
Community-Driven Latency Measurements

in Geographically-Distributed Networks
Topher White

ITER Organization
CS 90 046, St. Paul-lez-Durance

13067, France
+33 4 42 17 66 19

topherwhite@gmail.com

Dr. Antony Harfield
University of Warwick

Coventry
CV4 7AL, United Kingdom

+44 24 76 52 80 43

antonyharfield@gmail.com

Dr. Philip Tsang
Open University of Hong Kong

30 Good Shepherd St.
Hong Kong

drphiliptsang@gmail.com

ABSTRACT

We sought a method of collecting, en masse, connection
diagnostics between geographically-distributed client access
points—as opposed to latency data between major server nodes.
In response, this paper details the creation and launch of a web-
based, client-driven, extendable database of client-to-client
network latency data (ping data). It demonstrates the potential for
distributed processing and data collection contained entirely
within the web browser using asynchronous scripting techniques.
The paper offers preliminary visual interpretations of an initial
global latency dataset.

Keywords

geolocation, open source, latency, semantic web, community

1. INTRODUCTION
In web-based communities, the increasing irrelevance of a client's
geographic location is much-touted, generally undervaluing the
dependence of every data network upon physical infrastructures.
While connection speed/latency between client-and-server, or
between peer-and-peer, is the parameter of greatest importance,
connection quality is often erratic outside of major nodes. The
ITER Organization is a rurally located laboratory, whose users are
distantly--and also often rurally--located worldwide. As we are
funded and supported by 35 different countries, our resources and
our staff are spread distantly throughout the globe, amongst these
member nations. We wished to measure the impact of this
distributed mode of collaboration in order to ensure accountability
and preparedness.

We found a lack of statistically significant data showing the
correlation, or lack thereof, between physical location and client-
to-client connection latency. We wanted an open database
providing historical and contemporary connection latencies
between precise geocoordinates. To maximize its utility, such a
database must be easily accessible via a straightforward, stable,
and well-documented API. To avoid privacy concerns, all data
must be received and stored anonymously, with no record of the
user’s actual activity—only record of the activity induced by the
experiment. Furthermore, we wished to de-centralize the data-
generation, since measurements of connection latency between
clients and major nodes (such as central web-servers) are already
plentiful.

Building on the procedural foundations developed for aerial WiFi
surveys carried out by the Open University of Hong Kong in 2008
[1], we have constructed and launched a fully functional and
robust system with the potential for extremely high data
throughput. The efficacy of this initial launch is so encouraging
that it provides grounds for imagining an entirely new method of
data delivery, wherein web-content is distributed into the caches
of reliable clients, who could then fulfill content requests as a
moderated “swarm.”

More conservatively, the data already amassed offers an
invaluable depiction of the interconnected globe, sure to be useful
in a handful of applications, from visual mashups to network
analysis.

The aforementioned system (induced pinging amongst
independent clients)--developed for this paper--shall be
henceforth (informally) referred to as the Distributed Ping Project
(DPP).

2. METHODS

2.1 Basic Components
There are three necessary components in the procedure:

1. a cloud-based web-service, acting primarily as a storage
repository, directing the process and storing the results

2. a client "pinger" which initiates the process

3. a collection of targets (IP-addresses)

Clients are currently divided into three categories, representing
three separate (though consistent in the aforementioned
procedure) development tracks:

1. a daemon process running on UNIX-based
smartphones (iPhone OS, Android OS)

2. a daemon process running on UNIX-based laptops
(OSX and Linux-variants)

3. Javascript code snippet embedded into web pages by a
webmaster, executed by clients' browsers during
moments of user inactivity.

This paper will focus exclusively on the third type of client
(passively executed browser code) since it was developed
exclusively by the authors, and because it demonstrates the most
prolific and promising results. A step-by-step explanation of this
“third” method follows:

Copyright is held by the authors.

Web Science Conf. 2010, April 26-27, 2010, Raleigh, NC, USA.

2.2 Basic Procedure
1. The client loads a web page on a remote web site

(which has chosen to participate in the DPP) (Figure 1,
Marker A). The loaded web page contains a <script>
reference to a Javascript file located on the central DPP
web-service. Upon page-load, the Javascript initializes
an event listener, which awaits a period of user
inactivity, in order to minimize any effect upon the user.

2. When (and if) this period of user inactivity occurs, the
process awakens, and initiates a check-in with the DPP
web-service (Figure 1, Marker B). If available, the
client transmits its geo-coordinates concurrently.

3. The DPP web-service acknowledges the client’s check-
in, and saves the client’s external IP-address and geo-
coordinates. The web-service then browses a list of IP-
addresses of other clients that have checked-in to the
web-service within the previous 6 hours, and chooses
one (based, as well, on several additional factors, which
will be discussed in Section 2.3.3). The web-service
returns this IP-address to the client (method of return to
be discussed in 2.3).

4. The client receives the IP-address (Figure 1, Marker C)
and passively executes a pre-determined number of
“pings” to the target IP-address (method of “pinging” to
be discussed in 2.3) (Figure 1, Marker D).

5. Following the pre-determined number of pings, the
client calculates the average, standard deviation, and
success rate of the resultant dataset and returns these
values to the DPP web-service. (Figure 1, Marker E).

6. The web-service saves this data alongside the client’s
(ping source) and the target’s (ping destination) IP-
addresses before choosing/returning a new target IP-
address to the client. Thus, the process begins anew
from step 3 and loops indefinitely until the browser is
closed, or the user becomes active again.

2.3 Special Considerations
Outside of the browser environment, pinging hosts and
interactiing with remote web-services is a straightforward and
easily executed procedure. Inside the browser, however, there are
a variety of protocol requirements and security rules that greatly
complicate the task, and force alternative approaches.

