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Abstract
This thesis presents the work I did during my Année de Recherche

Pré-doctorale à l’Étranger as part of my studies at the École Normale
Supérieure Paris-Saclay. I worked in the Many-Body Quantum Dynamics
(MBQD) group in the Cavendish Lab in Cambridge under the supervision
of Dr. Ulrich Schneider.

One of the step of the experiment performed in the MBQD group is to
load an ultracold atomic gas in a dipole trap. The trap position is then
displaced over a macroscopic distance using a focus tunable lens. The aim
of my project was to build and test a protocol of this transport scheme on
the experiment.

During the internship, I first realised a prototype of this setup with
a low power laser. Once it was demonstrated to behave as expected, I
tested it with a high power laser. Eventually, I mounted the scheme on the
experiment and first tests with cold atoms were performed.

A brief introduction explains the motivation to study the Kagome lat-
tice with cold atoms. It is followed by a discussion of the tools used for the
experiment and a description of the setup, with emphasis on the step of
optical transport. The implementation of optical transport for this exper-
iment is then detailed. Following this, is a theoretical justification of the
viability and performances of the scheme.
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1 Introduction

1.1 Quantum simulation

Predicting the behaviour of large interacting quantum systems is reputed to be a challenging task
for all but the simplest problems. Simulations with classical computers provide insights, but are
quickly limited by the exponential scaling of the Hilbert space with the size of the system. As of
today, only calculations with a few tens of particles are tractable using this method, which is far
from any macroscopic number.

One famous solution to circumvent this problem was made by Feynman [Fey82] : instead of
considering the real problem, it might prove useful to extract its main features and engineer a toy
quantum system sharing these same properties. The new model must be easier to observe while
still being able to reproduce the expected behaviour of the original system. This point of view leads
to two possibilities : quantum computers — which replace classical bits by quantum qubits — and
analogue quantum simulations — which aim to reproduce Hamiltonians with continuous proper-
ties —.

The latter approach is exactly what is done in the field of cold atoms in order to replicate the
comportment of electrons in solids by using instead atoms in optical lattices.

1.1.1 Lattice hamiltonians

A system of interacting electrons subjected to a periodic potential created by fixed ionic cores is
believed to be well described by a Hubbard Hamiltonian. In the language of second quantisation,
this is written as :

ĤFH = −t
∑

〈i,j〉
σ∈{↑,↓}

â†i,σ âj,σ + U
∑

i

n̂i,↑ n̂i,↓ (1)

Here â†i,σ is the creation operator for a fermion on a lattice site i and a spin σ ∈ {↑, ↓}. n̂i,σ = â†i,σâi,σ

is the occupation number on site i. ĤFH is known as the Fermi-Hubbard Hamiltonian and describes
how particles hop between lattice sites 〈i, j〉 with a rate t and with on-site interaction energy
cost U when two fermions of opposite spin occupy the same site. The Hubbard model is only
a crude approximation to a solid-state lattice model as it neglects some effects such as phononic
excitations, long-range interactions or lattice defects. But even this simplified model presents a
large phenomenology, with magnetic and metallic phase transitions.

It is worth noting that a similar Hamiltonian exists for bosons as well :

ĤBH = −t
∑

〈i,j〉

b̂†i b̂j +
U

2

∑

i

n̂i(n̂i − 1) (2)

with analogous definitions for the creation operators b̂†i for bosons. This Bose-Hubbard Hamiltonian
is a departure from solid state physics which involves fermionic electrons , but presents the same
complexity than the Fermi-Hubbard Hamiltonian.

While it is possible to write down these Hamiltonians from first principles, diagonalising them
for a given lattice geometry (i.e. a set of adjacent sites 〈i, j〉), is out of reach for large systems.
The complexity of the previous models makes it difficult to gain insights on some phenomena just
by looking at the Hamiltonians. Experimental data might prove especially useful to gain some
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understanding. For solid state materials, it is an extremely difficult task to change the lattice
geometry, the doping or the interaction strength. This is why another solution must be found in
order to explore the space of parameters.

1.1.2 Cold atoms in optical lattices

This is where cold atoms are particularly useful because it is now possible to reproduce the behaviour
of such systems but with large tunability. The idea is to observe the comportement of a cloud of
cold atoms when they experience a periodic potential created by a standing light wave (see fig. 2).
This new system can be made to follow the Hamiltonians described previously and a variety of tools
have been developed to change the parameters at will [JZ05].

However, reaching quantum degeneracy with cold atoms is not a trivial task. But it must
be achieved in order to simulate condensed matter in which the electrons are highly degenerate
(i.e. their temperature is well below the Fermi temperature). The criteria characterising quantum
degeneracy is the phase-space density :

$ = n0λT
3 (3)

were n0 is the peak density of particles and λT =
√

2π~2
mkBT

is the thermal de Broglie wavelength.
The system exhibits quantum properties when the wavelength of the particles is large enough to
overlap with the neighbouring particles, i.e. when n0λT

3 > 1.

The developement of cold atoms techniques in the 1990s hit a milestone with the realisation of
the first Bose-Einstein Condensate (BEC) [AEM+95]. In this state of matter, a large number of
bosons condense into the ground state, displaying a macroscopic wavefunction. This success was
shortly followed by the achievement of quantum degeneracy for fermions [DJ99]. It is now possible
to routinely produce quantum systems and to study the behaviour of degenerate atomic clouds in
non-trivial optical potentials.

Ut

Electrons in 
potential 
created by ions

U
t

Atoms in 
standing wave 
potential

Figure 2: Illustration of the analogy be-
tween solid state and cold atoms.

Electrons
in solid

Atoms in
optical lattice

Number 1024 106

Timescale 10−15 s 10−2 s

Lifetime ∞ 10 s

Lattice spacing 10−10 m 10−7 m

Possible
imaging

X-rays
diffraction

Optical
microscope

Table 1: Comparison of parameters for solid state and
cold atoms.

A major advantage of this technique over solid state physics is the different scale. The sys-
tem is larger and its dynamics happens on a slower timescale (see table 1). Thanks to this, it is
possible to directly probe the dynamical properties. Letting the cloud expand freely according to
its inital speed with time-of-flight measurement allows to map the momentum distribution of the
cloud. State-of-the art microscopy even allows to image the position of individual atoms in the
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lattice [BGP+09].

Thanks to all these reasons, cold atoms physisc has proven to be a successful quantum simulation
method and has been able to correctly predict a number of low temperature phenomena [Blo05].

1.2 Kagome lattice

Among all the possible lattice geometries, one is of particular interest : the Kagome lattice. Its
geometry consists of corner sharing triangles as depicted in figure 3a. The aim of the experiment
in the Many-Body Quantum Dynamics group (MBQD) in Cambridge is to implement this lattice
with cold atoms.

The Kagome lattice is the next logical step after the triangular and honeycomb lattices. Its
realisation is still ongoing and not all experimental difficulties have been overcome [JGT+12]. The
interesting properties of this lattice come from its geometrical frustration that results in non-trivial
ground states for the Hubbard Hamiltonians.

(a)

t

-t

--

?
(b)

(c)

Figure 3: (a) Geometry of the Kagome lattice. (b) Spin frustration for the Kagome anti-ferromagnet.
(c) Localized hexagonal eigenstate for a single particle. (d) Kagome band structure.

For example, the ground state of the Kagome anti-ferromagnet is still unknown. In this case,
there is one atom per site and the energy is minimised with anti-parallel spins between nearest
neighbours. But, even for one triangular cell, it is not possible to satisfy this criteria for all pairs
of nearest neigbours (fig. 3b). Because of that, there is no energy cost required to flip a spin and
the ground state of the triangular subcell is 6-fold degenerate. This degeneracy grows exponentially
when more triangular cells are connected. This macroscopic degeneracy explains why the ground
state of the Kagome anti-ferromagnet is hard to predict. It is speculated to be a novel type of
spin state known as a spin liquid : a highly entangled state with long range correlations [YHW11].
Observing this state is one of the objectives of the experiment.

