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Abstract

TOPSIS is a popular approach to creating rankings of alternatives characterized by multiple criteria. Over
the decades, numerous versions and modifications of the method have been proposed. Nevertheless, the
core of TOPSIS, based on calculating and aggregating distances to ideal and anti-ideal alternatives, remains
unchanged. This paper aims to describe the inner algebraic aspects of this core, revealing important de-
pendencies between the calculated distances and the mean and standard deviation of the alternative. To
visualize the effect of these dependencies on different TOPSIS aggregations, we introduce a new space based
on the mean (M) and standard deviation (SD), called MSD-space. MSD-space is a practical tool for compar-
ing aggregations and visualizing the effects that changes to the values of criteria can have on the resulting
ratings of alternatives. The advantage of MSD-space is that it can always be successfully illustrated in
a plane regardless of the number of criteria describing the alternatives. Using two case studies, we show
how MSD-space can help visually compare aggregation functions and formulate improvement actions for
selected alternatives. The revealed inner-workings of TOPSIS can be considered a step towards increasing
the explainability of TOPSIS itself as well as other multi-criteria ranking methods.

Variety is the spice of life

A proverb

Keywords: multi-criteria decision analysis, multi-criteria ranking, aggregated distance ranking,
visualization, TOPSIS

1. Introduction

Introduced in the early 80’ties, TOPSIS (Hwang and Yoon, 1981) is a method designed to create rankings
of alternatives described by multiple criteria. Out of the numerous approaches to the process of creating
rankings, TOPSIS chooses one that is based on distances, namely: calculating distances from a predeter-
mined (e.g. ideal) alternative to all considered alternatives produces non-negative real values that describe
these alternatives. Now, because any set of real values naturally renders a linear pre-order, a ranking of the
considered alternatives is thus created.
Despite various versions and modifications, the core of TOPSIS adopts this approach from its very begin-

nings and aptly calculates values that constitute combinations of two distances: a distance to a predefined
ideal alternative (a cost-type criterion) and a distance to a predefined anti-ideal alternative (a gain-type
criterion), effectively producing rankings that are simultaneously influenced by these two distances.
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The original TOPSIS method, with its various extensions as well as its numerous applications, has been
widely used in the literature. The following brief survey cites, however, only those papers that directly
address the algebraic notions used within the method and its potential extensions. For a much broader
survey of TOPSIS-based methodologies and applications, see, e.g., the review of Behzadian et al. (2012).
The research of Opricovic and Tzeng (2004) presents an analysis of TOPSIS and VIKOR, which are two

methods based on aggregation functions that represent closeness to a reference solution or solutions. Their
analysis focuses on the study of the impact of different normalization procedures and different aggregation
functions on the final ranking. Similarly, Zavadskas et al. (2006) describe a methodology for measuring the
accuracy of the relative significance of the alternatives as a function of the criteria values, and analyze the
influence of a normalization method on the final rankings.
Another method based on a concept similar to that of TOPSIS is the Relative Ratio method (Li, 2009).

In this method, differences between alternatives and the ideal solution as well as the anti-ideal solution are
estimated and the ranking is created so that it reflects a balance between the shortest distance from the
ideal solution and the farthest distance from the anti-ideal solution.
Analogous research is reported in the study performed by Kuo (2017), which introduces a new relative

closeness to an ideal solution based on two weights. These weights (that of benefit criteria and that of cost
criteria) balance the ideal and anti-ideal shares of the alternative’s relative distance. An extension of this
approach can be found in the paper by Abootalebi et al. (2019), which shows how the balance of weights
may be obtained by solving a temporary problem, thus producing unique weights and thereby unique final
ranking.
Other interesting issues relating to TOPSIS, including its combinations with other methods, its variations,

and adaptations, are described in, e.g., works by Yu et al. (2015); Chen (2019); Tian et al. (2018); Yoon and
Kim (2017); Zielniewicz (2017); Nădăban et al. (2016); Fan and Feng (2009); Kahraman et al. (2007). Among
these papers, Yu et al. (2015) and Chen (2019) discuss the variation of values describing the underlying
objects, referring to this variation as coordination. To this end, they devise a measure of coordination and
modify the classic aggregation function of TOPSIS to incorporate this measure, effectively constructing new
versions of the method called Coordinated TOPSIS. Interestingly, in this paper we demonstrate that the
original aggregation functions in TOPSIS already incorporate the level of variation. Over and above that
we systematically illustrate how this level influences the final results of the method.
As shown by the referenced works, current studies on TOPSIS mainly focus on normalization/weighting

procedures and practical applications. However, to the best of our knowledge, no studies attempted to
formally describe the systematic relations between the properties of alternatives and the results of TOPSIS
aggregations. As a result, aggregation functions are currently compared on a use case basis rather than
generally, i.e., with respect to the space of all possible alternatives. Finally, no approaches exist that are
capable of visualizing such general, dataset-independent properties of TOPSIS aggregations.
In this paper, we formalize and visualize the inner-workings of TOPSIS by describing aggregations using

the mean and standard deviation of each alternative. This allows us to propose a dataset-independent way
of analyzing TOPSIS aggregations. The detailed contributions of this paper are as follows:

• In Section 2, we formalize the TOPSIS procedure from the viewpoint of all possible alternative rep-
resentations. We define the criterion space, utility space, and discuss how ideal/anti-ideal points are
represented in each space. We also highlight the properties of distance calculation in those spaces and
formally define three ’classic’ TOPSIS aggregation functions. Finally, we underline the limitations of
the criterion and utility spaces for visual analyses.

• In Section 3, we reveal the mechanics of classic TOPSIS by describing dependencies between the
distances to the ideal/anti-ideal points and the mean and standard deviation of an alternative. For
this purpose, we introduce the IA-MSD property and MSD-space that, contrary to the criterion and
utility space, can be represented in two dimensions regardless of the number of analyzed criteria.

• In Section 4, we introduce a 2D visualization of MSD-space and show how the IA-MSD property
makes it possible to express and compare various aggregation functions using the means and standard
deviations of alternatives. This reveals the workings of the aggregations and allows the decision makers
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to choose them in an informed manner. We also show the preference-related interplay of the mean and
standard deviation that influences the final ranking of alternatives under a given aggregation function.

• In Section 5, we interpret different aggregation functions in two practical ranking scenarios. We show
how MSD-space can be used to: inform decision makers about the properties of a given dataset,
highlight consequences of using particular aggregation functions, and potentially suggest actions that
will improve a given alternative’s ranking position.

• In Section 6, we summarize the paper and draw lines of future research.

2. Formalizing TOPSIS

Typical papers on TOPSIS do not introduce complicated denotation systems to explain how it works.
This is because those papers usually deal with a predefined, finite family of m objects (alternatives) and
a predefined, finite family of n attributes (criteria). If so, then the data may amply be represented in a
m×n matrix of values, usually referred to as the decision matrix in the TOPSIS terminology. An exemplary
decision matrixX is depicted in Figure 1A. It contains four alternatives (students) described by three criteria
(final grades obtained from subjects).

Figure 1: Running example and schematic representation of alternatives in different spaces. (A) Decision matrix with four
alternatives (students) described by three criteria (grades). (B) The selected alternatives (students) represented as a subset of
the criteria space, i.e., the space of all possible alternatives within the given criteria. (C) Alternatives represented in utility
space, the re-scaled equivalent of criteria space. (D) Alternatives represented in MSD-space.

