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Abstract. Rust successfully applies ownership types to control mem-
ory allocation. This restricts the programs’ topologies to the point where
doubly-linked lists cannot be programmed in Safe Rust. We sketch how
more flexible “local” ownership could be added to Rust, permitting mul-
tiple mutable references to objects, provided each reference is bounded
by the object’s lifetime. To maintain thread-safety, locally owned objects
must remain thread-local; to maintain memory safety, local objects can
be deallocated when their owner’s lifetime expires.
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1 Rusty Links

Rust [23, 19, 24] is well-known as a language that combines control of mem-
ory use, safe concurrency, and excellent compiler error messages. Rust achieves
this balance thanks to a version of ownership types [13, 33, 12] (also known in
the literature as “ownership types” [22, 29]) which statically track the lifetime
(or owner) of each allocated object; when an object goes out of scope, all the
memory owned by that object is deallocated. So far, so C++ [32], but Rust’s
ownership types ensure that programs remain memory safe, so really not C++.
Rust then incorporates borrowing [7] and fractional permissions [8] to support
an integral multiple-reader/single-writer concurrency model [25]: at any time,
an object may either be accessed by multiple read-only aliases, or by a single
read-write reference.

Many programmers find Rust hard to learn and to use correctly [1, 4, 30, 22,
31]. This is because Rust’s ownership types are necessarily conservative, banning
not just all concurrent programs that are actually unsafe, but a large number
of safe programs as well. Rust’s version of ownership types [23] bans common
idioms such as circular or doubly-linked lists, to the point where the difficulty
of implementing a data structure often taught at first year has now become an
Internet trope [3, 27, 17, 9]. To programmers, this manifests as a large number of
false positive errors or warnings about problems that will never arise in practice.
A number of solutions have been proposed for these problems, including incor-
porating a garbage collector [15], careful library design [2], phantom types [34],
or proving unsafe Rust code correct [21, 20].
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2 Local Chains

We propose to solve this problem with thread local ownership. Rust’s type system
currently supports two kinds of borrowing of a variable v. Writing “& foo” gains
readonly access to v, which allows multiple aliasing; while writing “&mut v”
grants read/write access to only one active alias. For example, we can establish
two active readonly references to a variable v but we cannot write through either
reference, even though the underlying variable is mutable:

let mut v : i32 = 12;

let a = &v;

let b = &v;

println!("{:#?}", a); //read a

println!("{:#?}", b); //read b

//*a = 45; //a is not mutable, cannot write

Alternatively, we can establish one mutable reference to v through which we can
change v’s value:

let c = &mut v;

//let d = &mut v; //cannot borrow ‘v‘ as mutable more than once

*c = 45;

println!("{:#?}", c);

We propose to add a third kind of borrowing — local ownership — which
permits both aliases and mutability. We can establish multiple local references
to v by writing “&loc v” and can change v’s value through all of them:

let loc v : i32 = 12;

let e = &loc v;

let f = &loc v; // two local read/write borrows

*e = 67;

*f = 76;

println!("{:#?}", e); println!("{:#?}", f);

These local aliases should be enough to support chains of mutable objects. To
be safe, local objects can only be accessed locally: they cannot be shared or
moved, and must remain within one thread. Rust’s ownership deallocates ob-
jects whenever they go out of scope. Because local objects can be internally
aliased, we cannot deallocate them individually: rather we must deallocate all
the local objects in one operation at the end of their owner’s scope. We can
explore per scope memory allocation patterns: fixed size and extensible arenas,
reference counting, and even garbage collection, as e.g. in Real-Time Java [28, 6],
with extensions to finer-grained scopes, alias analysis, and safe manual memory
management. Finally, we hope this approach could inform (and be informed by)
formal techniques for other ”Rust-like” languages such as Pony [14], Encore [10],
Deterministic Parallel Java [5], Obsidian [16], Dala [18], and Verona [11].
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3 Fearless Symmetries

We can illustrate &loc drawing on examples suggested by a recent paper [26].
Singly linked lists can be implemented relatively straightforwardly in Rust: each
node’s next pointer owns the subsequent nodes — modulo Option to support
potentially null values, and Box to ensure heap allocation.

struct Node<’d> {

elem: &’d mut Data,

next: Link<’d>,

}

type Link<’d> = Option<Box<Node<’d>>>;

pub struct Data { item: i32, }

Even a relatively simple operation — here CDRing down the list, incrementing
each element by 10, and printing out adjacent pairs of elements — can easily
run foul of Rust’s ownership type system, aka the fearsome “borrow checker”.
Compiling something like this:

fn cdr_down<’d> (n : &mut Link<’d>) -> i32 {

let mut sum = 0;

let mut cursor = n;

let mut precsr = &None;

while cursor.is_some() {

cursor.as_mut().unwrap().elem.item += 10;

sum += cursor.as_ref().unwrap().elem.item;

precsr = cursor;

cursor = &mut cursor.as_mut().unwrap().next;

if precsr.is_some() {

println!("precsr: {:#?} cursor: {:#?}",

precsr.as_ref().unwrap().elem.item,

cursor.as_ref().unwrap().elem.item,

);

}

};

sum

}

results in the informative error message below, essentially because we have two
cursors going down the list at the same time — cursor pointing to the current
link, and precsr pointing to the previous link.

error[E0502]: cannot borrow ‘*cursor‘ as mutable

because it is also borrowed as immutable

| precsr = cursor;

| ------ immutable borrow occurs here
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| cursor = &mut cursor.as_mut().unwrap().next;

| ^^^^^^^^^^^^^^^ mutable borrow occurs here

| if precsr.is_some() {

| ------ immutable borrow later used here

It is possible to fiddle with the types to get different error messages, but there is
no way to avoid either a “cannot borrow” error when creating mutable aliases,
or a “cannot assign” error when writing through a shared alias. Our &loc local
references should be able to support these kind of functions. The code below
shows how all the various references modes could be changed to &loc; this will
allow multiple mutable references to be used in the same scope. This should be
safe even if a &mut reference is passed to the function (c.f. borrowing in κ [10]).

fn cdr_down<’d> (n : &loc Link<’d>) -> i32 {

...

while cursor.is_some() {

cursor.as_loc().unwrap().elem.item += 10;

sum += cursor.as_loc().unwrap().elem.item;

precsr = cursor;

cursor = &loc cursor.as_loc().unwrap().next;

if precsr.is_some() {

println!("precsr: {:#?} cursor: {:#?}",

precsr.as_loc().unwrap().elem.item,

cursor.as_loc().unwrap().elem.item,);

Safe Rust famously cannot support doubly-linked lists [3]: setting list head and
tail pointers to the same node will necessarily produce “cannot borrow” errors:

error[E0499]: cannot borrow ‘*new_node‘ as mutable more than once

| self.head = new_node;

| --------------------

| | |

| | first mutable borrow occurs here

| assignment requires ‘*new_node‘ is borrowed for ‘’owner‘

| self.tail = new_node;

| ^^^^^^^^ second mutable borrow occurs here

Altering field declarations to use local references with an appropriate lifetime
should resolve these issues quite straightforwardly — although without garbage
collection, all allocated links will be deallocated at the end of the List’s lifetime:

pub struct List<’owner> {

head: &’owner loc Node,

tail: &’owner loc Node,

}
At this point, local references are nothing more than a proposal. Although

the general theory of ownership types is well established [13], integration into
Rust will involve dealing with all the fine details of Rust’s existing ownership
models [29], and ultimately a prototype implementation in the Rust compiler.
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