The Kagome frustration also reveals itself when looking at single particle eigenstates of the
lattice. Indeed, it is possible to construct eigenstates on a hexagonal plaquette with alternating
signs for the wavefunction as shown in figure 3c. While this is an eigenstate for a single particle on
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the whole lattice, it is actually localized because the tunnelling cancels out for sites outside of the
hexagon. Therefore the particle cannot move and has no kinetic energy. In other words, it means
that one of the energy bands of the Kagome lattice is flat, as is illustrated in figure 3d. An explicit
calculation of the band structure is done in appendix A.

Because the upper band is flat, the dynamics of particles in this state will be dominated by
interactions as there is no other energy scale. As a result the ground state of the repulsive bosonic
Kagome lattice is also exotic. Indeed, at high filling, it is predicted that the ground state will be
formed of non-overlapping hexagons arranged on a grid, with particles condensing in the intersticial
space [HA10]. This state of matter presents properties of both a solid and a BEC and is called a
supersolid, which is currently under high investigation [LLH+17, LMZ+17]. If the Kagome lattice
indeed presents a supersolid state, a realisation of it with cold atoms would be a direct proof of its
existence and would allow to characterise this state.

2 Experimental setup

Figure 4: Experimental setup. (1) 87Rb oven. (2) 39K and 40K oven. (3) 2D MOTs. (4) Cooling
chamber (3D MOT + molasses + magnetic trap). (5) MOT & magnetic trap coils. (6) Science
chamber. (7) Microscope. Highlighted in red is the transport axis with its start and end points.
The science chamber is under construction and is not yet implemented.
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Realising an optical Kagome lattice is the main goal of the experiment in the MBQD group and
is a challenge in itself. But before being able to load atoms in the lattice it is necessary to reach
quantum degeneracy by increasing the density of the gas cloud and reducing its temperature.

This is a major part of the experiment and the cooling section is already built with the science
chamber to be added soon. Figure 4 is an illustration of the experimental setup and figure 5 shows
the evolution of the phase space density at different points. They will be used as a roadmap for this
section which is a description of the experimental techniques, with an emphasis on the steps where
optical transport is involved.

More detailed descriptions of the techniques used to manipulate cold atoms can be found in
[Foo07] or [BML00].
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1022 at/cm3

@ 293 K

Figure 5: Phase space density at different points of the experiment (typical values). The grey area
indicates the region of quantum degeneracy. (1) Sublimation of solid 87Rb to the vapour phase.
(2) Cooling in the MOT. (3) Sisyphus cooling. (4) Loading in the magnetic trap. (5) Microwave
evaporation in the magnetic trap. (6) Evaporation in the hybrid trap. (7) Loading in the transport
beam. (8) Evaporation in crossed dipole trap. (?) Optical transport occurs at the star shaped point
and without change in atom number or temperature.

2.1 Magneto-Optical Trap

2.1.1 Doppler cooling

Magneto-Optical Traps (MOT) are the workhorse of cold atom experiments [Foo07]. They are used
to cool and trap an atomic vapour. The initial gas is typically produced by evaporating a solid
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sample under high vacuum.
When atoms in this vapour are illuminated by a resonant laser, they can absorb an incoming

photon and reemit it in a random direction. On average, for many absorption-emission cycles, atoms
will feel a force in the direction opposed to to the propagation of the laser beam. In a MOT, the
laser is slightly detuned below the atomic transition to make use of the Doppler effect. With this,
stationary particles do not interact with the light, but the atoms moving in the direction of the laser
see photons of higher frequency, closer to resonance, and are indeed slowed down. When combining
counter-propagating beams in all three directions, this produces a viscous force in opposition to the
velocity of the atoms.

The lasers effectively cool down the atomic cloud, but don’t provide confinement on their own.
A position-dependent force is added in the presence of an inhomogeneous magnetic field. In this
configuration, the magnetic field induces a Zeeman shift that depends on the position of the atoms
and it is possible to trap the cloud in a given area in space.

For the actual implementation in the considered experiment, the atomic vapour is first cooled
down only in the transverse plane when going through a 2D MOT. The slowed flux of atoms is then
used to load a 3D MOT in the cooling chamber. Even if the force felt by the atoms is on average
null in a MOT, the constant absorption-reemission process creates a random walk in momentum
space. Because of that, magneto-optical trapping is limited to temperatures above 150 µK for alkali
species.

2.1.2 Sub-Doppler cooling

It is possible to go below this temperature when only using the lasers of the MOT. The counter-
propagating beams can be tuned to form an interference pattern. This leads to a cooling mechanism
called Sisyphus cooling : the atoms repeatedly climb to the top of the potential barrier created by
the optical Stark effect of the interfering laser beams, and then suddenly drop to the bottom of the
potential well after absorption and emission of a photon. The energy loss in this process is taken
from the atom’s thermal energy. This step allows to reach even lower temperature, but it is still
not enough to reach the quantum regime.

2.2 Magnetic trap

2.2.1 Magnetic trapping

In order to reduce the temperature even more, the atoms are transferred in a magnetic trap were
they will undergo evaporation. This kind of trap provides a lifetime of several seconds and is the
last cooling step before transferring the atoms to the science chamber.

The technique relies on the interaction of an atom’s magnetic moment µ with an external field
field B, yielding a potential energy :

U(r) = −µ ·B(r) (4)

The magnetic moment is proportional to the total angular momentum F of the atom and when
projecting onto the quantisation axis defined by the magnetic field, one obtains :

U(r) = gFmFµBB(r) (5)

where µB is the Bohr magneton, gF is the Landé, factor which depends on the atomic state, and
mF is the projection of the angular momentum onto the magnetic field.
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Figure 6: Zeeman shift for the lower en-
ergy levels of 87Rb with increasing mag-
netic field. In blue are low-field seeking
states. The red arrows indicate the mi-
crowave sweep for evaporation.

The atoms acquire a potential energy proportional
to the magnitude of the magnetic field. Depending on
the sign of the proportionality constant gFmF , atoms
are either attracted by the maximum or minimum of
the magnetic field (see fig. 6). In practice it is only
possible to realise a minimum of magnetic field in free
space, so only the latter case of low-field seeking atoms
is interesting for trapping. This requires the atoms to
be polarised in a correct spin state (here F = 1, mF =
−1) before being loaded in the trap.

In the experiment, the magnetic trap is realised by
using the MOT coils in an anti-Helmholtz configura-
tion. This creates a magnetic field that is indeed mini-
mal in the center of the chamber and actually cancels :

B(r) = B′
[
x,
y

2
,
z

2

]>
(6)

Here B′ is the magnetic field gradient that dictates the strength of the trap.
After the MOT step, the cloud is loaded in the magnetic trap by turning the lasers off and

suddenly increasing the current in the coils. This compresses the cloud and causes it to heat up.

2.2.2 Microwave evaporation

Having a high density in space is useful for the next step of evaporation. The idea is to remove
the hottest atoms from the trap. After thermalisation, the remaining atoms will have a lower
temperature. But for this to be effective, it is necessary to have enough collisions between particles
to allow for fast thermalisation.

Removing the hottest atoms is done by driving a microwave transition between the initially low-
field seeking state to a high-field seeking state that will be expelled from the trap. The microwave
knife is at first detuned below the fundamental transition between F = 1 and F = 2 such that only
the atoms far from the center (i.e. the hot ones) are targeted (see fig. 6). The transition frequency
is then increased closer to the zero-field transition to evaporate the cloud further.

2.2.3 Majorana losses

A major inconvenience with the anti-Helmholtz configuration is the issue of Majorana losses. This
occurs when trapped atoms cross the zero magnetic field area. When the field is zero, there is no
longer a well-defined quantisation axis. Any fluctuation or collision can cause the magnetic moment
of the atom to be randomly changed. After traversing the zero field region, the atom can then
possibly be in an untrapped state that is repelled from the trap center (see fig. 7a,b). This effect
leads to both atoms loss and heating as the ejected atom can collide with other atoms on its way
out.

