path context, very
similar to relation paths discussed in Section 4.2.15 The last
is edge context, which has not been considered in previously
introduced methods. Given a specific entity, its edge context
is defined as all kinds of relations linking to and from that
entity, based simply on the intuition that all these relations
are representative of that entity. For example, the edge con-
text of AlfredHitchcock might include relations such as
BornIn, DiedIn, HasWife, and DirectorOf, all indicat-
ing AlfredHitchcock to be a Person or more specifically,
a Director. Experimental results further demonstrated the
effectiveness of modeling these graph structures. Jiang et al.
[121] suggested to estimate the plausibility of a fact from its
immediate context. The immediate context of a fact (h, r, t)
is defined as: (i) triples where h is the head, (ii) triples where
h is the tail, (iii) triples where t is the head, (iv) triples where
t is the tail, and (v) triples with arbitrary relations but where
the two entities are h and t. This work was shown effective
in predicting links on multi-relational data.

Evidence from Other Relational Learning Methods. There
is another line of research which combines KG embedding
with other relational learning methods, e.g., the path rank-
ing algorithm (PRA), to take the strengths of different types
of methods. Dong et al. [69] proposed to combine MLP with

15. The difference lies in that Section 4.2 considers only relations in a
path, while path context further takes into account intermediate nodes
in that path, as practiced in [29], [100], [120].

PRA via a fusion system. Specifically, after fitting the two
models separately, they used the outputs of MLP and PRA
as scalar features, and learned a final fusion layer by training
a binary classifier. They found that fusing these two models
improves performance: the fused system obtained a result
of 0.911 for the area under the ROC curve, as compared to
0.882 for MLP and 0.884 for PRA on their specific dataset.
Nickel et al. [122] designed a generic framework to combine
latent and observable variable models. In particular, if it
combines RESCAL with PRA, the scoring function becomes
fr(h, t) = h⊤Mrt + w⊤

r ϕht. The first term is the RESCAL
score and the second term the PRA score, in which ϕht is a
feature vector composed of path features and wr holds the
weights of these features. This is a joint model which can be
trained by alternately optimizing the RESCAL parameters
with the PRA parameters. After the combination, RESCAL
only needs to model the “residual errors” that cannot be
modeled by PRA, which requires lower latent dimension-
ality and speeds up training. For more details about these
combined models, refer to [36] and references therein.

5 APPLICATIONS IN DOWNSTREAM TASKS

After a systematic review of currently available KG embed-
ding techniques, this section explores how the learned entity
and relation embeddings can be applied to and benefit a
wide variety of downstream tasks. We categorize such tasks
into (i) in-KG applications and (ii) out-of-KG applications,
discussed as follows.

5.1 In-KG Applications

In-KG applications are those conducted within the scope of
the KG where entity and relation embeddings are learned.
We introduce four such applications, i.e., link prediction,
triple classification, entity classification, and entity resolu-
tion, which have been extensively studied in the literature.
All these applications are sorts of refinement (e.g. comple-
tion or de-duplication) of the input KG [123], from different
viewpoints and application context.

5.1.1 Link Prediction
Link prediction is typically referred to as the task of predict-
ing an entity that has a specific relation with another given
entity, i.e., predicting h given (r, t) or t given (h, r), with
the former denoted as (?, r, t) and the latter as (h, r, ?). For
example, (?, DirectorOf, Psycho) is to predict the direc-
tor of the film, while (AlfredHitchcock, DirectorOf, ?)
amounts to predicting films directed by that specific person.
This is essentially a KG completion task, i.e., adding missing
knowledge to the graph, and has been tested extensively in
previous literature [14], [15], [16], [62]. This link prediction
task is also sometimes called entity prediction [27] or entity
ranking [18]. A similar idea can also be used to predict
relations between two given entities, i.e., (h, ?, t), which is
usually referred to as relation prediction [26], [27].

With entity and relation representations learned before-
hand, link prediction can be carried out simply by a ranking
procedure. Take the prediction task (?, r, t) as an example.
To predict the head, one can take every entity h′ in the
KG as a candidate answer and calculate a score fr(h

′, t)
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for each (h′, r, t). This can easily be achieved by using the
learned embeddings and scoring function once an embed-
ding model has been trained on the KG, e.g., fr(h′, t) =
−∥h′+r−t∥1/2 if TransE has been employed for KG embed-
ding. Ranking these scores in descending order will result
in a ranked list of candidate answers. For instance, given the
prediction task (?, DirectorOf, Psycho), one may gener-
ate an ordered list {JamesCameron, AlfredHitchcock,
GeorgeLucas, QuentinTarantino} by using this rank-
ing procedure. The prediction task (h, r, ?) or (h, ?, t) can be
carried out in a similar manner.

