
Rusty Links in Local Chains⋆

James Noble1[0000−0001−9036−5692], Julian Mackay2[0000−0003−3098−3901], and
Tobias Wrigstad3[0000−0002−4269−5408]

1 Creative Research & Programming, Darkest Karori, kjx@acm.org
2 Julian Mackay, Victoria University of Wellington, Julian.Mackay@ecs.vuw.ac.nz

3 Tobias Wrigstad, Uppsala University, tobias.wrigstad@it.uu.se

Abstract. Rust successfully applies ownership types to control mem-
ory allocation. This restricts the programs’ topologies to the point where
doubly-linked lists cannot be programmed in Safe Rust. We sketch how
more flexible “local” ownership could be added to Rust, permitting mul-
tiple mutable references to objects, provided each reference is bounded
by the object’s lifetime. To maintain thread-safety, locally owned objects
must remain thread-local; to maintain memory safety, local objects can
be deallocated when their owner’s lifetime expires.

Keywords: Rust · Ownership · Linked Lists.

1 Rusty Links

Rust [23, 19, 24] is well-known as a language that combines control of mem-
ory use, safe concurrency, and excellent compiler error messages. Rust achieves
this balance thanks to a version of ownership types [13, 33, 12] (also known in
the literature as “ownership types” [22, 29]) which statically track the lifetime
(or owner) of each allocated object; when an object goes out of scope, all the
memory owned by that object is deallocated. So far, so C++ [32], but Rust’s
ownership types ensure that programs remain memory safe, so really not C++.
Rust then incorporates borrowing [7] and fractional permissions [8] to support
an integral multiple-reader/single-writer concurrency model [25]: at any time,
an object may either be accessed by multiple read-only aliases, or by a single
read-write reference.

Many programmers find Rust hard to learn and to use correctly [1, 4, 30, 22,
31]. This is because Rust’s ownership types are necessarily conservative, banning
not just all concurrent programs that are actually unsafe, but a large number
of safe programs as well. Rust’s version of ownership types [23] bans common
idioms such as circular or doubly-linked lists, to the point where the difficulty
of implementing a data structure often taught at first year has now become an
Internet trope [3, 27, 17, 9]. To programmers, this manifests as a large number of
false positive errors or warnings about problems that will never arise in practice.
A number of solutions have been proposed for these problems, including incor-
porating a garbage collector [15], careful library design [2], phantom types [34],
or proving unsafe Rust code correct [21, 20].

⋆ Supported by the Royal Society of New Zealand Marsden Grant, and Agoric Inc..

2 J. Noble, J. Mackay et al.

2 Local Chains

We propose to solve this problem with thread local ownership. Rust’s type system
currently supports two kinds of borrowing of a variable v. Writing “& foo” gains
readonly access to v, which allows multiple aliasing; while writing “&mut v”
grants read/write access to only one active alias. For example, we can establish
two active readonly references to a variable v but we cannot write through either
reference, even though the underlying variable is mutable:

let mut v : i32 = 12;

let a = &v;

let b = &v;

println!("{:#?}", a); //read a

println!("{:#?}", b); //read b

//*a = 45; //a is not mutable, cannot write

Alternatively, we can establish one mutable reference to v through which we can
change v’s value:

let c = &mut v;

//let d = &mut v; //cannot borrow ‘v‘ as mutable more than once

*c = 45;

println!("{:#?}", c);

We propose to add a third kind of borrowing — local ownership — which
permits both aliases and mutability. We can establish multiple local references
to v by writing “&loc v” and can change v’s value through all of them:

let loc v : i32 = 12;

let e = &loc v;

let f = &loc v; // two local read/write borrows

*e = 67;

*f = 76;

println!("{:#?}", e); println!("{:#?}", f);

These local aliases should be enough to support chains of mutable objects. To
be safe, local objects can only be accessed locally: they cannot be shared or
moved, and must remain within one thread. Rust’s ownership deallocates ob-
jects whenever they go out of scope. Because local objects can be internally
aliased, we cannot deallocate them individually: rather we must deallocate all
the local objects in one operation at the end of their owner’s scope. We can
explore per scope memory allocation patterns: fixed size and extensible arenas,
reference counting, and even garbage collection, as e.g. in Real-Time Java [28, 6],
with extensions to finer-grained scopes, alias analysis, and safe manual memory
management. Finally, we hope this approach could inform (and be informed by)
formal techniques for other ”Rust-like” languages such as Pony [14], Encore [10],
Deterministic Parallel Java [5], Obsidian [16], Dala [18], and Verona [11].

