Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
splitnet-wrn/utils.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
279 lines (231 sloc)
12.2 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import tensorflow as tf | |
## TensorFlow helper functions | |
WEIGHT_DECAY_KEY = 'WEIGHT_DECAY' | |
def _relu(x, leakness=0.0, name=None): | |
if leakness > 0.0: | |
name = 'lrelu' if name is None else name | |
return tf.maximum(x, x*leakness, name='lrelu') | |
else: | |
name = 'relu' if name is None else name | |
return tf.nn.relu(x, name='relu') | |
def _dropout(x, keep_prob=1.0, name=None): | |
assert keep_prob >= 0.0 and keep_prob <= 1.0 | |
if keep_prob == 1.0: | |
return x | |
else: | |
return tf.nn.dropout(x, keep_prob, name=name) | |
def _conv(x, filter_size, out_channel, strides, pad='SAME', input_q=None, output_q=None, name='conv'): | |
if (input_q == None)^(output_q == None): | |
raise ValueError('Input/Output splits are not correctly given.') | |
in_shape = x.get_shape().as_list() | |
with tf.variable_scope(name): | |
# Main operation: conv2d | |
kernel = tf.get_variable('kernel', [filter_size, filter_size, in_shape[3], out_channel], | |
tf.float32, initializer=tf.random_normal_initializer( | |
stddev=np.sqrt(1.0/filter_size/filter_size/in_shape[3]))) | |
if kernel not in tf.get_collection(WEIGHT_DECAY_KEY): | |
tf.add_to_collection(WEIGHT_DECAY_KEY, kernel) | |
# print('\tadded to WEIGHT_DECAY_KEY: %s(%s)' % (kernel.name, str(kernel.get_shape().as_list()))) | |
conv = tf.nn.conv2d(x, kernel, [1, strides, strides, 1], pad) | |
# Split and split loss | |
if (input_q is not None) and (output_q is not None): | |
_add_split_loss(kernel, input_q, output_q) | |
return conv | |
def _conv_with_init(x, filter_size, out_channel, strides, pad='SAME', init_k=None, name='conv'): | |
in_shape = x.get_shape().as_list() | |
with tf.variable_scope(name): | |
# Main operation: conv2d | |
if init_k is not None: | |
initializer_k = tf.constant_initializer(init_k) | |
else: | |
initializer_k =tf.random_normal_initializer(stddev=np.sqrt(1.0/filter_size/filter_size/in_shape[3])) | |
kernel = tf.get_variable('kernel', [filter_size, filter_size, in_shape[3], out_channel], | |
tf.float32, initializer=initializer_k) | |
if kernel not in tf.get_collection(WEIGHT_DECAY_KEY): | |
tf.add_to_collection(WEIGHT_DECAY_KEY, kernel) | |
# print('\tadded to WEIGHT_DECAY_KEY: %s(%s)' % (kernel.name, str(kernel.get_shape().as_list()))) | |
conv = tf.nn.conv2d(x, kernel, [1, strides, strides, 1], pad) | |
return conv | |
def _fc(x, out_dim, input_q=None, output_q=None, name='fc'): | |
if (input_q == None)^(output_q == None): | |
raise ValueError('Input/Output splits are not correctly given.') | |
with tf.variable_scope(name): | |
# Main operation: fc | |
w = tf.get_variable('weights', [x.get_shape()[1], out_dim], | |
tf.float32, initializer=tf.random_normal_initializer( | |
stddev=np.sqrt(1.0/x.get_shape().as_list()[1]))) | |
if w not in tf.get_collection(WEIGHT_DECAY_KEY): | |
tf.add_to_collection(WEIGHT_DECAY_KEY, w) | |
# print('\tadded to WEIGHT_DECAY_KEY: %s(%s)' % (w.name, str(w.get_shape().as_list()))) | |
b = tf.get_variable('biases', [out_dim], tf.float32, | |
initializer=tf.constant_initializer(0.0)) | |
fc = tf.nn.bias_add(tf.matmul(x, w), b) | |
# Split loss | |
if (input_q is not None) and (output_q is not None): | |
_add_split_loss(w, input_q, output_q) | |
return fc | |
def _fc_with_init(x, out_dim, init_w=None, init_b=None, name='fc'): | |
with tf.variable_scope(name): | |
# Main operation: fc | |
if init_w is not None: | |
initializer_w = tf.constant_initializer(init_w) | |
else: | |
initializer_w = tf.random_normal_initializer(stddev=np.sqrt(1.0/x.get_shape().as_list()[1])) | |
if init_b is not None: | |