At high enough temperature (>100 µK), this effect is not dramatic because the atoms are not
likely to spend a lot of time in the zero field region, but it becomes troublesome when trying to
reach quantum degeneracy. Indeed, when the cloud is cold and dense, its density will be high in the
center of the magnetic trap.

The solution chosen to avoid this problem for the experiment will be described in the next
paragraphs that discuss dipole trapping.
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(a) Trapped atom with magnetic
momentum aligned on the mag-
netic field.

(b) Initially trapped atom cross-
ing the zero field area and ending
up in an untrapped state.

(c) Trapped atom in the combi-
nation of magnetic and optical
trap.

Figure 7: Illustration of the trapping mechanism in the magnetic trap.

2.3 Dipole trap

2.3.1 Dipole force

Once the atoms are at a low temperature, the preferred tool to manipulate them is with far detuned
laser light (' 5 nm). It exercises a conservative force on the atoms while keeping a low scattering
rate, thus minimizing heating.

This interaction, known as dipolar force, can be simply understood with a classical picture :
in the presence of the electric field E of the laser, the electronic cloud is polarised, resulting in an
induced dipole p = αE. Here α is the atomic polarisability depending of the specie and the light
wavelength. In the electric field, this dipole has a potential energy :

U = p ·E = α|E|2 (7)

The atom therefore feels a potential energy that is proportional to the light intensity I = cε0|E|2/2
at its position.

A rigourous way to describe the dipolar force is with time-dependent quantum perturbation
theory. The interaction between far-detuned light and the atoms can then be understood as an
AC Stark effect that shifts the electronic energy levels. When focusing on the ground state, its
energy change is proportional to the light intensity experienced by the atom (see fig. 8). This is
effectively equivalent to the classical picture, but provides an explicit expression for the dipolar
force. A detailled derivation is provided in [GWO00]. The expression for the potential energy is
then given by :

U(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r) (8)

The atoms experience a potential energy that is proportional to the light intensity, with :

• Γ ' 2π × 6 MHz, the width of the atomic transition1

1Typical value for potassium and rubidium.

11



• ω0 ' 2πc/(780 nm), the frequency of the transition2

• ω, the frequency of the light used to realise the trap

An interesting property of the prefactor before the intensity, is that its sign changes with the
sign of the detuning ω0 − ω. Therefore for red-detuned light, where the wavelength of the laser is
larger than the wavelength of the atomic transition, the atoms are attracted to the area of high
intensity. This is the inverse for blue-detuned light where particles are repulsed by larger intensity.

(a) (b)

Figure 8: Illustration of far-detuned dipole trap. (a) Red detuned trap. (b) Blue detuned trap.

When the wavelength of the light is far enough (tens of nanometres) from the atomic transition,
the rate Γ for of photon to be scatted by the atom is low :

Γ ∝ I

(ω0 − ω)2
(9)

The atomic cloud can be trapped in the conservative potential for several seconds without
heating. One limitation that comes from being far from resonance is that a high power laser
(typically several Watts) is required to have acceptable trap depth.

Still, the characteristics of the interaction between far-detuned light and atoms make it a par-
ticularly suitable tool to manipulate ultracold clouds. This is the preferred option for the last steps
of the experiment.

2For alkali species, this expression must be summed for the D1 and D2 lines with respective weights 1/3 and 2/3.
This has little influence on the potential for detuning much larger than the fine structure.
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2.3.2 Transport trap

The simplest way to build an optical trap using the dipole force is to focalise a gaussian red-detuned
laser beam at a position in space (see fig. 9). The atomic cloud will then be attracted at the point
where the light intensity is maximal.

2zR

w0

Axial position z [cm]

x,
y 

[m
m

]
W

ai
st

 w
(z

) 
[m

m
]

Figure 9: Gaussian beam profile used for optical transport and evolution of its waist.

A gaussian beam is the standard intensity profile that is obtained for example at the output of
a single-mode fibre. In every transverse plane, the intensity will have a gaussian shape with a size
evolving along the optical axis. The intensity profile for such a beam is (see [Sie86]) :

I(r) =
2P

πw(z)2
exp

(
−2

x2 + y2

w(z)2

)
(10)

Here z is the optical axis and x, y are transverse coordinates. P is the power of the laser. w(z) is
the spot size of the beam, with a minimal waist value w0 at the focal point z = 0. The waist is
given by :

w(z) = w0

√
1 +

(
z

zR

)2

(11)

In this expression zR is the Rayleigh length, characterizing the distance after which the beam starts
to diverge :

zR =
πw0

2

λ
(12)

Using equation 8, the potential energy of the atom in the light field can be computed. It forms
a well of finite depth with a strong confinement in the transverse direction, and a much weaker
confinement along the optical axis (see fig. 10a).

Near the trap bottom, the potential can be approximated by a harmonic oscillator :
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U(r) ' −U0 +
mωx

2x2

2
+
mωy

2y2

2
+
mωz

2z2

2
for x, y � w0 and z � zR (13)

The main properties of the transport trap are summarized in table 2

(a) Transport trap (b) Crossed trap

Figure 10: Illustration of the geometries for optical dipole traps. In orange is a sheet of the potential
well and in purple is the shape of the atomic cloud.

.

Laser wavelength λ 1064 nm

Laser power P 5 W

Waist w0 50 µm

Rayleigh length zR = πw0
2

λ 7.4 mm

Trap depth U0 = 3Pc2

ω0
3w0

2

(
Γ

ω0−ω + Γ
ω0+ω

)
kB × 195 µK

Transverse frequencies ωx,y =
√

4U0
mw0

2 2π× 870 Hz

Axial frequency ωz =
√

2U0
mzR2 2π× 4.2 Hz

Transverse size at T = 5 µK σx,y =
√

kBT
mωx,y

2 4 µm

Axial size at T = 5 µK σz =
√

kBT
mωz

2 0.8 mm

Table 2: Transport trap parameters for 87Rb.

While the transport trap is straightforward to realise with one laser beam, it does not provide
a strong confinement along the beam direction. The cloud is therefore very elongated and diluted.
Because of that, thermalisation time is long (tens of milliseconds) and the density is too low to
achieve Bose-Einstein condensation.

This kind of trap is however useful in combination with the previously described magnetic trap,
forming a hybrid trap [LPC+09]. The laser beam is overlapped with the magnetic trap such that the
focal point of the laser is situated 50 µm below the center of the magnetic trap (see fig. 7c). With

14



this, the magnetic trap provides a good axial confinement while the laser beam assures transverse
confinement and prevents the atoms from getting close the zero field region.

During the experiment, atoms are first evaporated in the magnetic trap and the transport beam
is then turned on, forming this hybrid trap. Further evaporation can then be achieved. After this,
the magnetic trap is adiabaticly turned off and the cloud is loaded in the transport beam and is
free to expand in the axial direction.

The idea behind my project of optical transport, is to capture the cloud in this single beam
trap. The position of the focal point, initially in the cooling chamber, is then progressively changed
to be in the science chamber. The atoms will follow the maximum of intensity and be displaced. A
detailed description of the transport scheme is reserved for the next sections.

2.3.3 Crossed dipole trap

Once the atoms have been transported to the science chamber, they need to undergo a last step of
evaporation before reaching quantum degeneracy and forming a BEC. For this purpose, the atoms
are trapped in a crossed optical dipole trap (XODT) which is the 90° combination of two gaussian
beams similar to the transport laser (see fig. 10b). This geometry provides a tight confinement in
all three directions of space. The density of the cloud is now high enough to allow thermalisation
during evaporation. This is simply done by slowly reducing the power of the two crossed beams,
thus reducing the trap depth. With this it is possible to reach the high density and low temperature
necessary for Bose-Einstein condensation.

