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ABSTRACT 

We sought a method of collecting, en masse, connection 
diagnostics between geographically-distributed client access 
points—as opposed to latency data between major server nodes. 
In response, this paper details the creation and launch of a web-
based, client-driven, extendable database of client-to-client 
network latency data (ping data). It demonstrates the potential for 
distributed processing and data collection contained entirely 
within the web browser using asynchronous scripting techniques. 
The paper offers preliminary visual interpretations of an initial 
global latency dataset. 
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1. INTRODUCTION 
In web-based communities, the increasing irrelevance of a client's 
geographic location is much-touted, generally undervaluing the 
dependence of every data network upon physical infrastructures. 
While connection speed/latency between client-and-server, or 
between peer-and-peer, is the parameter of greatest importance, 
connection quality is often erratic outside of major nodes. The 
ITER Organization is a rurally located laboratory, whose users are 
distantly--and also often rurally--located worldwide. As we are 
funded and supported by 35 different countries, our resources and 
our staff are spread distantly throughout the globe, amongst these 
member nations. We wished to measure the impact of this 
distributed mode of collaboration in order to ensure accountability 
and preparedness. 

We found a lack of statistically significant data showing the 
correlation, or lack thereof, between physical location and client-
to-client connection latency. We wanted an open database 
providing historical and contemporary connection latencies 
between precise geocoordinates. To maximize its utility, such a 
database must be easily accessible via a straightforward, stable, 
and well-documented API. To avoid privacy concerns, all data 
must be received and stored anonymously, with no record of the 
user’s actual activity—only record of the activity induced by the 
experiment. Furthermore, we wished to de-centralize the data-
generation, since measurements of connection latency between 
clients and major nodes (such as central web-servers) are already 
plentiful.  

Building on the procedural foundations developed for aerial WiFi 
surveys carried out by the Open University of Hong Kong in 2008 
[1], we have constructed and launched a fully functional and 
robust system with the potential for extremely high data 
throughput. The efficacy of this initial launch is so encouraging 
that it provides grounds for imagining an entirely new method of 
data delivery, wherein web-content is distributed into the caches 
of reliable clients, who could then fulfill content requests as a 
moderated “swarm.” 

More conservatively, the data already amassed offers an 
invaluable depiction of the interconnected globe, sure to be useful 
in a handful of applications, from visual mashups to network 
analysis. 

The aforementioned system (induced pinging amongst 
independent clients)--developed for this paper--shall be 
henceforth (informally) referred to as the Distributed Ping Project 
(DPP). 

2. METHODS 

2.1 Basic Components 
There are three necessary components in the procedure: 

1. a cloud-based web-service, acting primarily as a storage 
repository, directing the process and storing the results 

2. a client "pinger" which initiates the process 

3. a collection of targets (IP-addresses) 

Clients are currently divided into three categories, representing 
three separate (though consistent in the aforementioned 
procedure) development tracks: 

1. a daemon process running on UNIX-based 
smartphones (iPhone OS, Android OS) 

2. a daemon process running on UNIX-based laptops 
(OSX and Linux-variants) 

3. Javascript code snippet embedded into web pages by a 
webmaster, executed by clients' browsers during 
moments of user inactivity. 

This paper will focus exclusively on the third type of client 
(passively executed browser code) since it was developed 
exclusively by the authors, and because it demonstrates the most 
prolific and promising results. A step-by-step explanation of this 
“third” method follows: 
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2.2 Basic Procedure 
1. The client loads a web page on a remote web site 

(which has chosen to participate in the DPP) (Figure 1, 
Marker A). The loaded web page contains a <script> 
reference to a Javascript file located on the central DPP 
web-service. Upon page-load, the Javascript initializes 
an event listener, which awaits a period of user 
inactivity, in order to minimize any effect upon the user. 

2. When (and if) this period of user inactivity occurs, the 
process awakens, and initiates a check-in with the DPP 
web-service (Figure 1, Marker B). If available, the 
client transmits its geo-coordinates concurrently. 

3. The DPP web-service acknowledges the client’s check-
in, and saves the client’s external IP-address and geo-
coordinates. The web-service then browses a list of IP-
addresses of other clients that have checked-in to the 
web-service within the previous 6 hours, and chooses 
one (based, as well, on several additional factors, which 
will be discussed in Section 2.3.3). The web-service 
returns this IP-address to the client (method of return to 
be discussed in 2.3). 

4. The client receives the IP-address (Figure 1, Marker C) 
and passively executes a pre-determined number of 
“pings” to the target IP-address (method of “pinging” to 
be discussed in 2.3) (Figure 1, Marker D). 

5. Following the pre-determined number of pings, the 
client calculates the average, standard deviation, and 
success rate of the resultant dataset and returns these 
values to the DPP web-service. (Figure 1, Marker E). 

6. The web-service saves this data alongside the client’s 
(ping source) and the target’s (ping destination) IP-
addresses before choosing/returning a new target IP-
address to the client. Thus, the process begins anew 
from step 3 and loops indefinitely until the browser is 
closed, or the user becomes active again. 

2.3 Special Considerations 
Outside of the browser environment, pinging hosts and 
interactiing with remote web-services is a straightforward and 
easily executed procedure. Inside the browser, however, there are 
a variety of protocol requirements and security rules that greatly 
complicate the task, and force alternative approaches. 

