
Collaborative Infrastructure for Test-Driven
Scientific Model Validation

Cyrus Omar, Jonathan Aldrich
Carnegie Mellon University, USA

{comar,aldrich}@cs.cmu.edu

Richard C. Gerkin
Arizona State University, USA

rgerkin@asu.edu

ABSTRACT
One of the pillars of the modern scientific method is model

validation: comparing a scientific model’s predictions against
empirical observations. Today, a scientist demonstrates the
validity of a model by making an argument in a paper and
submitting it for peer review, a process comparable to code
review in software engineering. While human review helps
to ensure that contributions meet high-level goals, software
engineers typically supplement it with unit testing to get a
more complete picture of the status of a project.

We argue that a similar test-driven methodology would be
valuable to scientific communities as they seek to validate
increasingly complex models against growing repositories of
empirical data. Scientific communities differ from software
communities in several key ways, however. In this paper,
we introduce SciUnit, a framework for test-driven scientific
model validation, and outline how, supported by new and
existing collaborative infrastructure, it could integrate into
the modern scientific process.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Documentation, Measurement, Standardization

Keywords
unit testing, model validation, cyberinfrastructure

1. INTRODUCTION
Scientific theories are increasingly being organized around

quantitative models: formal systems capable of generating
predictions about observable quantities. A model can be
characterized by its scope: the set of observable quantities
that it attempts to predict, and by its validity : the extent to
which its predictions agree with experimental observations
of these quantities.

Today, quantitative models are validated by peer review.
For a model to be accepted by a scientific community, its ad-
vocates must submit a paper that describes how it works and
provides evidence that it makes more accurate predictions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 - June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/05 ...$15.00.

than previous models (or that it makes a desirable tradeoff
between accuracy and complexity) [2]. Other members of
the relevant community are then tasked with ensuring that
validity was measured correctly and that all relevant data
and competing models were adequately considered, drawing
on knowledge of statistical methods and the prior literature.
Publishing is a primary motivator for most scientists [3].

Quantitative scientific modeling shares much in common
with software development. Indeed, quantitative models
are increasingly being implemented in software and in some
cases, the software is the model (e.g. complex simulations).
The peer review process for papers is similar in many ways
to the code review process used in many development teams,
where team members look for mistakes, enforce style and ar-
chitectural guidelines and check that the code is valid (i.e.
that it achieves its intended goal) before permitting it to be
committed to the primary source code repository.

Code review can be quite effective [10], but this requires
that developers expend considerable effort [6]. Most large
development teams thus supplement code reviews with more
automated approaches to verification and validation, the
most widely-used of which is unit testing [1]. In brief, unit
tests are functions that check that the behavior of a single
component satisfies a single functional criterion. A suite of
such tests complements code review by making it easier to
answer questions like these:

1. What functionality is a component expected to have?
2. What functionality has been adequately implemented?

What remains to be done?
3. Does a candidate code contribution cause regressions

in other parts of a program?

Scientists ask analagous questions:

1. What is a model’s scope and how is validity measured?
2. Which observations are already explained by existing

models? What are the best models of a particular
quantity? What data has yet to be explained?

3. What affect do new observations have on the validity of
previously published models? Can new models explain
previously published data?

But while software engineers can rely on a program’s test
suite, scientists today must extract this information from a
body of scientific papers. This is increasingly difficult. Each
paper is narrowly focused, often considering just one model
or dataset, and is frozen in time, so it does not consider
the latest models, data or statistical methods. Discovering,
precisely characterizing and comparing models to determine
the state of the art and find open modeling problems can
require an encyclopedic knowledge of the literature, as can

data

data repos

th
eo

ri
es

m
o

d
e

l
re

p
o

s

cosmologists/cosmounit

sciunit/sciunit

SciDash

(general	 validation	 testing	 framework)

(common	 test	 and	 model	 classes,	 capabilities	 and	 data	 standards)