2.4 Lattice

Now that the atoms are in a degenerate quantum state, they are ready to be placed in the Kagome
lattice. The lattice is also realised using the dipolar force. When several coherent laser beams
overlap, an interference pattern is formed. Depending on whether the light is blue or red-detuned,
atoms will be be attracted at the nodes or anti-nodes.

(a) Blue detunned triangular lat-
tice.

(b) Red detunned honeycomb lat-
tice.

(c) Kagome lattice resulting of
the superposition of the two pre-
vious lattices.

Figure 11: Illustration of optical lattices. Green dots represent the atoms in the lattices.

Interfering three blue-detuned beams at 532 nm as in figure 11a will result in a triangular lattice
with atoms trapped at the minimum of intensity. If the same is done for red-detuned lasers at
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twice the wavelength (1064 nm), this will create a hexagonal lattice with a spacing two times larger
(see fig. 11b).

Superposing the red-detuned lattice on the blue-detuned one will deepen 3 out of 4 sites of
the blue triangular lattice and the final result is a Kagome lattice (see fig. 11c). This is how the
Kagome geometry will be implemented. The actual realisation is more complicated than this simple
picture, because the relative phases between the beams must be stabilised to prevent the lattice
from moving.

With the atoms in the lattice, it will be possible to change several parameters (specie, number,
temperature, lattice depth, interactions, ...) and to image atoms on single sites with an optical
microscope. Having such a high control over the system will allow to answer some of the open
questions for the behaviour of quantum particles in a Kagome lattice.

3 Transport implementation

3.1 Transport scheme

In the steps described above, my project to focus on optical transport and its implementation. It
consists in trapping a cold atomic cloud at the focus of a red-detuned laser beam in the cooling
chamber. The position of the focus is then progressively changed by D = 50 cm using a focus
tunable lens. At the end of this step, the atoms are in the science chamber and the rest of the
experiment is carried out.

Moving the atoms between two chambers allows to dedicate one to cooling and the other to the
experiment itself. It provides better access for optical components around the chambers now that
the two parts of the experiment are clearly separated. This is why transporting the cloud over a
macroscopic distance is an usual step for most cold atoms experiments. There are several ways for
doing this, but most of them rely on movable mirror on a moving rail, which is susceptible to failure
after repeated use and generates vibrations close to the experiment.

The tunable lens scheme considered here doesn’t suffer from these limitations. It is adapted from
the demonstrating paper [LLM+14] and is illustrated in figure 12. It is a fairly simple technique
with a small number of components besides the high power laser used. The tunable lens is used
to dynamically change the divergence of a collimated beam. The fixed lens f = 500 mm focuses
the beam on the atoms and is placed 500 mm after the tunable lens. The position of the fixed lens
ensures that the trap waist is constant no matter the position to which the beam is focused (an
explicit calculation using ABCD matrices is done in appendix B).

During the internship, I first realised a prototype of the scheme with a low power laser to ensure
that it is indeed working as expected. Some results can be seen in figure 12 were the measured
waists3 are in good agreement with the predictions. The distance between the tunable lens and the
fixed lens f was optimised to minimize the change of the waist w0 during transport.

3.2 High power laser

Due to the large detuning between the laser used (1064 nm) and the atomic resonance (780 nm), a
high intensity beam (5 W) is needed to create a trap with a depth of several hundreds microkelvins.
The next step after the first prototype of optical transport was to prepare the high power beam
used for transport (see fig. 13)4.

3Measured by fitting a 2D gaussian picture.
4This was done with the help of Luca Donini, PHD student in the MBQD group.
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Figure 12: Illustration of the transport scheme. A tunable lens (1) is used to change the focus
position of a collimated beam. A standard lens f = 500 mm (2) focuses the beam. The atomic
cloud is trapped in the region of high intensity. The three figures correspond to different positions
for the trap. The black bars are experimental measures used to determine the parameters of the
beam.

The beam is produced by a commercially available Nd:YAG laser5 delivering 42 W. After going
through an optical isolator to protect the laser from back reflections, the beam is split in several
paths with half-waveplates and polarising beam splitters. One path is for optical transport and the
others are for the crossed dipole trap.

After going through an acousto-optic modulator (AOM), the beam is sent via optical fibre to
the experiment table. An AOM operates by sending sound waves through a crystal. The laser
traversing the crystal is diffracted into several beams when interacting with the density pattern
created by the sound waves. By modulating the amplitude of the radio-frequency supplied to the
AOM, it is possible to change the power going into each beam path. With this technique, it is
possible to use the AOM as a shutter to turn on or off the laser.

The AOM is also used in coordination with a photodiode to keep the intensity of the light
constant at the output of the fibre. A PID loop measures the power of the beam sent to the atoms
and adjusts the signal of the AOM to keep this value constant. This precaution is important as any

5Coherent Mephisto MOPA 42
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Figure 13: Pictures of the high power beam path built. (a) Preparation of the beam. (b) Experiment
table. (1) Mephisto. (2) Optical isolator. (3) Half waveplate. (4) Beam splitters. (5) AOM. (6) To
fibre. (7) Photodiode. (8) Telescope. (9) Tunable lens. (10) Focusing lens.

fluctuation in the light intensity will cause fluctuation of the trap depth and frequencies, resulting
in an increase in temperature of the atoms [SOT97].

With this and a simple telescope to collimate the beam at the output of the fibre, the laser can
be shone through the tunable6 and fixed focusing lens and used to trap the atomic cloud.

3.3 Tunable lens

Figure 14: Tunable lens
illustration.

The key element for optical transport is the tunable lens. This component
became commercially available a few years ago. While providing new flexi-
bility, this technology is not as mature as other optical components and the
tunable lens turned out to be the most sensitive part of this setup.

3.3.1 Working principle

The tunable lens7 used on this experiment is made of an optical fluid held
by a flexible polymer membrane (see fig. 14). A wire coil is fixed on the
outer rim of the membrane. When a current is passed through the coil,
it will be attracted (or repelled depending on the sign of the current) by a
permanent magnet. The pressure exercised on the fluid inside the membrane
will change the curvature of the lens. Therefore, it is possible to control the
optical power of the lens8 proportionally to the current in the coil.

The lens aperture is reasonably large (16 mm) and the focal power range
can be controlled between -2 dpt to +3 dpt with a current of ±200mA.
When converting the optical power to a position for the dipole trap, it gives
more than one meter of change which is plenty in our case. The lens allows

6

In the setup, the tunable lens must be placed horizontally. This is to prevent a gravity
induced sag of the lens fluid that would distort the beam.
7Optotune EL-16-40-TC
8The optical power is the inverse of the focal length.
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the trap center (i.e. the focal point) to be quickly (<50 ms) switched from the center of one chamber
to the center of the other. However, that doesn’t mean that transport is possible in this timescale
and the limiting factor will be the inertia of the atoms : if the trap is abruptly switched from being
in the cooling chamber to the science chamber, the cloud will simply stay behind and be lost.

3.3.2 Thermal dependance

The tunable lens is the one element that allows this setup to be compact and with no moving piece.
However it is also a sensitive part and if no care is done to understand its properties, it can lead to
poor transport performance.

One major trouble with the lens is that the focal length depends of the temperature of the fluid
inside. Indeed, if the liquid is heated, it will expand, thus changing the lens curvature and its optical
index. One could think that this effect is a small perturbation, but for transport it can cause the
trap the be several centimetres away from the expected position.

A first issue related to thermal fluctuations was encountered during the initial tests of the lens.
After several tens of minutes of use, the temperature of the lens rises up by several degrees. This is
because the current in the coil dissipates about one Watt of power in the lens and the heat builds
up over time. As a result, the lens is slowly and uniformly heated as show in figure 15b.

(a) Reference curvature of the
lens in nominal conditions at
room temperature and with low
power light.

(b) Uniform heating of the lens
liquid due to dissipation in the
coil.