initializer_b = tf.constant_initializer(init_b) | |
else: | |
initializer_b = tf.constant_initializer(0.0) | |
w = tf.get_variable('weights', [x.get_shape()[1], out_dim], | |
tf.float32, initializer=initializer_w) | |
b = tf.get_variable('biases', [out_dim], tf.float32, | |
initializer=initializer_b) | |
if w not in tf.get_collection(WEIGHT_DECAY_KEY): | |
tf.add_to_collection(WEIGHT_DECAY_KEY, w) | |
# print('\tadded to WEIGHT_DECAY_KEY: %s(%s)' % (w.name, str(w.get_shape().as_list()))) | |
fc = tf.nn.bias_add(tf.matmul(x, w), b) | |
return fc | |
def _get_split_q(ngroups, dim, name='split'): | |
with tf.variable_scope(name): | |
alpha = tf.get_variable('alpha', shape=[ngroups, dim], dtype=tf.float32, | |
initializer=tf.random_normal_initializer(stddev=0.01)) | |
q = tf.nn.softmax(alpha, dim=0, name='q') | |
return q | |
def _merge_split_q(q, merge_idxs, name='merge'): | |
assert len(q.get_shape()) == 2 | |
ngroups, dim = q.get_shape().as_list() | |
assert ngroups == len(merge_idxs) | |
with tf.variable_scope(name): | |
max_idx = np.max(merge_idxs) | |
temp_list = [] | |
for i in range(max_idx + 1): | |
temp = [] | |
for j in range(ngroups): | |
if merge_idxs[j] == i: | |
temp.append(tf.slice(q, [j, 0], [1, dim])) | |
temp_list.append(tf.add_n(temp)) | |
ret = tf.concat(temp_list, 0) | |
return ret | |
def _get_even_merge_idxs(N, split): | |
assert N >= split | |
num_elems = [(N + split - i - 1)/split for i in range(split)] | |
expand_split = [[i] * n for i, n in enumerate(num_elems)] | |
return [t for l in expand_split for t in l] | |
def _add_split_loss(w, input_q, output_q): | |
# Check input tensors' measurements | |
assert len(w.get_shape()) == 2 or len(w.get_shape()) == 4 | |
in_dim, out_dim = w.get_shape().as_list()[-2:] | |
assert len(input_q.get_shape()) == 2 | |
assert len(output_q.get_shape()) == 2 | |
assert in_dim == input_q.get_shape().as_list()[1] | |
assert out_dim == output_q.get_shape().as_list()[1] | |
assert input_q.get_shape().as_list()[0] == output_q.get_shape().as_list()[0] # ngroups | |
ngroups = input_q.get_shape().as_list()[0] | |
assert ngroups > 1 | |
# Add split losses to collections | |
T_list = [] | |
U_list = [] | |
if input_q not in tf.get_collection('OVERLAP_LOSS_WEIGHTS') \ | |
and not "concat" in input_q.op.name: | |
tf.add_to_collection('OVERLAP_LOSS_WEIGHTS', input_q) | |
print('\t\tAdd overlap & split loss for %s' % input_q.name) | |
T_temp, U_temp = ([], []) | |
for i in range(ngroups): | |
for j in range(ngroups): | |
if i <= j: | |
continue | |
T_temp.append(tf.reduce_sum(input_q[i,:] * input_q[j,:])) | |
U_temp.append(tf.square(tf.reduce_sum(input_q[i,:]))) | |
T_list.append(tf.reduce_sum(T_temp)/(float(in_dim*(ngroups-1))/float(2*ngroups))) | |
U_list.append(tf.reduce_sum(U_temp)/(float(in_dim*in_dim)/float(ngroups))) | |
if output_q not in tf.get_collection('OVERLAP_LOSS_WEIGHTS') \ | |
and not "concat" in output_q.op.name: | |
print('\t\tAdd overlap & split loss for %s' % output_q.name) | |
tf.add_to_collection('OVERLAP_LOSS_WEIGHTS', output_q) | |
T_temp, U_temp = ([], []) | |
for i in range(ngroups): | |
for j in range(ngroups): | |
if i <= j: | |
continue | |
T_temp.append(tf.reduce_sum(output_q[i,:] * output_q[j,:])) | |
U_temp.append(tf.square(tf.reduce_sum(output_q[i,:]))) | |
T_list.append(tf.reduce_sum(T_temp)/(float(out_dim*(ngroups-1))/float(2*ngroups))) | |
U_list.append(tf.reduce_sum(U_temp)/(float(out_dim*out_dim)/float(ngroups))) | |
if T_list: | |
tf.add_to_collection('OVERLAP_LOSS', tf.add_n(T_list)/len(T_list)) | |
if U_list: | |
tf.add_to_collection('UNIFORM_LOSS', tf.add_n(U_list)/len(U_list)) | |
S_list = [] | |
if w not in tf.get_collection('WEIGHT_SPLIT_WEIGHTS'): | |
tf.add_to_collection('WEIGHT_SPLIT_WEIGHTS', w) | |