What is attempted in this paper differs from typical TOPSIS-related studies in that, given a set of n
criteria, we will not only consider a particular set of m alternatives, but examine the general properties of all
possible ones. This is why we will consider sets of all possible alternative representations defining them as
three consecutive spaces, as depicted in Figure 1: criteria space (domain space of the original alternatives),
utility space (re-scaled criteria space), and MSD-space (newly proposed space). We note that the idea
of analyzing all possible alternative representations is inspired by approaches developed for visual-based
inspection of general properties of machine learning measures Brzezinski et al. (2018, 2017); Susmaga and
Szczech (2015a,b).
Notions formally defined in the following sections have accompanying proofs. To make the presented

methodology easier to follow, in the main text we state the main properties of the defined spaces but leave
their formal proofs for the Appendices (available as online supplementary materials).
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2.1. MCDA Preliminaries
Consider a set of real-world objects, which are to be further processed. In our running example, visualized

in Figure 1, the set of objects will consist of students. In Multi-Criteria Decision Analysis (MCDA) processing
the objects usually requires taking into account multiple aspects of the objects and usually resolves itself to:

• choosing the most preferred objects,

• assigning objects to preference classes,

• ranking objects from the most preferred to the least preferred.

For more details on methods, models and software in MCDA see e.g., Keeney and Raiffa (1976); Bouyssou
et al. (2000); Belton and Stewart (2002); Ishizaka and Nemery (2013); Bisdorff et al. (2015); Greco et al.
(2016); Cinelli et al. (2022). In MCDA the objects are commonly referred to as alternatives. The set of all
possible alternatives will be denoted by A.
To allow any kind of processing, the alternatives must be assigned some predefined representations, which

actually undergo the processing. Those representations are created with a predefined set of attributes, e.g.,
grades the students obtained in different subjects. An attribute is thus a function that assigns a given object
a particular value from a predefined set of values, referred to as the domain of this attribute. Because objects
are usually described with multiple attributes, their individual descriptions are organized into vectors.
Additionally, MCDA employs very special attributes, namely attributes with domains ordered according

to a preference relation, referred to as criteria. Originally weakly monotonic forms of orderings have been
gradually extended to include other, non-monotonic forms, see e.g., Ghaderi et al. (2017); Kadzinski et al.
(2020). However, these later developments were not considered by earlier methods like TOPSIS. Therefore,
in this paper, it is consistently assumed that all attributes are criteria, the domains of which are real-valued
intervals with weakly monotonic form (either non-decreasing or non-increasing) of ordering according to
preference. The set of all those possible criteria will be denoted by K.

2.2. The General Procedure of TOPSIS
TOPSIS (Hwang and Yoon, 1981) uses multi-criteria descriptions of alternatives to rank them from the

most preferred to the least preferred. Its procedure can be expressed in the form of the following three main
steps:

1. prepare the representations of alternatives in terms of criteria, i.e. the decision matrix; this step
also usually includes the normalization of criteria into a common scale and using preference information
given by the decision maker in the form of weights of criteria;

2. determine two reference points: ideal and anti-ideal, and calculate distances between each repre-
sentation to one or to both of those points;

3. rank the alternatives according to an assumed function that aggregates distances between the
alternatives and the reference points.

TOPSIS assumes that the criteria describing the alternatives should be either expressed on an interval or
ratio scale, or easily convertible to such. Providing numeric-scale criteria facilitates calculating distances
between alternatives and the ideal/anti-ideal points, which are the input for the aggregation functions.
There are three ‘classic’ aggregation functions in TOPSIS. They are founded on: the distance to the

ideal point, the distance to the anti-ideal point, or both of them used simultaneously. The most typical
aggregation in TOPSIS, often referred to as the ‘relative distance’, is expressed as the distance to the anti-
ideal point divided by the sum of the two distances. Notice that the aggregation founded on the distance to
the anti-ideal point is naturally maximized. The same concerns the relative distance. On the other hand,
the aggregation founded on the distance to the ideal point is minimized. To unify the interpretation of all
aggregations used, further in the paper we will reverse the aggregation founded on the distance to the ideal
point.
The following subsections formalize each of the three main steps of TOPSIS. The notation presented

here will be later used to define MSD-space and its properties.
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2.2.1. Preparing representations of alternatives
The first main step of TOPSIS is usually problem-specific and involves creating a representation of real-

world objects in the form of a decision matrix X (Figure 1A). Here, we will focus on how the decision matrix
can be defined as a subset of the criterion space and then re-scaled (transformed) into the utility space.
If a criterion K ∈ K, then its domain is a real-valued interval V = [vmin , vmax ]. We note that TOPSIS

requires that the lower (vmin) and upper (vmax ) bounds are finite, to make distance computation possible.
Of course the values of vmin and vmax may be different for each criterion. Additionally, according to the
monotonicity type of the ordering of its domain, criteria may differ in their preference types. We will denote
the least preferred value as v∗ and the most preferred value as v∗. In particular, criterion K ∈ K is of
type ‘gain’ when its domain is V = [vmin , vmax ] = [v∗, v

∗], v∗ is preferred over v∗, and the preference of
v ∈ V does not decrease with the increase of v. Analogously, criterion is of type ‘cost’ when its domain is
V = [vmin , vmax ] = [v∗, v∗], v∗ is preferred over v∗, and the preference of v ∈ V does not increase with the
increase of v.
In our running example, the set of four students X (Figure 1A) is actually a finite subset of an infinite

criterion space CS (Figure 1B), where each possible alternative is described by particular values on criteria
K1,K2,K3 ∈ K. The domains of the criteria are as follows: VK1 = [0, 100], VK2 = [1, 6], VK3 = [1, 6].
We note that the bounds for the criteria are predefined (‘expert-driven approach’) and not taken from the
dataset (‘data-driven approach’), i.e., the bounds would be the same even if the vmin and vmax values were
not present in the dataset. The fact that the criteria bounds need to be established can be regarded as
a limitation of TOPSIS itself, since bounds might not always be as naturally determined as in the case
of school grades or percentages. In such situations, the bounds have to be set by the expert somewhat
arbitrarily, and the results will depend partly on the chosen lower and upper bound.
Unfortunately, simultaneous analyses of sets of criteria with different intervals and different types are

not very convenient. Additionally, in cases where the analyses perform some kind of criteria combining,
it is in fact required that all evaluations are expressed on the same scale in order for the aggregation to
be meaningful. Therefore, we introduce a simple min-max re-scaling of the criteria, which transforms the
criteria using function U : V → [0, 1]. Precisely, given:

• a domain V = [vmin , vmax ] = [v∗, v
∗] of a criterion K ∈ K of type ‘gain’, the re-scaling function U

associated with K is defined as U(v) = v−v∗
v∗−v∗

for v ∈ V,

• a domain V = [vmin , vmax ] = [v∗, v∗] of a criterion K ∈ K of type ‘cost’, the re-scaling function U
associated with K is defined as U(v) = v−v∗

v∗−v∗ for v ∈ V.

Notice that the sole objective of the re-scaling function U(·) is to unify the intervals and the preference
types of all criteria. Whereas the original criteria may have different intervals as domains and different types,
the re-scaled criteria will all have the same interval ([0, 1]) and the same type (‘gain’), which simplifies our
analyses without reducing their generality. We note that the used [0,1] re-scaling is independent of the type
of normalization potentially used by decision makers to prepare the decision matrix. For the purposes of
our analyses, we will assume no additional normalization and no criteria weighting; the effect of criteria
weighting on MSD-space will be the topic of a follow-up paper.
Observe that the usefulness of the earlier mentioned simplification of the analyses in US may now be

demonstrated with regard to the weak dominance relation between two alternatives: if u1 ∈ US is an
image of E1 ∈ CS and u2 ∈ US is an image of E2 ∈ CS, then the statement ‘E1 weakly dominates E2’ is
equivalent to u1 ≥ u2 (each element of u1 is greater or equal to the corresponding element u2). This is thus
independent of the types of all criteria used in the comparison because re-scaled criteria in US are always
of the ‘gain’ type. No equally simple statement may in general be formulated in CS.
In our running example, the criterion space CS of three criteria (Figure 1B) is transformed by min-max

criteria re-scaling to the utility space US (Figure 1C). The utility space has thus also three criteria, each
being of type ‘gain’ and ranging in [0, 1]. Both CS and US can contain an infinite number of alternatives,
whereas our set of four students constitutes merely a finite subset; while this subset in included in CS, its
image under the min-max criteria re-scaling operation is included in US. The criterion space has the form
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of a cuboid with the particular alternatives (students) located somewhere within it. The utility space, on
the other hand, has the form of a cube, again with the images of the actual alternatives (students) in it.
It is important to stress that all the considerations contained in this paper apply to the entirety of US,

in particular, to each element of this space. Thus, they are independent of a particular decision matrix, each
of which is represented by only a finite subset of US.