(c) Localised heating of the lens
liquid due to absorption of the
laser.

Figure 15: Influence of the temperature on the optical properties of the lens. This causes the focal
length of the lens to fluctuate even at constant current.

Because of this effect, even if a constant current is applied to the lens, the trap position can
fluctuates if the temperature is free to change. This effect is described in the lens datasheet and
the manufacturer provides a way to correct this problem. Indeed, the lens shape remains spherical
as the temperature changes and it just means that the optical power of the lens depends of two
variables : the current in the coil and the temperature of the fluid. A sensor integrated in the lens
allows to measure the temperature of the liquid.

We found that one possible way to fix the problem is to compensate the current of the coil as
the temperature drifts. Instead of holding the current constant, its value is slightly tuned in order
to negate the drift due to thermal dilatation. This solution requires to measure the influence of
temperature on the optical power, but once this was done, it proved to be effective (see fig. 16).
In addition to this correction, it is also possible to actively regulate the temperature of the lens to
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a fraction of a degree. For our use, the combination of these two solutions was satisfactory and
robust.
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(a) Uncompensated lens. The coil current is held to
a constant value during the temperature sweep.
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(b) Current compensated lens. The coil current is
tuned as the temperature changes in such a way to
compensates for the position drift.

Figure 16: Dependence of the trap position with the lens temperature. The grey area indicates the
bounds to which it is possible to constrain the temperature when using active regulation.

Another related issue presented itself when the high power laser was used. When the laser is
turned on, the center of the lens will start to heat up because a small fraction of the light is absorbed
by the fluid. The inhomogeneous temperature gradient in the lens will change its focal length (see
fig. 15c). This is often called thermal lensing. In our case, the beam remains gaussian, but the
position at which the beam is focused changes as the beam heats the lens. It has a drastic effect
on the stability of the trap position. Every time the laser is turned on, the trap will jump by a
centimetre or more in a couple seconds (see fig. 17a). It is not possible to let the lens reach a steady
state because the light must be turned off between every repetition of the experimental sequence.

Fortunately, this effect is also predictable and reproducible. The lens is always heating up and
cooling down with the same behaviour depending on the light intensity profile. We can use the
same feedforward scheme that is used to compensate the temperature drifts. If the intensity of the
laser is known at all times, the drift in the trap position can be predicted by numerically simulating
the lens behaviour in real-time with a low pass filter. The expected drift is then compensated by
tuning the lens current accordingly (see fig. 17b)9.

3.3.3 Lens driver

While the flexibility provided by the tunable lens offers precise control of the trap position, correcting
for the thermal effects is not straightforward to implement.

9This trick can only be applied for reasonably low intensity (large beam size on the lens w = 3 mm and low power
P < 10 W). A discussion with Péter Juhász from Oxford indicates that for larger power (P = 30 W) the lens is
highly distorted by thermal lensing and the beam no longer has a gaussian profile. This limits the use of this tunable
lens to shallow traps where thermal lensing remains a small effect.
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(a) Influence of thermal lensing on the trap position.
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(b) Current compensation of thermal lensing.
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Figure 17: Thermal lensing. The measurements replicate a typical experimental sequence with the
high power laser being periodically turned on and off.

In order to simplify the control of the lens for the experiment, I designed an electronic driver10

that can be used as a black box to provide an accurate control over the position of the trap while
hiding the nuisance of the thermal effects compensation.

Below is a quick description of the working principle of the lens driver (see fig. 18). A detailed
description of the critical parts and a complete schematic of the system can be found in appendix D.

The tunable lens (1) is tightly encased in an aluminium bloc (2) such that there is good thermal
contact between the two parts. With this the temperature fluctuations of the lens is passively
reduced.

10I designed the lens driver schematic as shown in appendix D, but the routing of the pistes and actual build of
the board was done by Dr. Stephen Topliss, electronics technician in the MBQD group.
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Figure 18: Diagram of the control electronics for the tunable lens.

In addition, the temperature of the lens is actively controlled to remain constant. A peltier
module (3) uses an electric current (between ±2 A) to transfer heat from the bloc (2) to a thermal
sink (4). The current flowing through the peltier is generated by a voltage-controlled current source
(6). A PID loop (5) reads the lens temperature and adjust the current to try to maintain the
temperature.

The current ramp, corresponding to the trap position trajectory, is uploaded via an Ethernet
connection (7) to the driver. The digital sequence is stored in the microcontroller memory (8) until
a signal triggers the sequence. The digital current is transmitted through a galvanic isolator (9)
to a precision digital-to-analogue converter (DAC) (10). The isolator prevents the noise from the
microcontroller to be transmitted to the analogue part which would otherwise be transmitted to
the atoms. This drives a precision low-noise current source (11) that controls the current in the
lens coil and is used to change the curvature of the tunable lens. The lens coil must be driven by
a current source and not just by a power voltage source. Indeed, as the lens coil heats up because
of the current, its resistance will change, causing the current to change if the voltage was hold
constant. This is a different effect than the expansion of the fluid when the lens is hot. It happens
in milliseconds and must also be taken into account to have a high control over the trap position.

A digital correction happens in the microcontroller to remove thermal effects that have an
undesired influence on the tunable lens. Even if the lens temperature is roughly constant thanks to
the PID loop (5), the remaining temperature fluctuations are accounted for by slightly tuning the
current to negate the temperature change (12).

The same scheme is used to remove the thermal lensing effect that occurs when a high power
beam is shone through the tunable lens. The intensity of the laser is sampled by a photodiode
placed behind a back-polished mirror. The intensity of the light is converted to a digital signal and
the microcontroller will simulate in real time the effect of the intensity change on the trap position.
This is simply done by passing the signal through a low pass numeric filter whose coefficients are
chosen to replicate the effect of thermal lensing. The resulting signal is subtracted to the expected
trap position to compensate for thermal lensing.

While the driver might seem to complicate the control of the lens, it actually provides transparent
control of the trap position to the timing computer in charge of the experiment. With this, it is
possible to abstract the tunable lens as a perfect component able to impose arbitrary trajectories
to the trap position zc(t).
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4 Transport dynamics

With the technical limitations solved, we can now focus on the physics of transport itself. At the
time of writing, it was possible to load the cloud into the transport trap in the cooling chamber.
In order to have an enlightened attempt at transport, it is worth investigating some questions
concerning its dynamics and see if any prediction can be made to get the best performances from
this scheme :

• What is the minimal time for transport with atoms remaining in the trap ?

• Will transport increase the temperature of the cloud ?

• Are there some trajectories for the trap position that are better than others ?

4.1 Harmonic approximation
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Figure 19: Harmonic approximation (in red)
of the true potential (in black).

A simple approach to get a first understanding is to
approximate transport dynamics by a single classi-
cal particle evolving in a moving harmonic 1D trap :

H(t) =
pz

2

2m
+
mωz

2

2
[z − zc(t)]2 (14)

and

ż =
∂H

∂pz
ṗz = −∂H

∂z
(15)

Here z is the position of the particle along the
transport axis. pz is its momentum. zc(t) is the
trap center position, starting in the cooling cham-
ber z = 0 at t = 0 and arriving in the science
chamber z = D = 50 cm at t = tf . There
is an infinite number of functions zc(t) satisfying
the at the endpoints and we should chose the one
that minimises heating and spilling during trans-
port.

