Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
splitnet-wrn/cifar100.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
175 lines (145 sloc)
6.3 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
import random | |
import threading | |
import cPickle as pickle | |
import numpy as np | |
import skimage.util | |
import tensorflow as tf | |
# Process images of this size. Note that this differs from the original CIFAR | |
# image size of 32 x 32. If one alters this number, then the entire model | |
# architecture will change and any model would need to be retrained. | |
IMAGE_SIZE = 32 | |
# Global constants describing the CIFAR-100 data set. | |
NUM_CLASSES = 100 | |
class ThreadsafeIter: | |
"""Takes an iterator/generator and makes it thread-safe by | |
serializing call to the `next` method of given iterator/generator. | |
""" | |
def __init__(self, it): | |
self.it = it | |
self.lock = threading.Lock() | |
def __iter__(self): | |
return self | |
def next(self): | |
with self.lock: | |
return self.it.next() | |
class CIFAR100Runner(object): | |
_image_summary_added = False | |
""" | |
This class manages the the background threads needed to fill | |
a queue full of data. | |
""" | |
def __init__(self, pkl_path, shuffle=False, distort=False, | |
capacity=2000, image_per_thread=16): | |
self._shuffle = shuffle | |
self._distort = distort | |
with open(pkl_path, 'rb') as fd: | |
data = pickle.load(fd) | |
self._images = data['data'].reshape([-1, 3, 32, 32]).transpose((0, 2, 3, 1)).copy(order='C') | |
self._labels = data['labels'] # numpy 1-D array | |
self.size = len(self._labels) | |
self.queue = tf.FIFOQueue(shapes=[[32,32,3], []], | |
dtypes=[tf.float32, tf.int32], | |
capacity=capacity) | |
# self.queue = tf.RandomShuffleQueue(shapes=[[32,32,3], []], | |
# dtypes=[tf.float32, tf.int32], | |
# capacity=capacity, | |
# min_after_dequeue=min_after_dequeue) | |
self.dataX = tf.placeholder(dtype=tf.float32, shape=[None,32,32,3]) | |
self.dataY = tf.placeholder(dtype=tf.int32, shape=[None,]) | |
self.enqueue_op = self.queue.enqueue_many([self.dataX, self.dataY]) | |
self.image_per_thread = image_per_thread | |
self._image_summary_added = False | |
def _preprocess_image(self, input_image): | |
"""Preprocess a single image by crop and whitening(and augmenting if needed). | |
Args: | |
input_image: An image. 3D tensor of [height, width, channel] size. | |
Returns: | |
output_image: Preprocessed image. 3D tensor of size same as input_image.gj | |
""" | |
# Crop | |
image = input_image | |
if self._distort: | |
image = skimage.util.pad(image, ((4,4), (4,4), (0,0)), 'reflect') | |
crop_h = image.shape[0] - 32 | |
crop_h_before = random.choice(range(crop_h)) | |
crop_h_after = crop_h - crop_h_before | |
crop_w = image.shape[1] - 32 | |
crop_w_before = random.choice(range(crop_w)) | |
crop_w_after = crop_w - crop_w_before | |
image = skimage.util.crop(image, ((crop_h_before, crop_h_after), (crop_w_before, crop_w_after), (0, 0))) | |
else: | |
crop_h = image.shape[0] - 32 | |
crop_w = image.shape[1] - 32 | |
if crop_w != 0 or crop_h != 0: | |
image = skimage.util.crop(image, ((crop_h/2, (crop_h+1)/2), (crop_w/2, (crop_w+1)/2), (0, 0))) | |
# Random horizontal flip | |
if self._distort: | |
if random.choice(range(2)) == 1: | |
for i in range(image.shape[2]): | |
image[:,:,i] = np.fliplr(image[:,:,i]) | |
# Image whitening | |
mean = np.mean(image, axis=(0,1), dtype=np.float32) | |
std = np.std(image, axis=(0,1), dtype=np.float32) | |
output_image = (image - mean) / std | |
return output_image | |
def _preprocess_images(self, input_images): | |
output_images = np.zeros_like(input_images, dtype=np.float32) | |
for i in range(output_images.shape[0]): | |
output_images[i] = self._preprocess_image(input_images[i]) | |
return output_images | |
def get_inputs(self, batch_size): | |
""" | |
Return's tensors containing a batch of images and labels | |
""" | |
images_batch, labels_batch = self.queue.dequeue_many(batch_size) | |
if not CIFAR100Runner._image_summary_added: | |
tf.summary.image('images', images_batch) | |
CIFAR100Runner._image_summary_added = True | |
return images_batch, labels_batch | |
def data_iterator(self): | |
idxs_idx = 0 | |
idxs = np.arange(0, self.size) | |
if self._shuffle: | |
random.shuffle(idxs) | |
while True: | |
images_batch = [] | |
labels_batch = [] | |
batch_cnt = 0 | |
while True: | |
if idxs_idx + (self.image_per_thread - batch_cnt) < self.size: | |
temp_cnt = self.image_per_thread - batch_cnt | |
else: | |
temp_cnt = self.size - idxs_idx | |
images_batch.extend(self._images[idxs[idxs_idx:idxs_idx+temp_cnt]]) | |
labels_batch.extend(self._labels[idxs[idxs_idx:idxs_idx+temp_cnt]]) | |
idxs_idx += temp_cnt | |
batch_cnt += temp_cnt | |
if idxs_idx == self.size: | |
idxs_idx = 0 | |
if self._shuffle: | |
random.shuffle(idxs) | |
if batch_cnt == self.image_per_thread: | |
break | |
yield images_batch, labels_batch | |
def thread_main(self, sess, iterator): | |
""" | |
Function run on alternate thread. Basically, keep adding data to the queue. | |
""" | |
while True: | |
images_val, labels_val = iterator.next() | |
process_images_val = self._preprocess_images(images_val) | |
sess.run(self.enqueue_op, feed_dict={self.dataX:process_images_val, self.dataY:labels_val}) | |
def start_threads(self, sess, n_threads=1): | |
""" Start background threads to feed queue """ | |
iterator = ThreadsafeIter(self.data_iterator()) | |
threads = [] | |
for n in range(n_threads): | |
t = threading.Thread(target=self.thread_main, args=(sess,iterator,)) | |
t.daemon = True # thread will close when parent quits | |
t.start() | |
threads.append(t) | |
return threads |