2.2.2. Determination of the ideal/anti-ideal points and distance calculation
To formally determine the ideal and anti-ideal points within the utility space let us first consider their

representation in the criterion space. Assume K , |K | = n ≥ 1, be a set of criteria selected from K. The
criterion space CS is the set of all possible vectors [v1, v2, ..., vn] such that vj ∈ Vj is the domain of criterion
Kj ∈ K . The criterion space CS is thus an n-dimensional hypercuboid V1 × V2 × ...× Vn with 2n vertices
of the form [s1, s2, ..., sn], where sj ∈ {vj∗, v∗j }.
In particular, CS contains two vertices:

• [v∗1 , v
∗
2 , ..., v

∗
n], further denoted by I and referred to as the ideal point ;

• [v1∗, v2∗, ..., vn∗], further denoted by A and referred to as the anti-ideal point.

Recalling our running example in Figure 1, the ideal point I would represent any student with highest
possible grades from each subject. More precisely, an ideal student is characterized by v∗1 = 100, v∗2 = 6 and
v∗3 = 6, as such are the maximal grades on the particular subjects (criteria). Analogously, for an anti-ideal
student v1∗ = 0, v2∗ = 1 and v3∗ = 1, as such are the minimal grades on the particular criteria.
Now, let us formally move from the criterion space to the utility space and determine the ideal and

anti-ideal points there. Given K , |K | = n ≥ 1, the set of criteria selected from K, consider the utility space
US, i.e., the set of all possible vectors [u1, u2, ..., un]. The utility space US is an n-dimensional hypercube
[0, 1]× [0, 1]× ...× [0, 1] with 2n vertices of the form [z1, z2, ..., zn], where zj ∈ {0, 1}.
It should be kept in mind that while the original shape of US is that of a hypercube, it may be changed

with criteria weights. These weights, which in fact constitute preferential information of the decision maker,
are used to differentiate the influence of the criteria on the final results of TOPSIS. The shape of the arising,
weighted version of US, in which all further operations of TOPSIS are performed, generalizes thus to a
hypercuboid, with the special case of the hypercube obtained for all weights equal to one. More precisely,
every case when weights are equal to a pre-defined positive constant would also result in a hypercube.
Notice that because the values of weights have formally different origin than the descriptions of alternatives,
applying weights to US and thus producing the weighted version of US may be viewed as introducing a
form of preferential bias.
As opposed to the special case of weights equal to one, the general case of varying weights is troublesome

for some reasons. First of all, it alters the shape of the weighted US from the hypercube to a hypercuboid.
As it turns out, it also alters the shape of the so-called MSD-space (defined and thoroughly analysed below).
To avoid elaborating on the numerous and somewhat cumbersome details of the altered shape of MSD-space,
this paper focuses exclusively on the special case, by assuming all weights to be equal to one. This ensures
the weighted US to be identical to US, and thus to have the shape of the hypercube. This appreciably
facilitates visualizations of the MSD-space. Additionally, it simplifies demonstrating and describing the
fundamental properties of the MSD-space.1 Last but not least, it allows to scrutinize alternatives in their
preferentially unbiased forms.
Coming back to the ideal and the anti-ideal points in US recall that for each E ∈ CS there exists u ∈ US

such that u is the image of E under the re-scaling transformation. More precisely, if E = [v1, v2, ..., vn] ∈ CS,
then [U1(v1),U2(v2), ...,Un(vn)] ∈ US. In particular, US as a hypercube contains vectors 1 = [1, 1..., 1] and
0 = [0, 0, ..., 0], which are the respective images of I and A. Recalling our running example in Figure 1, the
image of the ideal point in the utility space is 1 = [1, 1, 1] and the image of the anti-ideal point is 0 = [0, 0, 0].

1Demonstrations and descriptions of these properties in the general case would require introducing some additional geometric
concepts, which merit a separate follow-up paper.
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Having determined 1 and 0, TOPSIS proceeds with calculating the distances between each representation
to one or both of those points. The paper sticks to the most commonly used distance measure, i.e., the
Euclidean distance. Given vectors a = [a1, a2, ..., an], b = [b1, b2, ..., bn], the Euclidean distance between

them is defined as δ2(a,b) =
√∑n

j=1 |aj − bj |2.
Notice that the maximal Euclidean distance in US extends between vectors: 1 and 0 and equals

√
n,

which makes it dependent on n. To make this maximal distance n-independent, we define the so-called re-
scaled Euclidean distance as δ012 (a,b) = δ2(a,b)√

n
. In result, given any n and any a,b ∈ US: δ2(a,b) ∈ [0,

√
n],

but δ012 (a,b) ∈ [0, 1].
Figure 2 presents the utility space US in a 2D and 3D scenario, i.e., when the number of criteria is

n = 2 and n = 3. Naturally, cases when n > 3 cannot be visualized directly. The ideal and anti-ideal points
are marked in each US as 1 and 0, respectively. In each scenario, the utility space contains a particular
alternative, represented by a point in the space. Figures 2A and 2C depict the coordinates of that alternative,
whereas Figures 2B and 2D showcase the Euclidean distances of the alternative to 1 and 0.

Figure 2: Exemplary coordinates and distances in the utility space for n = 2 (A, B) and n = 3 (C, D)

Having determined the ideal and anti-ideal reference points, and calculated distances between each
representation to those points, TOPSIS moves on to ranking the alternatives according to an assumed
aggregation function, examples of which are defined in the next section.

2.2.3. Ranking alternatives according to an aggregation
Recall that the three classic aggregations used in TOPSIS are founded on: the distance to the ideal

point, the distance to the anti-ideal point, or both of them used simultaneously, as is the case of the relative
distance. The three considered aggregations are denoted by I, A and R standing for the distance to the ideal
point, distance to the anti-ideal point and the relative distance, respectively. When expressed in terms of
δ012 (u,1) and δ012 (u,0), they are defined as follows:

I(u) = 1− δ012 (u,1),

A(u) = δ012 (u,0),

R(u) =
δ012 (u,0)

δ012 (u,1) + δ012 (u,0)
,

where u ∈ US is the image of the representation E ∈ CS of an alternative from A.
Notice the reversal of the aggregation founded on the distance to the ideal point: 1− δ012 (u,1) instead of

δ012 (u,1), introduced in order to unify the interpretation of all aggregations as functions to be maximized.
It must also be emphasized that although out of the three aggregations only one (i.e. R(u)) is commonly
used, it draws on the other two, sharing with them some of its key properties. This is why in this paper all
three aggregations will be considered and scrutinized in parallel.
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3. The IA-MSD property and MSD-space

One of the inconveniences of the utility space US as well as the criterion space CS is that they cannot be
visualized when the number of criteria exceeds three. As a result, for n > 3 different aggregations of TOPSIS
cannot be subject to visual-based analyses and comparisons in those spaces. However, having formalized
the algebraic aspects of classic TOPSIS aggregations, we can describe important dependencies between
the distances of alternatives to the ideal point I and anti-ideal point A and two fundamental features of
the alternatives: their mean (M) and standard deviation (SD). Based on the interplay between the above
mentioned elements in US, we introduce a new two-dimensional space, called MSD-space. It is based on the
mean and standard deviation and can depict the aggregations in a plane regardless of the number of criteria
describing the alternatives. This section formalizes the dependencies between the distances and the mean
and deviation into the IA-MSD property, introduces the MSD-space, and shows how aggregation functions
can be compared thanks to MSD-space.