For a given trap profile zc(t), it is possible to calculate the energy increase of the particle after
transport. It is the amplitude of the Fourier transform of the trap trajectory :

∆E = H(tf )−H(0) =
m

2
ωz

4

∣∣∣∣
∫ tf

0
zc(t)e

iωztdt

∣∣∣∣
2

(16)

This should be understood as follows : after transport, particles might not be at rest at the
trap bottom, but there could be some remaining oscillations around the trap center. If the en-
ergy of the oscillations ∆E is larger than the trap depth U0, there is obviously a problem and the
cloud has been lost during transport because the trap was moving too fast for the atoms to follow.
Even if ∆E < U0, this excess energy will be converted to heat through collisions and it will increase
the temperature of the cloud. Therefore, there is interest in choosing zc(t) in order to minimise ∆E.
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A first simple solution is adiabatic transport. That means moving the atoms so slowly that
the cloud stays at the bottom of the trap at all time and and there are no excitations of the cloud
motion in the moving referential of the trap. With this approach, the exact profile of the acceleration
doesn’t matter and it is resilient to experimental imperfections. The question here is, what does
slowly means and is it compatible with the lifetime of cold atoms in a vacuum chamber ? A simple
dimensional analysis tells us that transport is adiabatic when the following condition is fulfilled :

tf > tad =
2π

ωz

(
D

zR

)α
(17)

Dimensional analysis alone is not able to determine the unknown exponent α. The issue then comes
from the large value of D/zR. For example, with α = 1/2, tad = 2 s but for α = 2, tad = 1200 s.
One value is compatible with experimental conditions, but the other is not.

At this point, it is unclear if adiabatic transport is a good option in our case, but a second
solution could allow to bypass condition 17. This method is non-adiabatic driving and consists in
finding some specific acceleration profiles zc(t) that don’t satisfy the adiabaticity condition but are
such that the sum of the phases in ∆E cancels. Such trajectories excite oscillations of the cloud
center of mass during transport, but when the motion comes to a stop, the cloud will be remapped
to its inital configuration. A variety of theoretical approaches has been considered for harmonic
transport where calculations can be fully written down (see for example [TInC+11] for a summary).
For the harmonic approximation, it has been shown that ∆E can be cancelled by careful tuning of
zc(t) for any travel distance D and duration tf .

The issues with this method come when trying to implement it on the experimental side. Equa-
tion 16 provides accurate predictions when the trap is close to parabolic [CKRGO08], but in our
case, the harmonic approximation seems to be limited (see fig. 19). Trying to take anharmonicity
into account for exact calculations can become quickly untractable and provides little to no insights
on how to chose optimal trajectories11.

There is another limitation with this method. Indeed equations 14 and 15 are fully reversible
and don’t take into account any dissipation in the cloud itself. If the timescale of collisional damping
is close to the duration of transport, it could change the predictions made before.

In addition, robustness to experimental unknowns is also an import limiting factor. Maybe we
could try to find the perfect trajectory zc(t) to have no heating, either with careful calculations or
by trial-and-error on the experiment. But what would happen is some of the parameters change a
bit over time, by a few percents or so ? If the trajectory is over-optimised but not robust to change,
it could cause transport to become unreliable over time.

All these reasons might explain why non-adiabatic driving is not a preferred solution for actual
experiments, despite its theoretical appeal.

4.2 Transport simulations

4.2.1 Boltzmann equation

The previous harmonic approach fails to give quantitative predictions for the viability of atomic
transport in our case. In order to move forward and to have realistic numbers for this situation, a
more accurate model needs to be used.

Boltzmann’s equation is the tool of choice for this situation as it allows to consider the exact
shape of the potential and to take collisional relaxation into account. It has been proven to be a

11For example, appendix B of [TInC+11] attempts such a calculation for the optical transport problem.
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successful description for cold atoms experiments [WBB11] were quantum effects are not predomi-
nant12.

Boltzmann’s equation describes a collection of interacting classical particles which are oscillating
in the moving potential of the laser field. It provides a way to evolve the phase-space density
function f(r,p, t) :

∂f

∂t
+ {f,H} = Icoll[f ] (18)

The second term on the left hand side describes the evolution of particles in the potential of the
laser beam :

{f,H} =
∂f

∂r
· ∂H
∂p
− ∂f

∂p
· ∂H
∂r

with H(r,p, t) =
p2

2m
+ U

(
x, y, z − zc(t)

)
(19)

This allows the exact form of the potential to be considered, if only to take into account the
finite trap depth. Its expression is given by equations 8 and 10.

The term on the right side Icoll[f ] is the collision operator. An explicit expression can be found
in appendix C. It describes how particles at the same position are scattered in and out of their
momentum state through collisions. It is necessary to take collisions into account, because the time
between two collisions for one particle is of the order of tens of milliseconds, which is small compared
to a transport duration of seconds13.

4.2.2 Numerical simulation

While this equation is a more realistic description of transport, it is no longer possible to perform
calculations by hand. In order to get data for transport, I developed a numerical simulation for
solving this equation14. It uses the Direct Simulation Monte-Carlo method (DSMC) [Bir94]. This
technique is close to the real behaviour of atoms in the cloud. It evolves test particles in the potential
of the laser and then randomly scatters pairs of particles if they are close enough. These two steps
are done for a timestep much smaller than the collision time and can be used for simulating cold
atoms. A more detailed description of the method and its implementation for this project can be
found in appendix C.

These simulations involve about 105 ∼ 106 interacting particles and are computationally ex-
pensive. This is why I decided to have the code run on graphics processing unit (GPU) using the
CUDA toolkit. It allows us to run thousands of independent threads in parallel on the GPU and
result in a significant speed-up in this case15. Sweeping through an experimental parameter still
requires to perform several runs and in this case, calculations were performed on a cluster of 8 GPUs.

To test if these simulations are any use at all for predicting transport behaviour, they were
compared to simple situations that can be reproduced experimentally. For example, it is possible to
examine the expansion of the cloud in the transport beam after release from the hybrid trap. The
initially small cloud will expand in the axial direction and will thermalise in a hundred milliseconds

12The system can be described classically because the phase space density $ ∼ 10−2 is much smaller than 1.
13The collisional rate for one particle is Γ = n0vthσ where n0 ∼ 1013 atoms/cm3 is the cloud density, vth =√
kBT
m

∼20 mm/s is the thermal speed and σ = 8π × (5.7 nm)2 is the cross-section for the collision considered (here
s-wave for 87Rb)

14Complete sources for these simulations are available at https://github.com/damienBloch/cuDSMC.git
15From hours per simulation to tens of minutes.
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(see fig. 20). The results proved to be in good qualitative agreement with the experiment, even if
more care should be taken in determining parameters (atoms number, temperature, ...) in order to
get the most accurate results.

(a) (b)

Figure 20: Expansion of the cloud in the transport beam. Each line is a snapshot of the cloud at
a different time. (a) Experimental pictures. (b) Simulation of a cloud of 4 × 106 atoms of 87Rb
initially at 25 µK. For this data set, the waist is w0 = 70 µm, which explains why the cloud is so
large.

These simulations were particularly useful to understand the impact of collisional damping. It
severely affects the quadrupole mode of the cloud when its size changes. Instead of a periodic
breathing after release from the hybrid trap, the vapour simply expands and thermalises. However,
the effect of collisions is reduced for transport itself, because even if the center of mass of the cloud
oscillates around the trap center, the relative speed of the atoms doesn’t changes and the cloud is
always close to a local gaussian equilibrium [goZDS99].

4.2.3 Optimal trajectories

Having a tool that provides realistic numbers, it is also now possible to get answers for the viability
of optical transport. For this purpose, I had a look at various acceleration profiles that could be
used for transport.

The easiest profile to try from an experimental point of view is just a linear ramp (see fig. 21a).
Unfortunately, this gives poor results. It seems that the cloud is lost from the trap if the transport
duration is smaller than 5 s. Even for longer ramps, there is substantial heating. This is not too
surprising because this kind of ramp involves infinite acceleration at the beginning and the end. At
these points, the cloud gets kicked away from the trap center and the oscillations will be converted to
heat during transport. Therefore, all the work done during transport will increase the temperature
of the cloud.

This is probably the reason why the demonstrating article [LLM+14] opted for smooth trajec-
tories (see fig. 21b) with a finite linear change for the acceleration. In this case, transport timescale
becomes viable in 2-3 s with no losses. The energy increase exhibits a more complicated pattern
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Figure 21: Influence of the shape of the trap trajectory on transport efficiency and heating. Each
column contains the results for one specific acceleration profile.

with reminiscence of the harmonic behaviour smeared by the trap anharmonicities and collisional
dissipation. This is indeed what Léonard et al observed with a similar timescale.