For evaluation, a common practice is to record ranks of
correct answers in such ordered lists, so as to see whether
correct answers can be ranked before incorrect ones. In the
forementioned example of (?, DirectorOf, Psycho), the
correct answer AlfredHitchcock gets a rank of 2. Lower
ranks indicate better performance. Various evaluation met-
rics have been designed based on such ranks, e.g., mean
rank (the average of predicted ranks), mean reciprocal rank
(the average of reciprocal ranks), Hits@n (the proportion of
ranks no larger than n), and AUC-PR (the area under the
precision-recall curve).

5.1.2 Triple Classification
Triple classification consists in verifying whether an unseen
triple fact (h, r, t) is true or not, e.g., (AlfredHitchcock,
DirectorOf, Psycho) should be classified as a true fact
while (JamesCameron, DirectorOf, Psycho) a false one.
This task, again, can be seen as some sort of completion of
the input KG, which has also been studied extensively in
previous works [15], [16], [19].

Recall that once an embedding model has been learned
on the KG, we can calculate a score for any triple (h, r, t) as
long as h, t ∈ E and r ∈ R, e.g., fr(h, t) = −∥h+r−t∥1/2 if
the TransE model has been learned. Triple classification can
then be carried out simply on the basis of such triple scores.
Triples with higher scores tend to be true facts. Specifically,
we introduce for each relation r a threshold δr. Then any
unseen fact from that relation, say (h, r, t), will be predicted
as true if its score fr(h, t) is higher than δr, and as false
otherwise.16 In this way, we obtain a triple classifier for each
relation. Traditional metrics for classification can be used to
evaluate this task, e.g., micro- and macro-averaged accuracy
[25]. Since for each triple a real valued score will be output
along with the binary label, ranking metrics can also be used
here, e.g., mean average precision [34].

5.1.3 Entity Classification
Entity classification aims to categorize entities into different
semantic categories, e.g., AlfredHitchcock is a Person,
and Psycho a CreativeWork. Given that in most cases the
relation encoding entity types (denoted as IsA) is contained
in the KG and has already been included into the embed-
ding process, entity classification can be treated as a specific
link prediction task, i.e., (x,IsA, ?). Similar prediction and
evaluation procedures can be applied here (see Section 5.1.1
for details). Entity classification is obviously a KG comple-
tion problem, and has been studied in [13] and [22].

16. The relation-specific threshold δr can be determined by using a
small set of facts observed for that relation, either a subset of D+ or a
separate development set.

5.1.4 Entity Resolution
Entity resolution consists in verifying whether two entities
refer to the same object. In some KGs many nodes actually
refer to identical objects, e.g., in the Cora dataset [124] which
contains citations with the fields of author, title, and venue,
the name of an author or a venue can be written in different
ways. Entity resolution is the task that de-duplicates such
nodes [13], [18].

Bordes et al. [18] considered a scenario where the KG
already contains a relation stating whether two entities are
equivalent (denoted as EqualTo) and an embedding has
been learned for that relation. In this case, entity resolution
degenerates to a triple classification problem, i.e., to judge
whether the triple (x,EqualTo, y) holds or how likely this
triple holds. Triple scores output by an embedding model
can be directly used for such prediction (see Section 5.1.2
for details). This intuitive strategy, however, does not always
work since not all KGs encode the EqualTo relation. Nickel
et al. [13] proposed to perform entity resolution solely on the
basis of entity representations. More specifically, given two
entities x, y and their vector representations x, y, the simi-
larity between x and y is computed as k(x, y) = e−∥x−y∥2

2/σ ,
and this similarity score is used to measure the likelihood
that x and y refer to the same entity. The new strategy works
even if the EqualTo relation is not encoded in the input KG.
AUC-PR is the most widely adopted evaluation metric for
this task.

5.2 Out-of-KG Applications
Out-of-KG applications are those which break through the
boundary of the input KG and scale to broader domains.
We introduce three such applications as examples, including
relation extraction, question answering, and recommender
systems. We do not seek to provide systematic reviews of
these tasks or introduce the state-of-the-arts. But instead we
focus particularly on showing how KG embedding can be
applied to these domains. And we hope they can provide
new insights into future application of KG embedding.