(coordinating	 portal)

PositionTest VelocityTest EccentricityTest

Newton p=0.00001 p=0.00001 99% of variance

Kepler p=0.04 p=0.6 96% of variance

Copernicus p=0.11 p=0.14 50% of variance
Ptolemy! p=0.14 p=0.21 10% of variance

 Github

saturnfans/saturnsuite (specific	 tests	 and	 models	 of	 interest	 to	 an	 individual	 or	 small	 community)

IPython notebook based score table for saturn_motion_suite

(social	 coding	 infrastructure)

Figure 1: Tests are derived from data and models are derived from scientific theories, either directly or through

existing data and model repositories. The score table (center) summarizes the performance of a collection of models

against a suite of tests. Tests and models are initialized, executed and visualized using sciunit in an IPython notebook

stored inside a suite repository (e.g. saturnsuite) hosted on a social coding website (e.g. Github). SciDash discovers

and organizes suite repositories and provides utilities for viewing them online without needing to create a local copy.

Logic common across research areas is also collaboratively developed (e.g. cosmounit).

finding all data relevant to a model. Senior scientists often
attempt to fill these needs by publishing review papers, but
in many areas, the number of publications generated every
year can be overwhelming [4], and comprehensive reviews of
a particular area are published infrequently. Statisticians of-
ten complain that scientists are not following best practices
and that community standards evolve too slowly because a
canonical paper or popular review relied on outdated meth-
ods. Furthermore, if the literature simply doesn’t address
an important question of validity (e.g. if space was limited),
a researcher might need to reimplement an existing model
from scratch to attempt to address it.

One might compare this to a large software development
team answering the questions listed above based largely on
carefully reviewed, but rarely updated, API documentation
and annual high-level project summaries. While certainly a
caricature, this motivates our suggestion that the scientific
process could be improved by the adoption of test-driven
methodologies alongside traditional peer review. However,
the scientific community presents several unique challenges:

1. Unit tests are typically pass/fail, while goodness-of-fit
between a model and data is typically measured by a
continuous metric.

2. Unit tests often test a particular component, whereas
a validation testing system must be able to handle and
compare many models with the same scope.

3. Scientists use a variety of programming languages.
4. Scientists often only loosely coordinate their efforts.
5. Different communities, groups and individuals prefer

different goodness-of-fit metrics and focus on different
sets of observable quantities. In contrast, there is more
pressure to agree upon requirements and priorities in
a typical software development project.

6. Professional software developers are typically trained
in testing practices and the use of collaborative tools,
while scientists more rarely have such experience [9].

To begin to address these challenges, we will introduce
a lightweight and flexible validation testing and framework
called SciUnit in Sec. 2. Many of these challenges have to
do with coordination between scientists. To begin to ad-
dress this, we then describe a community workflow based
on widely-adopted social coding tools (here, Github) and a
lightweight community portal called SciDash, in Sec. 3. The
overall goal of this work is to help scientists generate tables
like the one central to Figure 1, where the relative validity of
a set of models having a common scope can be determined
by examining scores produced by a suite of validation tests
constructed from experimental data. We discuss adoption
strategies and conclude in Sec. 4 with directions for future
research into scientific model validation practices.

2. VALIDATION TESTING WITH SCIUNIT
As a motivating example, we will begin by considering a

community of early cosmologists recording and attempting
to model observations of the planets visible in the sky, such
as their position, velocity, orbital eccentricity and so on. One
simple validation test might ask a model to predict planetary
position on night n + 1 given observations of its position on
n previous nights. Figure 2 shows how to implement a test,
using SciUnit, that captures this logic.