Rusty Links in Local Chains 3

3 Fearless Symmetries

We can illustrate &loc drawing on examples suggested by a recent paper [26].
Singly linked lists can be implemented relatively straightforwardly in Rust: each
node’s next pointer owns the subsequent nodes — modulo Option to support
potentially null values, and Box to ensure heap allocation.

struct Node<’d> {

elem: &’d mut Data,

next: Link<’d>,

}

type Link<’d> = Option<Box<Node<’d>>>;

pub struct Data { item: i32, }

Even a relatively simple operation — here CDRing down the list, incrementing
each element by 10, and printing out adjacent pairs of elements — can easily
run foul of Rust’s ownership type system, aka the fearsome “borrow checker”.
Compiling something like this:

fn cdr_down<’d> (n : &mut Link<’d>) -> i32 {

let mut sum = 0;

let mut cursor = n;

let mut precsr = &None;

while cursor.is_some() {

cursor.as_mut().unwrap().elem.item += 10;

sum += cursor.as_ref().unwrap().elem.item;

precsr = cursor;

cursor = &mut cursor.as_mut().unwrap().next;

if precsr.is_some() {

println!("precsr: {:#?} cursor: {:#?}",

precsr.as_ref().unwrap().elem.item,

cursor.as_ref().unwrap().elem.item,

);

}

};

sum

}

results in the informative error message below, essentially because we have two
cursors going down the list at the same time — cursor pointing to the current
link, and precsr pointing to the previous link.

error[E0502]: cannot borrow ‘*cursor‘ as mutable

because it is also borrowed as immutable

| precsr = cursor;

| ------ immutable borrow occurs here

4 J. Noble, J. Mackay et al.

| cursor = &mut cursor.as_mut().unwrap().next;

| ^^^^^^^^^^^^^^^ mutable borrow occurs here

| if precsr.is_some() {

| ------ immutable borrow later used here

It is possible to fiddle with the types to get different error messages, but there is
no way to avoid either a “cannot borrow” error when creating mutable aliases,
or a “cannot assign” error when writing through a shared alias. Our &loc local
references should be able to support these kind of functions. The code below
shows how all the various references modes could be changed to &loc; this will
allow multiple mutable references to be used in the same scope. This should be
safe even if a &mut reference is passed to the function (c.f. borrowing in κ [10]).

fn cdr_down<’d> (n : &loc Link<’d>) -> i32 {

...

while cursor.is_some() {

cursor.as_loc().unwrap().elem.item += 10;

sum += cursor.as_loc().unwrap().elem.item;

precsr = cursor;

cursor = &loc cursor.as_loc().unwrap().next;

if precsr.is_some() {

println!("precsr: {:#?} cursor: {:#?}",

precsr.as_loc().unwrap().elem.item,

cursor.as_loc().unwrap().elem.item,);

Safe Rust famously cannot support doubly-linked lists [3]: setting list head and
tail pointers to the same node will necessarily produce “cannot borrow” errors:

error[E0499]: cannot borrow ‘*new_node‘ as mutable more than once

| self.head = new_node;

| --------------------

| | |

| | first mutable borrow occurs here

| assignment requires ‘*new_node‘ is borrowed for ‘’owner‘

| self.tail = new_node;

| ^^^^^^^^ second mutable borrow occurs here

Altering field declarations to use local references with an appropriate lifetime
should resolve these issues quite straightforwardly — although without garbage
collection, all allocated links will be deallocated at the end of the List’s lifetime:

pub struct List<’owner> {

head: &’owner loc Node,

tail: &’owner loc Node,

}
At this point, local references are nothing more than a proposal. Although

the general theory of ownership types is well established [13], integration into
Rust will involve dealing with all the fine details of Rust’s existing ownership
models [29], and ultimately a prototype implementation in the Rust compiler.

Rusty Links in Local Chains 5

Acknowledgements

Thanks to David J. Pearce and Elisa Castegren for discussions, and to Amanda
Stjärna and the anonymous reviewers for comments on drafts.

This work is supported in part by the Royal Society of New Zealand Te
Apārangi Marsden Fund Te Pūtea Rangahau a Marsden, and Agoric.

References

1. Abtahi, P., Dietz, G.: Learning Rust: How experienced programmers leverage re-
sources to learn a new programming language. In: CHI Extended Abstracts. pp. 1–8
(2020)

2. Beingessner, A.: You can’t spell Trust without Rust. Master’s thesis, Computer
Science, Carleton University (2015)

3. Beingessner, A.: Learn Rust with entirely too many linked lists. https://-

rust-unofficial.github.io/too-many-lists (Mar 2019), accessed April Fools
Day 2022

4. Blaser, D.: Simple explanation of complex lifetime errors in Rust (2019), ETH
Zürich

5. Bocchino, R., Heumann, S., Honarmand, N., Adve, S., Adve, V., Welc, A., Shpeis-
man, T.: Safe Nondeterminism in a Deterministic-by-Default Parallel Language.
In: POPL (2011)