5.2.1 Relation Extraction
Relation extraction aims to extract relational facts from plain
text where entities have already been detected. For example,
given a sentence “Alfred Hitchcock directed Psycho” with the
entities h = AlfredHitchcock and t = Psycho detected,
a relation extractor should predict the relation DirectorOf
between these two entities. Relation extraction has long been
a crucial task in natural language processing, and provides
an effective means to enrich KGs. Much research has tried to
leverage KGs for this task, but usually as distant supervision
to automatically generate labeled data [9], [125], [126], [127].
Such approaches are still text-based extractors, ignoring the
capability of a KG itself to reason new facts.

Recently, Weston et al. [20] proposed to combine TransE
with a text-based extractor so as to better perform relation
extraction. Specifically, in the training phase, they learned a
text-based extractor from a text corpus and a TransE model
from a KG aligned to that corpus. The text-based extractor
scores the similarity between each relation r and its textual
mention m, i.e., Stext(m, r). These scores can then be used to
predict relations from their textual mentions, i.e., evidence
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Fig. 7. A matrix encoding text and KGs. The figure is adapted from [21].

from the text corpus. Meanwhile, the TransE model scores
the plausibility of each missing fact (h, r, t) in the KG, i.e.,
SKG(h, r, t).17 These scores can be used to predict relations
from their interactions with entities in the KG, i.e., evidence
from the KG. In the test phase, given two entities h, t and all
relation mentions Mh,t associated with them, a prediction r̂
is first made with the text-based extractor, and a composite
score is then introduced for the candidate fact,18 i.e.,

Stext+KG(h, r̂, t) =
∑

m∈Mh,t

Stext(m, r̂) + SKG(h, r̂, t).

This composite model favors predictions that agree with not
only the textual mentions but also the KG. Experimental
results further showed that incorporating the TransE model
can successfully improve over traditional text-based extrac-
tors. Similar improvements have also been observed after
incorporating TransH [15] and TransR [16].

Riedel et al. [21] devised a different framework which
performs relation extraction by jointly embedding plain text
and KGs. In their work, text and KGs are represented in
the same matrix. Each row of the matrix stands for a pair of
entities, and each column a textual mention or a KG relation.
If two entities co-occur with a mention in plain text or with
a relation in KGs, the corresponding entry is set to one, and
otherwise to zero. For training instances (entity pairs), one
can observe both textual mentions and KG relations, with
the latter as distant supervision. But for test instances, only
textual mentions are available. Relation extraction then is to
predict missing KG relations for test instances. Fig. 7 gives
a simple illustration of this scenario. Collaborative filtering
techniques are further employed for this task, which factor-
ize the input matrix to learn vector embeddings for entity
pairs, textual mentions, and KG relations. This framework
also improves over traditional text-based extractors. Fan et
al. [88] proposed a similar approach to relation extraction.
But in their work, the first group of columns in the matrix
correspond to text features rather than textual mentions, and
matrix completion techniques [128] are employed instead of
matrix factorization ones. Chang et al. [93] later devised a
tensor-based variant, which encodes plain text and KGs in
a three-mode tensor and then factorizes the tensor by using
the RESCAL model.

5.2.2 Question Answering
This article considers a specific question answering task, i.e.,
question answering over KGs. Given a question expressed

17. SKG(h, r, t) is a variant of the TransE score fr(h, t).
18. If the prediction r̂ is NA, i.e., a marker indicating that there is no

relation between h and t, SKG(h, r̂, t) will not be introduced.

in natural language, the task is to retrieve the correct answer
supported by a triple or set of triples from a KG [11], [12].
Here we show some examples of questions, answers, and
supporting triple(s):

• Who directed Psycho? – AlfredHitchcock
(AlfredHitchcock, DirectorOf, Psycho)

• Where was A. Hitchcock born? – Leytonstone
(AlfredHitchcock, BornIn, Leytonstone)

• What was the nationality of A. Hitchcock? – England
(AlfredHitchcock, BornIn, Leytonstone)
(Leytonstone, LocatedIn, England)

The use of KGs simplifies question answering by organizing
a great variety of answers in a structured format. However,
it remains a challenging task because of the great variability
of natural language and of the large scale of KGs.

Bordes et al. [11], [12] introduced an embedding-based
framework for this task. The key idea of their approach is to
learn low-dimensional vector embeddings of words and of
KG constituents, so that representations of questions and of
their corresponding answers are close to each other in the
embedding space. Specifically, let q denote a question and
a a candidate answer. A function S(q, a), based on vector
embeddings, is designed to score the similarity between the
question and the answer, i.e.,

S(q, a) =
(
Wϕ(q)

)⊤(
Wψ(a)

)
.