2.3.1 Interacting with the DPP web-service 
All modern browsers explicitly ban cross-domain scripting, such 
that (amongst other effects) AJAX calls may not be made to 
domain names other than those that are serving the current 
webpage. This poses a significant problem for the DPP, which 
relies entirely upon the client’s ability to send data and receive 
target IP-addresses from the DPP web-service—a completely 
different domain from the web-site initially visited by the user. 
Browsers do, however, allow remotely located images. Thus, by 
disguising the web-service as a GIF image 
(http://www.distributedpings.org/x.gif), the browser is capable of 
loading it on command. Passing data into the web-service is thus 
quite straightforward, since they may be appended to the URL as 
GET variables (similar to the method employed by Google 
Analytics [2]). The data passed back to the browser needs to be  

Figure 1. Summary of client - web-service interactions. 

interpreted as an IP address, however, it must be somehow 
embedded into a GIF image in a manner that is parseable by the 
Javascript running in the client’s browser. This is accomplished 
by calling the web-service twice (state is conserved across web-
requests by using a 24-character “id”), and parsing the width and 
height (in pixels) of the two resultant images. The 4 integers are 
then assembled to reveal the target IP-address (Figure 2). 

 

Figure 2. Determining target IP-address from width and 
height of two images, provided by DPP web-service. 



2.3.2 Simulating “pings” within the browser 
At the time of writing, no modern browser includes a mechanism 
for “pinging” by Javascript or Flash. Several ActiveX solutions 
have been built and released, but we found such an option to be 
unacceptable since it would require a break from the open-
standard model, would limit our usable browser base to Internet 
Explorer users, and worst of all, would require active acceptance 
(to install the control) by the client. 

The act of “pinging” is, in effect, a non-specific TCP connection 
to a given address. Even if the computer residing at a given IP 
address does not contain any server processes or open ports, a 
ping should still be returned (excluding computers in stealth 
mode). Given this, we were able to simulate “pinging” using the 
following procedure: 

As with the web-service interaction, we treat each “ping” as the 
loading of an image in Javascript. Given a target IP 
(64.235.52.190, for example), we tell the browser to load an 
image that we presume does not exist, at an IP-address that we 
presume is not a web server 
(http://64.235.52.190/random_string.gif). If this IP is reachable, 
and is not in stealth mode, then requesting this non-existent URL 
will return an error, and the time lapse between the request and 
the error is equivalent to the latency time of a ping. If the IP-
address does not exist, is unreachable, or is in stealth mode, then 
the request will time out. Thus by requesting a given image 
repeatedly, we may effectively simulate the act of “pinging” in the 
browser. 

2.3.3 Quality Control and Garbage Collection 
In our model, data is generated by a moderated “swarm”, in which 
a large number of widely distributed worker processes bear the 
load, while a single centralized location collects and directs the 
masses. Making this direction more intelligent and efficient is 
extremely important in maintaining and improving the integrity of 
the experiment and its dataset. Each client should be identical and 
mindless. 

Since target IP-addresses are the only information returned to the 
clients, we want to make sure that these IPs will yield results. It is 
therefore very important to rate the quality of a given IP before 
returning it. This begins with the recording of failed pings. Each 
time a client fails to return a valuable data set (2 pings or less), the 
target IP is penalized by one “point.” Any IP with more than 8 
“points” becomes disqualified, and is not returned by the web-
service. 

Expiration is another concern. Most home-bound broadband 
connections use dynamic IP addresses, which drift somewhat 
erratically. The web-service maintains the freshness of target IPs 
by only returning addresses that have, themselves, been clients 
within the previous 6 hours. 

Even with these two quality control measures, some IPs are 
unfairly penalized by failed connections from the source. If a 
given IP has been continuously active for many hours, and has 
successfully returned hundreds of pings from a diverse set of 
sources, but has also had 8 failures, we do not wish for it to be 
disqualified. Thus, the web-service will also return target IP-
addresses whose ratio of failures/successes is less than 1/10. 

 

Table 1. A cross-section of the “event” (successful ping group 
reported back to DPP web-service) dataset. 

 

3. CONCLUSIONS 
The distributed data collection method used in DPP proved to be 
effective for gathering large quantities of data on the latency time 
between geographically-distributed clients. Although browser-
based pings have an added overhead compared to traditional 
command-line ping requests, initial observations suggest that they 
are representative of latency and they are a reasonable 
approximation to traditional pings. 

 

Figure 3. Small cross-section (~600) of ping events. Increased 
line thickness indicates longer latency between geocoordinates. 

This paper describes a method for collecting latency data and 
storing it on a central server. The first significant contribution is 
the implementation of a browser-based ping algorithm using 
standard asynchronous javascript. The second contribution is the 
implementation of a library for performing simple two-way cross-
domain communication for passing ping targets and collecting 
data. What now lies ahead is the interpretation of large latency 
datasets. As discussed in previous projects (e.g. Wifi survey 
performed in Hong Kong [1]), the data collected is useful in 
comparing physical distances with latency times. The next step in 
the project is to produce visual mashups of connectivity across the 
globe. Figure 3 shows a straightforward translation of a very small 
amount of data where lines on the map represent pings and the 
width of the line is the average ping time. Other data that has been 
collected (e.g. standard deviation of ping time) is likely to reveal 



further information (e.g. reliability and consistency) about the 
connectivity between clients. Further steps will include a map 
where the physical location is warped to represent the DPP data.  

Finally, as development continues we will be publishing mashup 
examples, API instructions and source downloads at: 

http://www.distributedpings.org/ 
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