3.1. The IA-MSD Property in the Utility Space

Given a representation of an alternative in utility space u ∈ US, let:

sum(u) =

n∑
j=1

uj ,

mean(u) =
sum(u)

n
,

var(u) =
∥u− u∥22

n
,

std(u) =
√
var(u).

Additionally, if u = mean(u), then u = [u, u, ..., u] ∈ US is a vector of means of u.
Since for every u ∈ US vectors u − 0 and u − u as well as vectors u − u and 1 − u are orthogonal

((u− 0) ⊥ (u− u) as well as (1− u) ⊥ (u− u)), they may be subjected to the Pythagorean theorem. This
characteristic of US allows us to formulate what we will refer to as the IA-MSD property.
Let us first, however, present the formal justification of the orthogonality. We shall demonstrate (u−0) ⊥

(u − u), as (1 − u) ⊥ (u − u) is analogous owing to the collinearity of u − 0 and u − 1. Recall that
column vectors a and b are orthogonal when aTb = 0. Notice that this means that a = 0, or b = 0, or
a ̸= 0 and b ̸= 0 while a and b are perpendicular. Applying the orthogonality condition to a = u − 0
and b = u − u, one gets: (u − 0)T (u − u) = uT (u − u) = uTu − uTu =

∑n
j=1 u · uj −

∑n
j=1 u · u =

u
∑n

j=1 uj −u ·u
∑n

j=1 1 = u
∑n

j=1 uj −u ·u ·n. Now, using the sum-mean equivalence and the sum of ones:
(u− 0)T (u− u) = u

∑n
j=1 uj − u · u · n = u · u · n− u · u · n = 0. Thus, we can conclude the orthogonality:

(u− 0) ⊥ (u− u).
Let us also illustrate these orthogonalities with an example. Let n = 2, which implies a two-dimensional

US, and consider an exemplary u = [0.75, 0.25] ∈ US (see Figure 3). This vector is used to form three other
vectors: u− 0, u− 1 and u−u, out of which u−u will be shown to be orthogonal both to u− 0 as well as
to u−1. Because mean(u) = mean([0.75, 0.25]) = 0.5 (i.e. u = 0.5), vector u = [u, u] = [0.50, 0.50]T . Now,
one arrives at u− 0 = [0.50, 0.50]T − [0.00, 0.00]T = [0.50, 0.50]T and u− u = [0.75, 0.25]T − [0.50, 0.50]T =
[0.25,−0.25]T (notice that in Figure 3 this vector is depicted as originating from [0.5, 0.5] instead of [0.0, 0.0]).
And since [0.50, 0.50][0.25,−0.25]T = 0, these vectors are orthogonal ((u − 0) ⊥ (u − u)). Simultaneously,
the following arises: u− 1 = [0.50, 0.50]T − [1.00, 1.00]T = [−0.50,−0.50]T . This vector can also be clearly
seen to be orthogonal to [0.25,−0.25]T , because [−0.50,−0.50][0.25,−0.25]T = 0. Thus (u− 1) ⊥ (u− u).
Now, notice that the lengths of the considered vectors may be determined as:

• δ012 (u,0) = mean(u),

• δ012 (u,1) = 1−mean(u),
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Figure 3: An exemplary illustration of the vector orthogonality property in US.

• δ012 (u,u) = std(u).

Given the above-mentioned orthogonality of vectors, their lengths may be subjected to the Pythagorean
theorem2. This is because, save for some straightforward exceptions, segments 0–u, u–u and u–0 happen
to form one right triangle, while segments 1–u, u–u and u–1 happen to form another right triangle (see
Figure 3, as well as Figures 4A and 4B). The only exceptions include situations when u has the form
[x, x, ..., x] for some x ∈ [0, 1], in which case mean(u) ≡ u = x and u = u, so δ012 (u,u) = 0. Then the
two right triangles are degenerated to mere segments: 0–u and 1–u. Nevertheless, even in the case of a
degenerated triangle, the Pythagorean theorem still holds true. If c is zero, then the hypotenuse a is identical
to the base b, so a2 = b2 + c2 = b2 + 02 = b2, which holds true as a = b.
All these considerations allow the following formulation of what will be referred to as the IA-MSD

property.

Definition 1 (IA-MSD Property).

δ012 (u,0) =
√
mean(u)2 + std(u)2,

δ012 (u,1) =
√
(1−mean(u))2 + std(u)2.

Although IA-MSD property is n-independent, in US it may easily be illustrated only for n = 2 (Figure 4A)
and n = 3 (Figure 4B). In the following section, we will show how the n-independence of the IA-MSD
property can be used to create an n-independent 2D visualization of TOPSIS aggregations.

Figure 4: An exemplary illustration of the IA-MSD property in US.

2Recall that in a right triangle with a hypotenuse of size a, the base of size b and the height of size c: a2 = b2 + c2, or
a =

√
b2 + c2.
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3.2. The MSD-space
The interesting dependency between the distances of an alternative to the ideal and anti-ideal points,

inspired us to introduce a new space called MSD-space that uses mean (M) and standard deviation (SD) as
its coordinates.

Definition 2 (MSD-space).

MSD-space = {[mean(u), std(u)]|u ∈ US}

The MSD-space can be visualized as a 2D space wherein the mean (M) of each alternative is represented
on the x-axis and the standard deviation (SD) of an alternative on the y-axis. Since MSD-space is based
on the [0, 1]-scaled utility space, the maximum values of M and SD are bounded. In other words, for a
given number of criteria, there is only a limited range of means and standard deviations an alternative can
have. As a result, one can depict the boundaries (shape) of MSD-space, which depends on the number of
analyzed criteria. Figure 5 shows two exemplary visualizations of the MSD-space for n = 4 and n = 5. As
can be noticed, the number of criteria affects the number of vertices that can be defined in MSD-space and
the maximum value of SD an alternative can obtain for each M. The introduced MSD-space is thoroughly
studied analytically in Appendix A. In particular, this appendix formally describes the vertices, diagonals,
lower and upper ‘perimeters’ of the MSD-space and its further properties, including the symmetry of the
space as well as shape-related interplay of mean(u) and std(u).

Figure 5: Visualizations of the MSD-space for (A) n = 4 and (B) n = 5. Each visualization has n + 1 vertices V i
n for

i ∈ {0, 1, ..., n}, n diagonals V i
n ↔ V i+1

n for i ∈ {0, 1, ..., n − 1} as well as the V 0
n ↔ V n

n diagonal. Each V i
n represents the set

of all possible vectors u = [u1, u2, ..., un] such that uj ∈ {0, 1} and sum(u) = i (this means that V i
n consists of exactly i ones

and n− i zeros). See Appendix A for the formal definitions of the vertices and diagonals in MSD-space.

It should be stressed that the IA-MSD property holds in the MSD-space, where, again, it constitutes a
direct application of the Pythagorean theorem to two right triangles; in this case

△
AMu = ((0, 0), (mean(u), 0), (mean(u), std(u))),

△
IMu = ((1, 0), (mean(u), 0), (mean(u), std(u))).

This is because MSD-space constitutes a very particular (’rotational’) projection of US into two dimensions,
namely one which retains the IA-MSD property.
Interestingly enough, the property may now be always successfully illustrated in 2D because, as opposed

to US, the MSD-space is by definition two-dimensional (or, in the special case of n = 1, one-dimensional).
Figure 6 illustrates exactly this phenomenon. In this case n = 3, which means that a three dimensional
space would be actually required to illustrate the property in US. Handling three (or more) dimensions
is, however, not required in MSD-space, as a point with two coordinates (mean(u), std(u)) is an image of
vector u of an arbitrary size (three in this case) from US. The IA-MSD property applies in both of those
spaces. Needless to say, all our further considerations and visualizations will involve the MSD-space.
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Figure 6: The IA-MSD property in the MSD-space for n = 3. Same property applies to any n, and could be analogously
visualized, e.g. for the MSD-spaces in Figure 5.