Before explaining the details of this example, we point out
that SciUnit is implemented in Python. Python is one of the
most widely used languages in science today [8], and is in-
creasingly regarded as the de facto language of open source
scientific computing. It is easy to read and has a simple
object system that we use to specify the interface between
tests and models (challenge 2, see below). It supports call-
ing into other popular languages, including R, MATLAB, C
and Java, often more cleanly than they support calling into
Python (challenge 3). The IPython notebook is a power-
ful web-based “read-eval-visualize loop” that we will use to
support interactive table visualization, and it also permits
using other languages on a per-cell basis [7]. Together, this

1 class PositionTest(sciunit.Test):
2 """Tests a planetary position model based on

positions observed on night n given the
positions in the n-1 previous nights.

3 Observation: {
4 ’histories’:list[list[Position]],
5 ’positions’:list[Position]]
6 }"""
7 required_capabilities = [PredictsPlanetaryPosition]
8 def generate_prediction(self, model):
9 return [model.predict_next_pos(obs_history)
10 for obs_history
11 in self.observation[’histories’]]
12
13 def compute_score(self, observation , prediction):
14 obs_positions = observation[’positions’]
15 return pooled_p_val([abs_distance(obs, pred)
16 for (obs, pred)
17 in zip(obs_positions , prediction)])

Figure 2: An example test class in cosmounit.

makes writing wrappers around tests and models written in
other languages relatively simple. We anticipate making it
nearly automatic as future work.

A SciUnit validation test is an instance of a Python class
inheriting from sciunit.Test (line 1). Every test takes
one required constructor argument (inherited from the base
class): the observation(s) against which the test will validate
models. In our example, this is a dictionary, documented
per Python conventions on lines 2-6. To create a particular
position test, we instantiate this class with particular obser-
vations. For example, the subset of cosmologists interested
specifically in Saturn might instantiate a test by randomly
chunking observations made about Saturn’s nightly position
over time as follows:

1 h, p = randomly_chunk(obsvd_saturn_positions)
2 saturn_position_test = PositionTest(
3 {’histories’: h, ’positions’: p})

The class PositionTest defines logic that is not specific
to any particular planet, so it is contained in a repository
shared by all cosmologists called cosmounit. The particular
test above would be constructed in a separate repository
focused specifically on Saturn called saturnsuite. Both
would be collaboratively developed by these (overlapping)
research communities in source code repositories on Github.

Classes that implement the sciunit.Test interface must
specify two methods: a method for extracting a prediction
from a model, and a method for producing a score from that
prediction. Predictions are extracted by a separate method
to make it easier for statisticians to write new tests for which
only the goodness-of-fit metric differs, not the method by
which the prediction is extracted (challenge 5).

The generate_prediction method (lines 8-11) is passed
a model as input and must extract a prediction. A model
is an instance of a class inheriting from sciunit.Model and
a prediction can be any Python data structure. To specify
the interface between the test and the model, the test class
specifies a list of required_capabilities (line 7). A capa-
bility specifies the methods that a test may need to invoke
on the model to extract a prediction, and is analogous to
an interface in a language like Java. In Python, capabilities
are written as classes with unimplemented members, shown
in Figure 3. Classes defining capabilities are tagged as such
by inheriting from sciunit.Capability. The test in Figure
2 repeatedly uses this capability on lines 9-11 to return a
list of predicted positions for each observed history (using a
list comprehension for brevity). A planet’s position is repre-
sented using a standard celestial coordinate system specified

1 class PredictsPlanetaryPosition(sciunit.Capability):
2 def predict_next_pos(self, history):
3 """Takes a list of previous Positions and produces

the next Position."""
4 raise NotImplementedError()
5
6 class LinearPlanetModel(sciunit.Model,
7 PredictsPlanetaryPosition):
8 def predict_next_pos(self, history):
9 return linear_prediction(history)

Figure 3: An example capability and a model class that

implements it in cosmounit.

within cosmounit by the class Position.
A model class implements a capability by inheriting from

it and implementing the required methods (Figure 3). The
scope of a model class is identified by the capabilities it has.
A particular model is an instance of such a class:
1 lin_saturn_model = LinearPlanetModel()

Once a prediction has been extracted from a model, the
test class must compute a score. The framework invokes
the compute_score method with the observation provided
upon test instantiation and the prediction just generated.
On lines 13-17 of Fig. 2, the test class constructs a list
of distances between the observed and predicted positions,
then determines a pooled p-value to determine the goodness-
of-fit (the details are omitted for concision). A p-value is
represented as an instance of sciunit.PValue, a subclass of
sciunit.Score that has been included with SciUnit due to
its wide use across science.