This result is already enough to prove that optical transport is compatible with our expectations.
It is still worth trying to see if there is any way to improve on it. For example, maybe a trajectory
that minimises acceleration could be better. It would still be smooth but it would reduce the
deformation of the trap shape caused by the inertial force mz̈c(t). The results can be seen on
fig. 21c and are similar to the previous ones. The predictions made by the harmonic approximation
are qualitatively correct. However, their predictive power is limited and the exact pattern for the
temperature highly depends of the exact trap shape.

More interesting is to minimise the jerk ...
z c(t) that indicates the rate of change of the trap shape

due to the inertial force (see fig. 21d). This way the trap change is continuous in time. The cloud
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remains at the instantaneous trap bottom at all times and no dynamics are induced. As can be seen,
it is not detrimental to the timescale for transport but removes the ripples in the energy increase
for durations larger than 2 s. This approach is also resilient to small changes in the system and
doesn’t strongly depend of the exact shape of the potential or of the trajectory. It appears that it
could be a satisfactory solution for the problem considered.

The last trajectory seems to be fairly similar to the definition of adiabatic transport. It is also
quite surprising that trajectory 21d is adiabatic for durations tf larger than 3 s, but that trajectory
trajectory 21a is not, even for tf larger than 20 s.

4.3 Adiabatic transport
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Figure 22: Evolution of the adiabatic time tad
depending on the smoothness of the trajectory
for the experiment considered.

The previous results can be summarised by hav-
ing a proper definition for adiabaticity in the
case of harmonic transport. A possible definition
is :

The evolution of a system is adiabatic if there
are no energy excitations (∆E � U0) when the
change applied to the system is slow compared to
its dynamics (tf � 1/ωz).

Let us apply this definition to expression 16. For
this purpose, only the behaviour of the decaying
envelope of ∆E for large tf matters and the exact
shape of the oscillations is not taken into account.

The Paley-Wiener theorem relates the decay of
the Fourier transform of zc(t) when ωz →∞ to the
smoothness of zc(t). Let us define n to be the small-
est integer such that dnzc

dtn presents a discontinuity.
This is the number of times it is possible to derive
zc(t) without issues. For example, n = 1 for trajec-
tory (a), n = 2 for (b) and (c), and n = 3 for (d).
With this, the Paley-Wiener theorem states :

∣∣∣
∫ tf

0
zc(t)e

iωztdt
∣∣∣ < tf

ωzn
max

∣∣∣d
nzc

dtn

∣∣∣ as ωz →∞ (20)

For slowly changing trajectories, a reasonable value for dnzc
dtn is D

tfn and we can replace this in
the previous expression. Putting everything together in the adiabatic condition ∆E � U0 yields
the explicit adiabatic condition for tf :

tf > tad =
2π

ωz

(
D

zR

) 1
n

(21)

The adiabatic timescale for optical transport depends on the smoothness n of the trajectory
considered. tad is plotted in figure 22 for our trap parameters.

With this, it is possible to understand the previous results. For n = 1, tad is large, of the order
of several tens of seconds. But when n is increased to 2, the coefficient (D/zR)

1
n is not so large and
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adiabatic transport is suddenly a viable option for us. Increasing n to 3 still gives some benefits,
but nowhere comparable as before. For even larger values of n, tad quickly levels off to 2π/ωz and
there is not much point trying to go for larger values of n.

This indicates that adiabatic transport is a satisfactory solution for the Kagome experiment,
assuming that the trajectory is smooth enough. With this it should be possible to transport a cold
cloud of atoms overs 50 cm with virtually no change in atom number or temperature increase.

Conclusion

The aim of this project was to implement a protocol of optical transport for cold atoms with a
tunable lens and to test its viability in regards to the conditions imposed by the Kagome experiment
in the MBQD group.

The technical scheme itself if fairly simple and elegant. It gives the possibility to highly control
the position of an atomic cloud by changing the focus of a red-detuned dipole beam in which the
atoms are trapped. The central component is a tunable lens that can achieve large displacement
in short times and with no moving mechanical pieces. However, the main technical limitations also
come from the lens itself. Indeed, thermal effects affecting the lens can cause the trap position to
drift over time in an unacceptable range. Fortunately, these effects are always reproducible. It is
therefore possible to predict them in advance and use feed-forward techniques to reduce them to a
tolerable level.

Regardless of the actual implementation, a major question that needed answering is how fast
atoms can be transported without spilling out of the trap or being heated. A careful analysis of
the condition for adiabaticity in a harmonic trap shows that it highly depends on the smoothness
of the acceleration profile. When the trap trajectory is highly regular, the cloud can indeed be
displaced by several tens of centimetres in a couple of seconds, which is acceptable. This theoretical
prediction was also compared to a more realistic approach. Using numerical simulations it is possible
to incorporate complicated real-life effects like collisions of finite-trap depth. The results of the
calculations validate the previous hypothesis and confirm that optical transport can be successfully
applied to this experiment.

Because of the covid-19 situation, it was not possible to fully complete the project and actually
transport a cloud to the science chamber. The next steps in this regards will be to compare the
predictions made to experimental data and test transport over large distances. It would be partic-
ularly interesting to see if the shape of the trajectory has such a large influence on the performance
of transport.
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A Kagome band structure

A
B

Ca1

a2

Figure 23: Kagome geometry with its lattice vec-
tors a1, a2 and the basis sites A, B, and C in each
unit cell (gray).

Even if solving the full Hubbard Hamiltonians is
too difficult, one can expect that they have an in-
teresting behaviour based on the non-interacting
picture, i.e. when only considering hoping be-
tween sites in the tight-binding model.

To calculate the band structure of the
Kagome lattice for single particle, it is useful to
define the vector (resp. its hermitian conjugate)

b̂i,j =




b̂i,j,A

b̂i,j,B

b̂i,j,C


 (22)

which annihilates (resp. creates) a particle on
the sites A,B or C of the primitive cell located at
Ri,j = ia1 + j a2.

With this, the tight-binding Hamiltonian can
be simply expressed by looking at the adjacency
of the sites :

ĤTB = −t
∑

i,j

b̂†i,j




0 1 1
0 0 1
0 0 0


 b̂i,j + b̂†i−1,j




0 0 0
1 0 0
0 0 0


 b̂i,j

+ b̂†i,j−1




0 0 0
0 0 0
1 0 0


 b̂i,j + b̂†i+1,j−1




0 0 0
0 0 0
0 1 0


 b̂i,j + h.c. (23)

Having defined this, a useful tool is its reciprocal representation in the Brillouin zone :

b̂k =
1√
N

∑

i,j

eik·Ri,j b̂i,j and b̂i,j =
1√
N

∑

B.Z.

e−ik·Ri,j b̂k (24)

Converting to the pseudo-momentum representation by replacing b̂i,j with the expression above,
the Hamiltonian has a much simpler form that is now straightforward to diagonalize :

ĤTB = −t
∑

B.Z.

b̂
†
k




0 1 + eik·a1 1 + eik·a2

1 + e−ik·a1 0 1 + eik·(a1−a2)

1 + e−ik·a2 1 + e−ik·(a1−a2) 0


 b̂k (25)

The three energy bands are the eigenvalues of the previous matrix :

E0(k) = 2t (26)

E±(k) = −t
(

1±
√

3 + 2 [cos(k · a1) + cos(k · (a1 − a2)) + cos(k · a2)]
)

(27)
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B ABCD matrices calculations

Paraxial gaussian optic can be described using the formalism of ABCD matrices. With this ap-
proach, the electric field of a gaussian beam is parametrised as follow :

E(x, z) = <
(
e−iπx

2/q(z)λei(ωt−kz)
)

(28)

Here q(z) is the complex beam parameter :

1

q(z)
=

1

R(z)
− iλ

πw(z)2
(29)

with R(z) the curvature at the beam at a point z of the optical axis and w(z) is the beam transverse
size. q(z) contains all the information to describe a gaussian beam.