4. Visualizing TOPSIS Aggregations in MSD-space

4.1. Consequences of the IA-MSD Property

Given any u ∈ US, which is the image of the representation E ∈ CS of some alternatives from A, the
IA-MSD property makes it possible to express all the aggregations with mean(u) and std(u):

I(u) = 1− δ012 (u,1)

= 1−
√
(1−mean(u))2 + std(u)2,

A(u) = δ012 (u,0)

=
√
mean(u)2 + std(u)2,

R(u) =
δ012 (u,0)

δ012 (u,1) + δ012 (u,0)

=

√
mean(u)2 + std(u)2√

(1−mean(u))2 + std(u)2+
√
mean(u)2 + std(u)2

.

The fact that all those aggregations can be expressed with mean(u) and std(u) means that even for
n > 2 TOPSIS is in a sense a two-dimensional method. The same could have certainly been also stated
earlier since the aggregations are originally expressed with δ012 (u,1) and δ012 (u,0), which equally makes the
aggregations functions of two parameters. What is interesting, however, is that mean(u) and std(u) are
much more basic in nature than δ012 (u,1) and δ012 (u,0), therefore a more direct dependence between the
vectors and the final result of the method is observable.
Since all the discussed TOPSIS aggregations are functions of merely two parameters: mean(u) and

std(u), it is possible to visualize them in MSD-space assigning a color from some pre-defined color map to
each value of the aggregation function. The change of color swiftly reveals the preferences as expressed by
aggregations.
More precisely, for any two alternatives uk ∈ US, ul ∈ US and uk ̸= ul, if uk is to be preferred to ul

under aggregation I(u), then I(uk) > I(ul) must hold. Analogously for A(u) and R(u) aggregations. By the
respective definitions of aggregations, this preference requires that: under aggregation I(u): δ012 (uk,1) <
δ012 (ul,1) and under aggregation A(u): δ012 (uk,0) > δ012 (ul,0). More interestingly, under aggregation R(u):

δ012 (uk,0)

δ012 (uk,0)+δ012 (uk,1)
>

δ012 (ul,0)

δ012 (ul,0)+δ012 (ul,1)
⇔ δ012 (uk,0)

δ012 (uk,1)
>

δ012 (ul,0)

δ012 (ul,1)
for uk ̸= 1 and ul ̸= 1, which is simultaneously

equivalent to δ012 (uk,1)

δ012 (uk,0)
<

δ012 (ul,1)

δ012 (ul,0)
for uk ̸= 0 and ul ̸= 0; see Appendix B for a mathematical justification

of this equivalence.
Figure 7 visualizes the three aggregations in two exemplary MSD-spaces, for n = 4 and n = 5. The used

color map reflects the preference in the following manner: dark blue—the least preferred, dark red—the most
preferred. Clearly, all of the discussed aggregations place the least preferred alternative in the lower-left
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vertex of the MSD-space (dark blue), where the anti-ideal point is situated. Analogously, the most preferred
point with respect to all the considered aggregations (dark-red) is situated in the lower-right vertex of the
MSD-space, where the ideal point resides. Figure 7 allows to quickly notice the differences between the
aggregations, depicted by different isolines in the visualizations. Thus, the isolines of aggregation I(u) are
concetric around (1, 0), the isolines of aggregation A(u) are concetric around (0, 0), while the isolines of
aggregation R(u) are arch-like with their focus in (1, 0) on the right-hand side of the space (mean(u) > 0.5)
and arch-like with their focus in (0, 0) on the left-hand side of the space (mean(u) < 0.5).
The differences between the three aggregations with respect to the isolines are a visual evidence of the

ordinal non-equivalence of the aggregations. Moreover, it can also be observed that the isolines are the same
under a chosen aggregation regardless of the number of criteria, which means that each of the aggregations
works consistently no matter how many criteria are used to describe the alternatives.
All these visual-based discussions confirm that the introduced MSD-space is a practical tool for a swift

comparison of TOPSIS aggregations.

4.2. Preference-related Interplay of mean(u) and std(u)
Adding color within the MSD-space to represent the values of the aggregation functions allows not only

to conduct visual-based analysis of different aggregations, but also reveals the preference-related interplay
of mean(u) and std(u). This, in turn shows the effects that changes to the values of criteria can have on the
resulting ratings and rankings of alternatives. The awareness of such particular trade-offs between mean(u)
and std(u) under different aggregations is important because they explain how carefully designed changes
to the criteria may positively influence the final results of TOPSIS.
Formally, in preferential contextsmean(u) and std(u) behave like criteria. Their interplay is summarized

in Table 1, showing under which aggregations and further conditions mean(u) and std(u) act like type ‘cost’
or type ‘gain’ criteria.

Table 1: Preference-related interplay of mean(u) and std(u)

aggregation mean(u) std(u)

I(u) gain cost

A(u) gain gain

R(u) gain
mean(u) < 0.5: gain
mean(u) = 0.5: neutrality
mean(u) > 0.5: cost

In particular, under all of the considered aggregations, increasing the mean(u) of the alternatives always
results in higher values of the respective aggregations, provided the std(u) remains unchanged. In the
context of our running example, this means that an increase in a student’s mean(u) will have a positive
effect on their place in the final ranking (provided std(u) remains unchanged) no matter which aggregation
was chosen. In the example, this would naturally require getting some higher grades by a student. On the
other hand, std(u) acts differently under different aggregations. For example, it is of type ‘gain’ under the
R(u) aggregation provided mean(u) remains unchanged and does not exceed 0.5. Thus, a student who has
a constant mean(u) < 0.5, could go higher in the final ranking if she/he made her/his grades more variant,
as it would increase std(u) and the value of the R(u) aggregation function (see the subsequent section for a
more detailed discussion on when making the grades more variant may actually prove beneficial).
All of the dependencies mentioned in Table 1 are n-independent as is exemplified in Figure 7 for n = 4

(left) and n = 5 (right). The dependencies are formally justified in the Appendix C and are easily noticeable
thanks to the color map used in Figure 7:

• when one moves horizontally from left to right, one increases mean(u) only; this corresponds to
increasing the value of each aggregation (I(u), A(u) and R(u)) for a given std(u),
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Figure 7: The visualization of preference as expressed by aggregations: I(u) (top), A(u) (middle) and R(u) (bottom) in the
MSD-spaces defined for n = 4 (left) and n = 5 (right). The color map reflects the preference: dark blue – the least preferred,
dark red – the most preferred (see the second bullet point for the interpretation of the arrows)

• when one moves vertically from bottom to top, one increases std(u) only; this corresponds to decreas-
ing I(u), increasing A(u), and to different effects on the value of R(u) depending on mean(u) (the
corresponding changes of the aggregations are indicated by arrows).

The preference-related interplay of mean(u) and std(u) directly influences the rankings of alternatives,
which are the final result of TOPSIS. It can, thus, be regarded as an operational implication of the IA-
MSD property. Examples of how slight changes to the values on the criteria of alternatives influence the
alternative’s position in the ranking due to the trade-offs between mean(u) and std(u) are discussed in the
next section.

13



5. Case studies

In this section, we discuss two case studies that show how MSD-space can help visualize the relations
between each alternative’s properties and their rating. The first case study analyzes a hypothetical dataset
of student grades that highlights the possible relations between alternatives. The second case study focuses
on a real-world dataset of bus specifications and showcases the use of MSD-space in practical applications.
Both studies will serve to discuss potential intervention actions that can be undertaken to influence the final
ranking.