6. Bollella, G., Canham, T., Carson, V., Champlin, V., Dvorak, D.L., Giovannoni,
B., Indictor, M.B., Meyer, K., Murray, A., Reinholtz, K.: Programming with non-
heap memory in the real time specification for Java. In: OOPSLA Companion. pp.
361–369 (2003)

7. Boyland, J.: Alias burying: Unique variables without destructive reads. Software:
Practice & Experience 31(6) (May 2001)

8. Boyland, J.: Checking interference with fractional permissions. In: Static Analysis
Symposium. pp. 55–72 (2003)

9. Cameron, N.: What’s the “best” way to implement a doubly-linked list in Rust?
http://featherweightmusi,ngs.blogspot.com/2015/04/graphs-in-rust.html

(Apr 2015), accessed April Fools Day 2022
10. Castegren, E., Tobias Wrigstad: Reference capabilities for concurrency control. In:

ECOOP (2016)
11. Chisnall, D., Parkinson, M., Clebsch, S.: Project Verona (2021),

www.microsoft.com/en-us/research/project/project-verona

12. Clarke, D., Östlund, J., Sergey, I., Tobias Wrigstad: Ownership types: A survey.
In: Aliasing in Object-Oriented Programming. Types, Analysis and Verification,
LNCS, vol. 7850 (2013)

13. Clarke, D., Potter, J.M., James Noble: Ownership types for flexible alias protection.
In: OOPSLA (1998)

14. Clebsch, S., et al.: Deny capabilities for safe, fast actors. In: AGERE. pp. 1–12
(2015)

15. Coblenz, M., Mazurek, M.L., Hicks, M.: Does the bronze garbage collector make
Rust easier to use? A controlled experiment. In: ICSE (2022)

16. Coblenz, M.J., Aldrich, J., Myers, B.A., Sunshine, J.: Can advanced type systems
be usable? an empirical study of ownership, assets, and typestate in Obsidian.
OOPSLA (2020)

6 J. Noble, J. Mackay et al.

17. Cohen, R.: Why writing a linked list in (safe) Rust is so damned
hard. https://rcoh.me/posts/rust-linked-list-basically-impossible/ (Feb
2018), accessed April Fools Day 2022

18. Fernandez-Reyes, K., Gariano, I.O., James Noble, Greenwood-Thessman, E.,
Homer, M., Tobias Wrigstad: Dala: A simple capability-based dynamic language
design for data race-freedom. In: Onward! (2021)

19. Hu, V.: Rust breaks into TIOBE top 20 most popular programming languages
(Jun 2020), infoQ

20. Jung, R., Dang, H.H., Kang, J., Dreyer, D.: Stacked borrows: An aliasing model
for Rust. In: POPL (2019)

21. Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: Rustbelt: Securing the foun-
dations of the rust programming language. PACMPL 2(POPL), 66:1–66:34 (Jan
2017)

22. Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: Safe Systems Programming in
Rust: The Promise and the Challenge. Communications of the ACM (2020)

23. Klabnik, S., Nichols, C.: The Rust Programming Language. 2nd edn. (2018)
24. Krill, P.: Microsoft forms Rust language team (Feb 2021), infoWorld
25. Lea, D.: Concurrent Programming in Java. Addison-Wesley, 2nd edn. (Dec 1998)
26. Milano, M., Turcotti, J., Myers, A.C.: A flexible type system for fearless concur-

rency. In: PLDI (2022)
27. ndrewxie: What’s the “best” way to implement a doubly-

linked list in Rust? https://users.rust-lang.org/t/-

whats-the-best-way-to-implement-a-doubly-linked-list-in-rust/27899/7

(Mar 2019), accessed April Fools Day 2022
28. Noble, J., Weir, C.: Small Memory Software: Patterns for systems with limited

memory. Addison-Wesley (2000)
29. Pearce, D.J.: A lightweight formalism for reference lifetimes and borrowing in Rust.

TOPLAS 43(1) (2021)
30. Qin, B., Chen, Y., Yu, Z., Song, L., Zhang, Y.: Understanding memory and thread

safety practices and issues in real-world Rust programs. In: PLDI. pp. 763–779
(2020)

31. Spencer, R.J.: Four ways to avoid the wrath of the borrow checker (2020), justan-
otherdot.com

32. Stroustrup, B.: The C++ Programming Language (1986)
33. James Noble, Potter, J., Vitek, J.: Flexible alias protection. In: ECOOP (Jul 1998)
34. Yanovski, J., Dang, H., Jung, R., Dreyer, D.: GhostCell: separating permissions

from data in Rust. In: ICFP (2021)