This illustrates a key difference between unit testing, which
would simply produce a boolean result, and our conception
of scientific validation testing (challenge 1). A score class
must induce an ordering, so that a table like that shown in
Figure 1 can be sorted along its columns. A score class can
also specify a normalization scheme so the cells of the table
can be color-coded.

The judge method of a test can be invoked to compute a
score for a single model:
1 score = saturn_position_test.judge(lin_saturn_model)

This method first checks that the model implements all
required capabilities, then calls the generate_prediction
method, then passes the prediction to the compute_score
method. A reference to the test, model, observation, pre-
diction and other related data the test provides (none here)
are added as attributes of the score before it is returned.

To produce a comprehensive test suite, the contributors
to saturnsuite would instantiate a number of other tests
and then create an instance of the TestSuite class:

1 saturn_motion_suite = sciunit.TestSuite([
2 saturn_position_test , saturn_velocity_test , ...])

They would also instantiate a number of models. A test suite
can be used to judge multiple models at once, if they satisfy
the union of the capabilities required by the constituent tests
(challenge 2). The result is a score matrix :

1 sm_matrix = saturn_motion_suite.judge([
2 lin_saturn_model , ptolemy_model , kepler_model , ...])

If constructed inside an IPython notebook, a score matrix
can then be visualized as an interactive table, much like the
one shown in Figure 1. Scientists can sort by column and
click on tests, models and scores to get more information
on each, including documentation, authorship information,
related papers and other related data extracted from the
underlying classes (details omitted for concision).

3. COLLABORATIVE WORKFLOW
Social coding tools like Github allow each scientist to work

on their own fork of a repository like saturnunit where they
can examine the consequences of their own contributions on
the tests and models that have previously been developed.
For example, an experimentalist who has gathered new data
can instantiate a new test or refine an existing one with more
accurate observations. As long as the interface between the
test and the model remains the same, the scores for prior
models can be recomputed entirely automatically, requiring
no coordination with model developers (challenge 4). When
a modeler develops a new model, she can validate it against
all the tests it is capable of taking. If a statistician devel-
ops a better goodness-of-fit metric, she too can use existing
capabilities and indeed inherit prediction extraction logic di-
rectly, as discussed above. If a scientist is not interested in
certain tests, she can locally remove them to recalibrate her
view of the relative merits of different models (challenge 5).

If the changes to the repository appear to represent a con-
tribution, these scientists might submit a pull request to the
central repository (either separately or together with the
submission of a conventional paper). Anonymous reviewers
tasked by the “editors” of the repository would then subject
the pull request to appropriate peer review before commit-
ting it to the “permanent record”. A model that performs
well across tests in a collaboratively developed suite could
more objectively claim (e.g. to reviewers) to be a coherent,
valid model of, for example, Saturn’s motion.

To help scientists discover and coordinate development
of these repositories, we are developing a collaborative por-
tal called SciDash (http:// scidash.org/). It is essentially
a wiki pointing scientists to the repositories designated as
“primary” by early adopters in their research areas (who
may serve as de facto initial editors as well). SciDash also
supports loading IPython notebooks containing score tables
stored in these repositories into the browser, avoiding the
need to clone the repository locally. To modify the suite
(e.g. to add the model a scientist is developing to it), a
scientist can simply fork the repository by clicking a button
at the top of this view. We are exploring ways of loading
forks directly into a cloud-based IPython notebook system,
so that the complexities of Git, Python setup and package
management can be left behind the scenes (challenge 6). Sci-
Dash lists public forks of repositories that it is indexing to
help scientists get a better sense of who is working on the
problems they are interested in and what partial results are
publicly available, fostering collaboration.