5.1. Student grades

To increase the rating of an alternative, the values of some of its criteria should be improved upon.
Unfortunately, such a ploy may be very difficult, costly, or simply impossible. For example, in a dataset
where students are described by grades obtained in different subjects, it would mean that a student has
a chance to go higher in the ranking, provided they get better grades in some subjects and at least the
same grades in all the others. The difficulty of such an achievement has been experienced by many, and
is often simply unattainable. What remains in such cases is to improve the values of some criteria at the
cost of worsening those of some others. The properties of TOPSIS described in this paper elucidate such
endeavors, showing clearly that even even when mean(u) decreases slightly, the simultaneous increase of
std(u) may have a positive overall effect, depending on the aggregation and value ofmean(u) (see the arrows
in Figure 7). Therefore, carefully designed changes to the values of the criteria may positively influence the
final results.
To illustrate how changes ofmean(u) and std(u) affect the final rankings, a set of 19 alternatives has been

prepared. Each alternative is described by three equally important criteria. Following the running example,
the alternatives are students, while the criteria are subjects, with the average grades obtained by these
students in those subjects serving as descriptions of the alternatives. The representations of all considered
exemplary alternatives are shown in Table 4. Because the table provides matrix-like representations of
alternatives, denotations throughout this section will reflect this fact, e.g. Ui,∗ (i-th row of a matrix) will
denote the i-th alternative, U∗,j (j-th column of a matrix) will denote the j-th utility space dimension,
while Ui,j will denote the value of j-th utility space coordinate of the i-th alternative.
The alternatives have been chosen to represent some characteristic points in the MSD-space (Figure 8),

e.g. the worst possible alternative (U1,∗ = 0) or best possible alternative (U5,∗ = 1). Our goal is also to
illustrate examples of trade-offs and compensation between the values of mean(u) and std(u), and to show
how they influence the final rankings.
Notice that values of any aggregation directly determine the ranking of the alternatives, e.g. in the case

of aggregation R(u) (see the last column of Table 4) the ranking is: U5,∗ ≻R U4,∗ ≻R U8,∗ ≻R U16,∗ ≻R

U11,∗ ≻R U15,∗ ≻R U18,∗ ≻R U3,∗ ∼R U7,∗ ∼R U19,∗ ∼R U10,∗ ∼R U14,∗ ≻R U17,∗ ≻R U13,∗ ≻R

U9,∗ ≻R U12,∗ ≻R U6,∗ ≻R U2,∗ ≻R U1,∗. In the used notation, Ui,∗ ≻ Uj,∗: Ui,∗ is preferred over Uj,∗;
Ui,∗ ∼ Uj,∗: Ui,∗ and Uj,∗ are indifferent; Ui,∗ ≺ Uj,∗: Uj,∗ is preferred over Ui,∗.
Let us look at the exemplary alternatives from perspectives corresponding to the three aggregations: I(u),

A(u) and R(u). Aggregation I(u) ranks alternativeU3,∗ higher than alternativeU2,∗. Both alternatives have
the same std(u) = 0, but mean(U3,∗) = 0.5 > mean(U2,∗) = 0.33. The ranking of those two alternatives
(i.e. U3,∗ ≻I U2,∗) is the same also under A(u) and R(u) (i.e. U3,∗ ≻A U2,∗ and U3,∗ ≻R U2,∗). This
derives from the fact that mean(u) is of type ‘gain’ under all the considered aggregations. Thus, within
alternatives with the same std(u), the increase of mean(u) for one alternative will always increase the
value of its aggregation function and (possibly) move the alternative up the resulting ranking. However,
increasing the mean(u) is often difficult or even impossible, thus other actions can be considered. To
this end, let us have a closer look at alternatives U3,∗, U7,∗, U10,∗ and U14,∗, which happen to occupy
the very middle part of the MSD-space (Figure 8). They are all characterized by mean(u) = 0.5, but
std(U3,∗) < std(U7,∗) < std(U10,∗) < std(U14,∗).
Under aggregation I(u) we obtain the following ranking: U3,∗ ≻I U7,∗ ≻I U10,∗ ≻I U14,∗, which places

alternative U3,∗ as the best and alternative U14,∗ as the worst. This is due to the fact that std(u) is of type
‘cost’ under I(u). Thus within students of the same mean(u) this aggregation rates higher those with less
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Table 2: Descriptions of the exemplary alternatives in terms of US, MSD-space and the three aggregations

Subjects US MSD-space Aggregations
Alternatives Math Bio Art U∗,1 U∗,2 U∗,3 mean(u) std(u) I(u) A(u) R(u)

U1,∗ 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
U2,∗ 33.33 2.67 2.67 0.33 0.33 0.33 0.33 0.00 0.33 0.33 0.33
U3,∗ 50.00 3.50 3.50 0.50 0.50 0.50 0.50 0.00 0.50 0.50 0.50
U4,∗ 66.67 4.33 4.33 0.67 0.67 0.67 0.67 0.00 0.67 0.67 0.67
U5,∗ 100.00 6.00 6.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00
U6,∗ 20.00 2.25 3.75 0.20 0.25 0.55 0.33 0.15 0.32 0.37 0.35
U7,∗ 67.64 2.50 3.62 0.68 0.30 0.52 0.50 0.15 0.48 0.52 0.50
U8,∗ 45.00 4.75 5.00 0.45 0.75 0.80 0.67 0.15 0.63 0.68 0.65
U9,∗ 0.00 2.25 4.75 0.00 0.25 0.75 0.33 0.31 0.26 0.46 0.38
U10,∗ 62.99 5.00 1.35 0.63 0.80 0.07 0.50 0.31 0.41 0.59 0.50
U11,∗ 25.00 4.75 6.00 0.25 0.75 1.00 0.67 0.31 0.54 0.74 0.62
U12,∗ 0.00 1.00 5.25 0.00 0.00 0.85 0.28 0.40 0.18 0.49 0.37
U13,∗ 0.00 1.46 5.54 0.00 0.09 0.91 0.33 0.41 0.22 0.53 0.40
U14,∗ 0.00 3.50 6.00 0.00 0.50 1.00 0.50 0.41 0.35 0.65 0.50
U15,∗ 9.00 5.55 6.00 0.09 0.91 1.00 0.67 0.41 0.47 0.78 0.60
U16,∗ 100.00 6.00 1.75 1.00 1.00 0.15 0.72 0.40 0.49 0.82 0.63
U17,∗ 0.00 1.00 6.00 0.00 0.00 1.00 0.33 0.47 0.18 0.58 0.41
U18,∗ 100.00 6.00 1.00 1.00 1.00 0.00 0.67 0.47 0.42 0.82 0.59
U19,∗ 37.00 3.10 4.55 0.37 0.42 0.71 0.50 0.15 0.48 0.52 0.50

Figure 8: Visualizations of the student case study alternatives in MSD-space. MSD-space presented without any aggregations,
as well as with the three considered aggregations: I(u), A(u) and R(u).
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diverse grades. For example, alternative U3,∗ with utilities U3,1 = U3,2 = U3,3 = 0.5 is clearly preferred
over alternative U14,∗ with utilities U14,1 = 0, U14,2 = 0.5, U14,3 = 1.
Aggregation A(u) creates the opposite ranking: U3,∗ ≺I U7,∗ ≺I U10,∗ ≺I U14,∗, as std(u) is of type

‘gain’ under A(u), which means that within students of the same mean(u) this aggregation rates higher
those with more diverse grades. Thus alternative U14,∗ is now clearly preferred over alternative U3,∗.
Interestingly, for aggregation R(u), std(u) does not influence the preference at all when mean(u) = 0.5,

and the four considered alternatives are ranked U3,∗ ∼R U7,∗ ∼R U10,∗ ∼R U14,∗. The differences in
the rankings created by the different aggregations are clearly noticeable after the alternatives are depicted
within the MSD-space sketched on top of the isolines of the aggregation function (Figure 8). In particular,
the straight vertical isoline in green for mean(u) = 0.5 in Figure 8 exposes that std(u) is not a criterion
under aggregation R(u) when mean(u) = 0.5.