ones_col = tf.ones((in_dim,), dtype=tf.float32) | |
ones_row = tf.ones((out_dim,), dtype=tf.float32) | |
if len(w.get_shape()) == 4: | |
w_reduce = tf.reduce_mean(tf.square(w), [0, 1]) | |
w_norm = w_reduce | |
std_dev = np.sqrt(1.0/float(w.get_shape().as_list()[0])**2/in_dim) | |
# w_norm = w_reduce / tf.reduce_sum(w_reduce) | |
else: | |
w_norm = w | |
std_dev = np.sqrt(1.0/float(in_dim)) | |
# w_norm = w / tf.sqrt(tf.reduce_sum(tf.square(w))) | |
for i in range(ngroups): | |
if len(w.get_shape()) == 4: | |
wg_row = tf.transpose(tf.transpose(w_norm * tf.square(output_q[i,:])) * tf.square(ones_col - input_q[i,:])) | |
wg_row_l2 = tf.reduce_sum(tf.sqrt(tf.reduce_sum(wg_row, 1))) / (in_dim*np.sqrt(out_dim)) | |
wg_col = tf.transpose(tf.transpose(w_norm * tf.square(ones_row - output_q[i,:])) * tf.square(input_q[i,:])) | |
wg_col_l2 = tf.reduce_sum(tf.sqrt(tf.reduce_sum(wg_col, 0))) / (np.sqrt(in_dim)*out_dim) | |
else: # len(w.get_shape()) == 2 | |
wg_row = tf.transpose(tf.transpose(w_norm * output_q[i,:]) * (ones_col - input_q[i,:])) | |
wg_row_l2 = tf.reduce_sum(tf.sqrt(tf.reduce_sum(wg_row * wg_row, 1))) / (in_dim*np.sqrt(out_dim)) | |
wg_col = tf.transpose(tf.transpose(w_norm * (ones_row - output_q[i,:])) * input_q[i,:]) | |
wg_col_l2 = tf.reduce_sum(tf.sqrt(tf.reduce_sum(wg_col * wg_col, 0))) / (np.sqrt(in_dim)*out_dim) | |
S_list.append(wg_row_l2 + wg_col_l2) | |
# S = tf.add_n(S_list)/((ngroups-1)/ngroups) | |
S = tf.add_n(S_list)/(2*(ngroups-1)*std_dev/ngroups) | |
tf.add_to_collection('WEIGHT_SPLIT', S) | |
# Add histogram for w if split losses are added | |
scope_name = tf.get_variable_scope().name | |
tf.summary.histogram("%s/" % scope_name, w) | |
print('\t\tAdd split loss for %s(%dx%d, %d groups)' \ | |
% (tf.get_variable_scope().name, in_dim, out_dim, ngroups)) | |
return | |
def _bn(x, is_train, global_step=None, name='bn', no_scale=False): | |
moving_average_decay = 0.9 | |
# moving_average_decay = 0.99 | |
# moving_average_decay_init = 0.99 | |
with tf.variable_scope(name): | |
decay = moving_average_decay | |
# if global_step is None: | |
# decay = moving_average_decay | |
# else: | |
# decay = tf.cond(tf.greater(global_step, 100) | |
# , lambda: tf.constant(moving_average_decay, tf.float32) | |
# , lambda: tf.constant(moving_average_decay_init, tf.float32)) | |
batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2]) | |
mu = tf.get_variable('mu', batch_mean.get_shape(), tf.float32, | |
initializer=tf.zeros_initializer(), trainable=False) | |
sigma = tf.get_variable('sigma', batch_var.get_shape(), tf.float32, | |
initializer=tf.ones_initializer(), trainable=False) | |
beta = tf.get_variable('beta', batch_mean.get_shape(), tf.float32, | |
initializer=tf.zeros_initializer()) | |
gamma = tf.get_variable('gamma', batch_var.get_shape(), tf.float32, | |
initializer=tf.ones_initializer(), trainable=(not no_scale)) | |
# BN when training | |
update = 1.0 - decay | |
# with tf.control_dependencies([tf.Print(decay, [decay])]): | |
# update_mu = mu.assign_sub(update*(mu - batch_mean)) | |
update_mu = mu.assign_sub(update*(mu - batch_mean)) | |
update_sigma = sigma.assign_sub(update*(sigma - batch_var)) | |
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_mu) | |
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_sigma) | |
mean, var = tf.cond(is_train, lambda: (batch_mean, batch_var), | |
lambda: (mu, sigma)) | |
bn = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-5) | |
# bn = tf.nn.batch_normalization(x, batch_mean, batch_var, beta, gamma, 1e-5) | |
# bn = tf.contrib.layers.batch_norm(inputs=x, decay=decay, | |
# updates_collections=[tf.GraphKeys.UPDATE_OPS], center=True, | |
# scale=True, epsilon=1e-5, is_training=is_train, | |
# trainable=True) | |
return bn | |
## Other helper functions | |