As with many pieces of cyberinfrastructure, early adopters
may benefit less than late adopters due to network effects.
To incentivize adoption, we look to an increasingly common
scientific practice: modeling competitions. Many research
communities use these to periodically determine the state of
the art, resulting in a form of review paper (e.g. [5]). Fund-
ing sources often include small monetary incentives. SciDash
could be used to run these kinds of competitions on a contin-
uous basis atop less ad hoc infrastructure (and thus require
less effort and central planning from organizers) and we are
actively recruiting organizers for such competitions.

4. DISCUSSION & FUTURE DIRECTIONS
Instead of attempting to use an existing general-purpose

testing framework (e.g. JUnit or PyUnit), we have designed
what is essentially a domain-specific language that captures

the scientific model validation process in more familiar terms
(in view of challenge 6).

While we discuss a simple example based on planetary
movement here, we have applied this framework to more re-
alistic problems in neurobiology in collaboration with the
developers of two large-scale informatics projects, Open-
SourceBrain and NeuroElectro, which serve as a source of
models and data, respectively. Our tools serve, in essence,
as a bridge between these resources. The tools we describe
could also be used for a variety of other scientific disciplines,
including within software engineering to validate predictive
models of, for example, project duration or code reuse.

This work identifies new research directions in software
engineering by developing connections between test-driven
development [1] and the scientific model validation process,
which has not been as extensively studied. Characterizing
how scientists today attempt to answer the questions given
in the introduction, evaluating how well sociotechnical so-
lutions like the ones we propose here could improve their
ability to do so, and studying adoption barriers are likely to
be fruitful avenues for future empirical research, and lead to
a better understanding of both programmers and scientists.

The core SciUnit framework has been fully developed and
is available at http://sciunit.scidash.org/. SciDash is under
active development as of this writing.

5. ACKNOWLEDGEMENTS
We thank Sharon Crook, Shreejoy Tripathy and Padraig

Gleeson for their many helpful discussions, and anonymous
referees and friends for their careful readings. RG was sup-
ported in part by NIMH grant R01MH081905. CO and JA
were supported in part by NSF grant 1116907. The con-
tent is solely the responsibility of the authors and does not
necessarily represent the official views of the NIH or NSF.

6. REFERENCES
[1] K. Beck. Test Driven Development: By Example.

Addison Wesley, 2003.

[2] G. E. Box and N. R. Draper. Empirical model-building
and response surfaces. John Wiley & Sons, 1987.

[3] J. Howison and J. Herbsleb. Scientific software
production: incentives and collaboration. In CSCW,
pages 513–522. ACM, 2011.

[4] A. E. Jinha. Article 50 million: an estimate of the
number of scholarly articles in existence. Learned
Publishing, 23(3):258–263, July 2010.

[5] R. Jolivet, F. Schürmann, T. Berger, R. Naud,
W. Gerstner, and A. Roth. The quantitative
single-neuron modeling competition. Biological
Cybernetics, 99(4):417–426, Nov. 2008.

[6] C. F. Kemerer and M. C. Paulk. The impact of design
and code reviews on software quality: An empirical
study based on PSP data. IEEE Transactions on
Software Engineering, 35(4):534–550, 2009.

[7] F. Perez and B. E. Granger. IPython: a system for
interactive scientific computing. Computing in Science
& Engineering, 9(3):21–29, 2007.

[8] M. F. Sanner et al. Python: a programming language
for software integration and development. J Mol
Graph Model, 17(1):57–61, 1999.

[9] J. Segal. Models of scientific software development. In
SECSE, May 2008.

[10] H. Siy and L. Votta. Does the modern code inspection
have value? In ICSM, pages 281–289, 2001.