Table 3: Exemplary rankings of subsets S1 and S2 under different aggregations

S1 S2

U2,∗ ≻I U6,∗ ≻I U9,∗ ≻I U12,∗ U4,∗ ≻I U8,∗ ≻I U11,∗ ≻I U16,∗
U12,∗ ≻A U9,∗ ≻A U6,∗ ≻A U2,∗ U16,∗ ≻A U11,∗ ≻A U8,∗ ≻A U4,∗
U9,∗ ≻R U12,∗ ≻R U6,∗ ≻R U2,∗ U4,∗ ≻R U8,∗ ≻R U16,∗ ≻R U11,∗

The isolines of R(u) in MSD-space also demonstrate the similarity of R(u) to I(u) on one hand, and
to A(u) on the other: its right part resembles I(u) (with std(u) being of type ‘cost’ for mean(u) > 0.5),
while its left part resembles A(u) (with std(u) being of type ‘gain’ for mean(u) < 0.5). To be precise, the
particular isolines of I(u) and A(u) are slightly different in shape from those of R(u), however, the common
character of those isolines is clearly noticeable.
The phenomenon of opposite rankings under different aggregations is further corroborated with subsets

{U2,∗, U6,∗, U9,∗} (mean(u) = 0.33) and {U4,∗, U8,∗, U11,∗} (mean(u) = 0.67). The first subset is
ranked U2,∗ ≺A U6,∗ ≺A U9,∗ and U2,∗ ≺R U6,∗ ≺R U9,∗, but U2,∗ ≻I U6,∗ ≻I U9,∗, demonstrating
the resemblance of A(u) and R(u) for mean(u) < 0.5. Analogous situation is observable for the second
subset, which is ranked in the same way by I(u) and R(u) and in a different way by A(u), demonstrating
the resemblance of I(u) and R(u) for mean(u) > 0.5
Having considered different cases where either mean(u) or std(u) has a common value, we will now

investigate situations when they have different values and their differences can compensate each other.
Let us consider two subsets: S1 = {U2,∗,U6,∗,U9,∗, U12,∗} and S2 = {U4,∗,U8,∗,U11,∗,U16,∗}. Let us
contemplate alternatives from S1. Interestingly, or even surprisingly, U12,∗ is ranked higher under A(u)
than U2,∗, U6,∗ or even U9,∗ despite having lower mean. The high value of std(U12,∗) compensated the
lower mean(U12,∗) and placed this alternative higher in the ranking. Recalling the interpretation of the
example, this means that under A(u) students with very diverse grades could be preferred over students
with less diverse grades even when their mean(u) is lower. A similarly surprising ranking is produced under
I(u) for alternatives from S2, in which case U16,∗ is ranked lower than U4,∗, U8,∗ or even than U11,∗, despite
fact that U16,∗ has a higher mean. Here, std(u) is of type ‘cost’ for I(u), and therefore the high std(U16,∗)
disadvantaged the superior value of mean(U16,∗).
Finally, to investigate all possibilities let us discuss a situation where both mean(u) and std(u) are

constant. Notice that this corresponds to different vectors in US, but single point in the MSD-space (which
is the image of all those vectors). In fact, for n > 2 there exist potentially infinitely many such vectors (e.g.
if std(u) > 0 for n = 3 the representation of all such vectors constitutes parts of or the whole of a circle of
radius std(u), located in a plane orthogonal to vector u and centered exactly in u). For example, for n = 3,
vector U7,∗ = [0.29, 0.58, 0.63] is characterized by mean(U7,∗) = 0.5 and std(U7,∗) = 0.15, as is any vector
composed of any permutation of its components (e.g. [0.58, 0.63, 0.29] or [0.58, 0.29, 0.63]). Additionally,
there exist also vectors composed of other values, e.g. U19,∗ = [0.37, 0.42, 0.71], that are characterized by the
samemean(u) and std(u). As a result, all those vectors share the same point in the MSD-space, and are thus
identically evaluated by all three considered aggregations (in particular, U7,∗ ∼I U19,∗ and U7,∗ ∼A U19,∗
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and U7,∗ ∼R U19,∗). This shows the inherently two-dimensional nature of TOPSIS as visualized by the
MSD-space.

5.2. Bus specifications
The real-world dataset presented in this case study is based on the one used by Greco et al. (2013) and

Zielniewicz (2017), which describes the technical condition of 32 buses (Table 4). Each bus is characterized
by eight numeric attributes considered during the periodical technical inspection of the vehicles. There are
no missing values and the dataset is considered noise-free as it was carefully prepared by domain experts.
There are four criteria of type ‘gain’ and four criteria of type ‘cost’:

• Speed [gain]—maximum speed [km/h],

• Pressure [gain]—compression pressure [Mpa],

• Blacking [cost]—blacking components in exhaust gas [%],

• Torque [gain]—torque [Nm],

• Summer [cost]—summer fuel consumption [l/100 km],

• Winter [cost]—winter fuel consumption [l/100 km],

• Oil [cost]—oil consumption [l/100 km],

• HP [gain]—maximum horsepower of the engine [hp].

Table 4 contains firstly the specification of buses, i.e., their representation in criteria space, then their
mean(u) and std(u) coordinates in MSD-space3, and finally the values of the three considered aggregation
functions that determine the position of the alternative in the final rankings. The utility space coordinates
were not shown to keep the table compact.
Figure 9 visualizes the 32 alternatives in MSD-space: firstly without any aggregation, then with the three

analyzed aggregations (I(u), A(u) and R(u)) imposed on the space through color. The very shape of the
MSD-space immediately depicts that the dataset is 8-dimensional, as there are nine vertices (see Appendix
A for the formal definitions of the vertices and diagonals in MSD-space). Naturally, visualization of such
dataset in the criteria space or utility space would not be possible. As seen in Figure 9, MSD-space is
not equally populated with representations of the buses. Uneven density of alternatives is the phenomenon
of real-world datasets that limits the generality of analyses conducted on such particular datasets, making
them dataset-dependent.
One of the operational implications of MSD-space visualizations is that they help to understand why

certain alternatives are higher or lower in rankings, and thus increase the explainability of TOPSIS aggrega-
tions. To illustrate this, consider buses b03 and b08 from Table 4. By looking solely at the specification of the
buses it could be difficult to make out their positions in the rankings. But expressing the specification with
mean(u) and std(u) of an alternative puts us in a much more intuitive and comprehensible 2D space as pre-
sented in Figure 9. Clearly, b03 and b08 are described by very similar values of mean(u) (mean(b03) = 0.50
and mean(b08) = 0.49) and differ mostly on std(u) (0.22 and 0.36, respectively). The preference-related
interplay of mean(u) and std(u) shows the trade-offs made by different aggregation functions (recall Ta-
ble 1) and thus explains the ranking position of alternatives. Among b03 and b08, it is the b03 bus that
has the highest mean(u) and smallest std(u), which puts it higher in the ranking under I(u) aggregation
(b08 ≺I b03). On the other hand, for A(u), std(u) is of type ‘gain’. As a result, the slight difference in
mean(u) of b03 and b08 is compensated by high std(u) of b08, and thus b03 ≺A b08. Furthermore, because
under R(u) aggregation for mean(u) ≈ 0.5, std(u) has hardly any influence on the ranking, b03 ∼R b08.

3While computing means and standard deviations of numeric values coming from very different ranges is formally always fea-
sible and does not invalidate the correctness of depicting the objects within the MS-space, it might not have clear interpretations
and should be used with care
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Table 4: Description of alternatives in the bus specification dataset.