Here W is a matrix containing embeddings of words, en-
tities, and relations; ϕ(q) and ψ(a) are two sparse vectors,
the former indicating occurrences of words in the question,
and the latter occurrences of entities and relations in the an-
swer.19 Wϕ(q) and Wψ(a) are vector representations of the
question and answer respectively in the embedding space.
Both are combinations of embeddings of their constituents,
i.e., words, entities, and relations. S(·, ·) generates a high
score if a is the correct answer to the question q, and a low
score otherwise. Given a training set consisting of questions
paired with their correct answers, the embeddings W can
be learned by using typical pairwise ranking optimization,
which enforces the score of a correct pair to be higher than
that of any incorrect one. The training set can be created by
crowdsourcing [129] or by automatically generalizing seed
patterns over KGs [130]. Once W is trained, at test time, for
a given question q the answer is predicted as

â = argmaxa∈A(q)S(q, a),

where A(q) is the candidate answer set. Bordes et al. em-
pirically demonstrated that this intuitive approach achieves
promising results without using any lexicon, rules or addi-
tional steps for part-of-speech tagging, syntactic or depen-
dency parsing during training as most traditional question
answering systems do.

5.2.3 Recommender Systems
Recommender systems provide advice to users about items
they may wish to purchase or examine. Among different rec-
ommendation strategies, collaborative filtering techniques

19. The answer can be a single entity, a triple, a relation path, or even
a subgraph [12]. If, for example, it is a single entity, ψ(a) is a one-hot
vector with 1 corresponding to the entity, and 0 elsewhere.
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which model the interaction between a user and an item
as a product of their latent representations, have achieved
significant success [131]. Such techniques, however, do not
always work well, since user-item interactions can be very
sparse. In this case, hybrid recommender systems, which
combine user-item interactions and auxiliary information of
users or items, can usually achieve better performance [132].

Zhang et al. [133] recently proposed a hybrid recommen-
dation framework which leverages heterogeneous informa-
tion in a KG to improve the quality of collaborative filtering.
Specifically, they used three types of information stored in
the KG, including structural knowledge (triple facts), textual
knowledge (e.g. the textual summary of a book or a movie),
and visual knowledge (e.g. a book’s front cover or a movie’s
poster image), to derive semantic representations for items.
To model the structural knowledge, a typical KG embedding
technique, i.e., TransR, is applied which learns a structural
representation for each item. For the other two types of
information, stacked de-noising auto-encoders and stacked
convolutional auto-encoders are employed to extract items’
textual representations and visual representations, respec-
tively. Then, to conduct collaborative filtering, each user i is
represented as a latent vector ui, and each item j a latent
vector

ej = sj + tj + vj + ηj ,

where sj , tj , and vj are the structural, textual, and visual
representations associated to that item respectively, and ηj

is an offset vector. The preference of user i for item j is then
modeled as a product of the two latent vectors, i.e., u⊤

i ej .
Ranking optimization over pair-wise preference is used to
learn these latent vectors. Finally, at test time, given a target
user i, item recommendation can be made according to the
following ranking criterion:

i : j1 ≻ j2 ≻ · · · ≻ jn ⇔ u⊤
i ej1 >u⊤

i ej2 > · · ·>u⊤
i ejn ,

where i : js ≻ jt means that user i prefers item js over jt.
Experimental results demonstrated the effectiveness of the
three types of item representations learned from the KG in
recommender systems.

6 CONCLUDING REMARKS

KG embedding, which aims to embed entities and relations
into continuous vector spaces, has found important appli-
cations in various entity-oriented tasks and quickly gained
massive attention. This article provided a systematic review
of currently available techniques, particularly based on the
type of information used in KG embedding. State-of-the-
art techniques which conduct embedding using only facts
observed in a given KG were first introduced. We described
the overall framework, specific model design, typical train-
ing procedures, as well as pros and cons of such techniques.
After that, some more advanced techniques which perform
KG embedding with other information besides facts were
later discussed. We focused specifically on the incorporation
of four types of additional information, i.e., entity types,
relation paths, textual descriptions, and logical rules. The
investigation on incorporating additional information has
just started, and might receive increasing attention in the
near future. Finally, this article explored the application of

KG embedding. Two types of applications were introduced,
i.e., in-KG applications conducted within the scope of the
input KG and out-of-KG applications that scale to broader
domains. We hope this brief exploration can provide new
insights into future application of KG embedding.
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