2.3.1 Interacting with the DPP web-service
All modern browsers explicitly ban cross-domain scripting, such
that (amongst other effects) AJAX calls may not be made to
domain names other than those that are serving the current
webpage. This poses a significant problem for the DPP, which
relies entirely upon the client’s ability to send data and receive
target IP-addresses from the DPP web-service—a completely
different domain from the web-site initially visited by the user.
Browsers do, however, allow remotely located images. Thus, by
disguising the web-service as a GIF image
(http://www.distributedpings.org/x.gif), the browser is capable of
loading it on command. Passing data into the web-service is thus
quite straightforward, since they may be appended to the URL as
GET variables (similar to the method employed by Google
Analytics [2]). The data passed back to the browser needs to be

Figure 1. Summary of client - web-service interactions.

interpreted as an IP address, however, it must be somehow
embedded into a GIF image in a manner that is parseable by the
Javascript running in the client’s browser. This is accomplished
by calling the web-service twice (state is conserved across web-
requests by using a 24-character “id”), and parsing the width and
height (in pixels) of the two resultant images. The 4 integers are
then assembled to reveal the target IP-address (Figure 2).

Figure 2. Determining target IP-address from width and
height of two images, provided by DPP web-service.

2.3.2 Simulating “pings” within the browser
At the time of writing, no modern browser includes a mechanism
for “pinging” by Javascript or Flash. Several ActiveX solutions
have been built and released, but we found such an option to be
unacceptable since it would require a break from the open-
standard model, would limit our usable browser base to Internet
Explorer users, and worst of all, would require active acceptance
(to install the control) by the client.

The act of “pinging” is, in effect, a non-specific TCP connection
to a given address. Even if the computer residing at a given IP
address does not contain any server processes or open ports, a
ping should still be returned (excluding computers in stealth
mode). Given this, we were able to simulate “pinging” using the
following procedure:

As with the web-service interaction, we treat each “ping” as the
loading of an image in Javascript. Given a target IP
(64.235.52.190, for example), we tell the browser to load an
image that we presume does not exist, at an IP-address that we
presume is not a web server
(http://64.235.52.190/random_string.gif). If this IP is reachable,
and is not in stealth mode, then requesting this non-existent URL
will return an error, and the time lapse between the request and
the error is equivalent to the latency time of a ping. If the IP-
address does not exist, is unreachable, or is in stealth mode, then
the request will time out. Thus by requesting a given image
repeatedly, we may effectively simulate the act of “pinging” in the
browser.

2.3.3 Quality Control and Garbage Collection
In our model, data is generated by a moderated “swarm”, in which
a large number of widely distributed worker processes bear the
load, while a single centralized location collects and directs the
masses. Making this direction more intelligent and efficient is
extremely important in maintaining and improving the integrity of
the experiment and its dataset. Each client should be identical and
mindless.

Since target IP-addresses are the only information returned to the
clients, we want to make sure that these IPs will yield results. It is
therefore very important to rate the quality of a given IP before
returning it. This begins with the recording of failed pings. Each
time a client fails to return a valuable data set (2 pings or less), the
target IP is penalized by one “point.” Any IP with more than 8
“points” becomes disqualified, and is not returned by the web-
service.

Expiration is another concern. Most home-bound broadband
connections use dynamic IP addresses, which drift somewhat
erratically. The web-service maintains the freshness of target IPs
by only returning addresses that have, themselves, been clients
within the previous 6 hours.

Even with these two quality control measures, some IPs are
unfairly penalized by failed connections from the source. If a
given IP has been continuously active for many hours, and has
successfully returned hundreds of pings from a diverse set of
sources, but has also had 8 failures, we do not wish for it to be
disqualified. Thus, the web-service will also return target IP-
addresses whose ratio of failures/successes is less than 1/10.

Table 1. A cross-section of the “event” (successful ping group
reported back to DPP web-service) dataset.

3. CONCLUSIONS
The distributed data collection method used in DPP proved to be
effective for gathering large quantities of data on the latency time
between geographically-distributed clients. Although browser-
based pings have an added overhead compared to traditional
command-line ping requests, initial observations suggest that they
are representative of latency and they are a reasonable
approximation to traditional pings.

Figure 3. Small cross-section (~600) of ping events. Increased
line thickness indicates longer latency between geocoordinates.

This paper describes a method for collecting latency data and
storing it on a central server. The first significant contribution is
the implementation of a browser-based ping algorithm using
standard asynchronous javascript. The second contribution is the
implementation of a library for performing simple two-way cross-
domain communication for passing ping targets and collecting
data. What now lies ahead is the interpretation of large latency
datasets. As discussed in previous projects (e.g. Wifi survey
performed in Hong Kong [1]), the data collected is useful in
comparing physical distances with latency times. The next step in
the project is to produce visual mashups of connectivity across the
globe. Figure 3 shows a straightforward translation of a very small
amount of data where lines on the map represent pings and the
width of the line is the average ping time. Other data that has been
collected (e.g. standard deviation of ping time) is likely to reveal

further information (e.g. reliability and consistency) about the
connectivity between clients. Further steps will include a map
where the physical location is warped to represent the DPP data.

Finally, as development continues we will be publishing mashup
examples, API instructions and source downloads at:

http://www.distributedpings.org/

4. REFERENCES
[1] Kwan, White, Tsang, Kwok, Eustace, White, IEEE802.11:

WIFI Survey & Visualisation Experiments (Spring 2009),
Pearson, Prentice Hall.

[2] Google Analytics, http://www.google.com/analytics