Specifications MSD-space Aggregations
Bus Speed Pressure Blacking Torque Summer Winter Oil HP mean(u) std(u) I(u) A(u) R(u)

b01 90 2 49 477 21 25 1 138 0.85 0.11 0.81 0.85 0.82
b02 85 2 52 460 21 25 1 130 0.78 0.11 0.75 0.79 0.76
b03 72 2 73 425 23 27 2 112 0.50 0.22 0.45 0.55 0.50
b04 88 2 50 480 21 24 1 140 0.86 0.10 0.82 0.86 0.83
b05 60 1 95 400 23 24 4 96 0.18 0.33 0.12 0.38 0.30
b06 78 2 63 448 21 26 1 120 0.67 0.18 0.63 0.70 0.65
b07 90 2 26 482 22 24 0 148 0.95 0.09 0.89 0.95 0.90
b08 65 2 67 402 22 23 2 103 0.49 0.36 0.38 0.61 0.50
b09 90 2 51 468 22 26 1 138 0.80 0.13 0.76 0.81 0.77
b10 76 2 65 428 27 33 2 116 0.40 0.30 0.33 0.50 0.42
b11 85 2 50 454 21 26 1 129 0.76 0.12 0.73 0.77 0.74
b12 85 2 58 450 22 25 1 126 0.72 0.15 0.69 0.74 0.70
b13 88 2 48 458 22 25 1 130 0.78 0.12 0.75 0.79 0.76
b14 75 2 64 432 22 25 1 114 0.62 0.22 0.56 0.65 0.60
b15 68 2 70 400 22 26 2 100 0.45 0.32 0.37 0.55 0.47
b16 88 2 44 478 21 25 0 138 0.88 0.09 0.85 0.89 0.86
b17 85 2 55 445 23 26 1 120 0.68 0.17 0.64 0.70 0.66
b18 90 2 40 480 22 25 0 139 0.88 0.11 0.84 0.89 0.85
b19 72 2 64 428 21 25 2 111 0.58 0.25 0.51 0.63 0.56
b20 75 2 60 440 22 26 1 120 0.64 0.18 0.60 0.66 0.62
b21 85 2 61 458 21 25 1 126 0.75 0.15 0.71 0.76 0.72
b22 68 2 88 422 22 25 3 108 0.45 0.31 0.37 0.55 0.47
b23 82 2 65 430 23 25 2 115 0.59 0.22 0.54 0.63 0.58
b24 90 2 38 482 20 24 0 146 0.96 0.06 0.93 0.96 0.93
b25 90 2 45 479 21 25 1 145 0.87 0.10 0.84 0.88 0.84
b26 90 2 34 486 21 25 0 148 0.94 0.08 0.90 0.95 0.91
b27 86 2 60 444 22 25 1 122 0.71 0.17 0.66 0.73 0.68
b28 88 2 50 475 22 25 1 142 0.83 0.11 0.79 0.83 0.80
b29 85 2 63 440 21 26 2 120 0.66 0.20 0.60 0.69 0.64
b30 72 2 85 420 22 25 3 110 0.48 0.30 0.40 0.56 0.48
b31 65 2 94 400 24 27 4 98 0.28 0.34 0.20 0.44 0.36
b32 87 2 60 460 22 25 1 131 0.76 0.14 0.72 0.77 0.73

The preference-related interplay of mean(u) and std(u) can serve as a guideline for decision makers as
to which aggregation could suit them more. For example, the A(u) aggregation could be recommended for
decision makers which favor diversified descriptions of alternatives, as high standard deviation increases A(u)
aggregation when the mean(u) is fixed. On the other hand, decision makers that are ‘diversification-averse’
could prefer the I(u) aggregation. However, it should be clearly stated that the final decision as to which
aggregation should be used has to always be made with respect to the task at hand.
Among operational implications of MSD-space visualizations one should also mention the ability to

formulate intervention actions. MSD-space colored with respect to a certain aggregation shows what actions
can be taken to make an alternative go higher in the ranking under particular aggregations. To illustrate this,
consider alternatives b20 and b29. Under the R(u) aggregation, bus b29 is preferred over b20 (b20 ≺R b29).
Of course the natural way of putting b20 higher in the ranking would be to increase its value on one of the
‘gain’ criteria or decrease on one of the ‘cost’ criteria without changing the other criteria. This could be,
however, hard or even impossible. One could then analyze the shape of the isolines in the R(u) aggregation
(Figure 9) and conclude that moving the alternative b20 down the SD-axis (i.e. decreasing std(b20) without
changing mean(b20)) would be beneficial for b20’s position on the ranking. As a result, it would be enough
to make the specification of the alternative less diversified (without changing its mean), to get it higher in
the ranking based on the R(u) aggregation. Analogous intervention actions could be formulated for other
considered aggregations.
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Figure 9: Visualizations of bus specification dataset in MSD-space. MSD-space presented without any aggregations, as well as
with the three considered aggregations: I(u), A(u) and R(u).

6. Conclusions and Future Works

The popularity of TOPSIS motivated us to investigate its inner workings, as thorough understanding
of the algebraic aspects of this approach leads to better explainability and interpretability of the rankings
created by the method. Moreover, such knowledge reveals how carefully designed changes to the criteria
may influence the final results and thus helps constitute potential improvement actions.
The paper’s main results demonstrate that the alternative’s preferences calculated in TOPSIS as their

distances to ideal and anti-ideal alternatives can be actually expressed with two fundamental features of the
alternatives: the mean value of their utilities (mean(u)) and the standard deviation of their utilities (std(u)).
These two features, representing a measure of tendency and a measure of variation (or the proverbial variety),
are easily interpretable and directly influence the final ratings and rankings of the alternatives. Thus, they
naturally create a two-dimensional MSD-space of alternatives.
The IA-MSD property put forward in this paper formalizes the dependencies between the distances

to ideal and anti-ideal alternatives on one hand and mean(u) and std(u) on the other. As a result, the
aggregations of the distances applied in TOPSIS (I(u), A(u) and R(u)) can also be expressed in terms
of mean(u) and std(u), further revealing the ‘gain’/‘cost’ type of these fundamental features. Formally,
mean(u) under I(u), A(u) and R(u) is of type ‘gain’, which means that for a fixed std(u) any increase of
alternative’s mean will increase the alternative’s ratings and possibly its ranking. On the other hand, the
type of std(u) depends on the chosen aggregation, being ‘cost’ under I(u), ‘gain’ under A(u) and conditionally
‘gain’/‘cost’ under R(u).
Identification of ‘gain’/‘cost’ type of the fundamental features under particular aggregations leads to

revealing the preference-related interplay of mean(u) and std(u). The trade-offs and compensation between
mean(u) and std(u) directly influence the rankings produced by TOPSIS. Examples of how changing the
mean(u) and std(u) affects the final ratings and rankings of alternatives are discussed in the paper showing
applicability of the results.
As far as visualization is concerned, the MSD-space serves this purpose well, since it can always be
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successfully depicted in a plane, as opposed to CS and US, which are n-dimensional. The depiction of the
MSD-space becomes particularly useful when shown together with the isolines of the aggregation function.
It can then serve as a tool for swift visual analysis and comparison of aggregation procedures as well as for
visualizing how the interplay of mean(u) and std(u) affects the created rankings.
Lines of further investigation include analyses of modifications of the presented TOPSIS aggregations.

In particular, it is very common to normalize or weigh criteria for a given ranking application. Therefore, it
would be interesting to see how such criteria weighting affects the aggregation process and its visualization
in MSD-space. This, in fact, shall be the subject of our follow-up paper. Moreover, not all coordinates in
MSD-space are equally populated with alternatives, with some values of the mean and standard deviation
being more probable than others. Therefore, it would be interesting to provide insight into the density of
alternatives in MSD-space, which could help identify the actual areas where most alternatives are expected.
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