The advantage of this formulation is that it is easy to propagate the beam parameter through
an arbitrary optical system described by a matrix ABCD. If the beam parameter at the input of
the system is q1, the beam parameter at the output is :

q2 =
Aq1 +B

Cq1 +D
(30)

The ABCD matrix of a system is the product of the matrices of its constitutional components.
For example, the matrices for propagation in free-space by a distance d or through a lens of focal
length f are respectively :

Π(d) =

[
1 d

0 1

]
and Λ(f) =

[
1 0

−1/f 1

]
(31)

This can be applied to the optical transport scheme. It is described in section 3.1 and simply
consists of the tunable lens of optical power p followed by a fixed lens of focal length f at distance
d. To show that this setup should behave as expected, we can calculate the ABCD matrix of this
system :

M = Λ(f)Π(d)Λ(1/p) (32)

Once this is done, we know the trap waist w0 for an incoming collimated beam of size wi :

w0 =

√
f2λ2wi2

λ2(d− f)2 + π2wi4[1 + p(f − d)]2
(33)

In order for w0 to be independent of the optical power p of the focus tunable lens, we must have
d = f and in which case we indeed have :

w0 =
λf

πwi
and zc = f(2− fp) (34)

The trap at the position zc can be translated in block without having its shape changed.
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C Direct Simulation Monte-Carlo

C.1 Method overview

This section is a brief summary of the Direct Simulation Monte-Carlo (DSMC) calculations. More
details about the method or its implementation can be found for example in [Bir94], [Gol14] or
[WBB11]. This technique is used as a numerical approximation to Boltzmann equation :

∂f

∂t
+ {f,H} = Icoll[f ] (35)

The term on the left is described in section 4.2.1. Icoll[f ] is the collision operator which can be
written down as :

Icoll[f ](p1) =
σ

m

∫
d3p2

∫
d2Ω|p1 − p2| [f(r,p∗1)f(r,p∗2)− f(r,p1)f(r,p2)] (36)

It describes how two particles of momentum p1 and p2 and at the same position are scattered to
end up in momentum p∗1 and p∗2. The new momenta are constrained by total momentum and energy
conservation. These relations can be parametrised with Ω, the solid angle formed by the incoming
and outgoing relative momenta. Here only s-wave collisions are considered for 87Rb as higher order
collisions are prohibited at low temperature. σ = 8πa0

2 is the cross-section with a scattering length
a0 = 5.7 nm.

A mathematical treatment of this operator is cumbersome and the numerical implementation
can in some sense be easier to understand. It consists in approximating the continuous phase-space
density f(r,p, t) by a set of NT particles of position ri(t) and momentum pi(t) :

f(r,p, t) ' α
NT∑

i=1

δ (r− ri(t)) δ (p− pi(t)) (37)

Here α = NP /NT is the number of physical particles NP per simulation particle. The method differs
from molecular dynamics as there can be several atoms (here between 10∼100) per test particle.

For each timestep, the particles are evolved according to the external potential and also undergo
collisions.

C.2 Advection

One step in the DSMC method is to move the particles according to the potential of the laser. This
is were parallel architecture particularly shines as each particle can be simulated independently of
the others. For each particle that consists in solving Hamilton equations for a small timestep ∆t :

dri
dt

=
pi
m

dpi
dt

= F(ri, t) (38)

This is a common numeric problem, but there are some difficulties that comes from the shape of
the trapping potential. We only care about the dynamics on the timescale of the transport and the
axial frequency (∼ 5 Hz). However there is a strong force on a much smaller timescale (∼ 800 Hz)
in the radial direction. This is known as a stiff problem : the timestep must be much smaller than
the minimal timescale for explicit integration, which is prohibitive. One way to solve this is with
the following method [ZS97] :
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r
n+1/2
i = rni +

∆t

2

pni
m

(39)

ṗ
n+1/2
i = F

(
r
n+1/2
i + λ∆t2

ṗ
n+1/2
i

m

)
(40)

pn+1
i = pni + ∆t ṗ

n+1/2
i (41)

rn+1
i = r

n+1/2
i +

∆t

2

pn+1
i

m
(42)

This method is symmetric in time and if there is no time dependence in the force, it conserves
energy, which is crucial in this case. The second step is an implicit equation for λ 6= 0 and is solved
with a couple iterations of Newton method. It allows to consider a larger timestep ∆t that would
otherwise be unstable for explicit methods.

C.3 Collision
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Figure 24: Simulated evaporation in the crossed
dipole trap. Atoms are more likely to leave the
trap along the arms were the depth is lower.

The characteristic step for the DSMC technique
is the collisions handling. For this, space is dis-
cretised in cells containing only a couple tens of
particles each. See for example figure 24 were
the atom density is higher in the center of the
crossed dipole trap, requiring a smaller grid size.

Then each cell is assumed to have an uni-
form density and will treat the collisions for the
particles it contains. For one cell of volume ∆V ,
the probability for two particles i, j to collide is :

Pi,j = ασ
∆t|pi − pj |

∆V m
(43)

Each couple of particles (i, j) in the cell is
randomly tried for collisions with probability
Pi,j . If a collision is accepted, the momenta of
the particles is evolved as follow :

pi →
pi + pj

2
+ Ω
|pi − pj |

2
(44)

pj →
pi + pj

2
−Ω
|pi − pj |

2
(45)

where Ω is a random unit vector.
For a large number of particles, this step is an approximate solution to the evolution ∂f

∂t = Icoll[f ]
for hard-sphere collisions.

Concerning the actual parallel implementation, the particle array is sorted using a z-ordering
curve such that it is easy to access the particles contained in each cell. A grid of blocks corresponding
to the spatial grid is launched. Each block will load the momenta of its particles in fast shared
memory so that threads can perform collision calculations without having to access global memory.

While the adaptive grid might seem to be ill-suited for parallel architectures, for the situations
considered, it was not the bottleneck with only about 30% of the total time. The rest of the
simulation is spent evolving particles in the external potential.
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D Lens driver

In this appendix, some details about the lens driver circuits are summarized.

D.1 Basic current source

Besides the microcontroller, there are also two current sources. These parts are easy to build with
discrete components and this approach gives more flexibility than with built-in parts. The current
source (6)16 for the peltier module needs a symmetric output between ±2 A. There is no particular
specification for noise or accuracy, therefore it is readily implemented with the circuit from figure 25.

VI
RL

RS

I=VI/RS

1Ω

OPA548

Figure 25: Basic current source

It consists of a high current operational am-
plificator (OPA548) that sets its output such that
the potential difference between its two inputs is
null. In order for this to be true, the voltage
drop developed on a sense resistor RS (1 Ω, 25
W ) needs to be the same as the command volt-
age VI . Because the sense resistor is in serie with
the load RL (here the Peltier module) and the in-
verting input of the op amp doesn’t draw any cur-
rent, the same current is going through RS and
RL.

While being really simple, this current source works quite well and provides a current that is
accurate to the milliampere scale. This kind of accuracy is however not enough for the current
source (11) driving the lens coil because a change of 1mA corresponds to a position change of
about 6mm.
There are several reasons for this error in the current. The op amp used needs to have a high
output current, but this comes with a large input offset voltage drift and a high voltage noise. Also
the sense resistance RS changes with temperature which would cause the current to drift after a
prolonged use. One last issue is that there is a voltage difference between the ground to which VI is
measured and the return ground for the current I to which the voltage drop over RS is measured.
This difference is due to the high return current that induces IR voltage drop in the traces it is
going through. All these factors adds up to limit the precision reached on the current and need to
be corrected for the current source driving the lens coil.

16Numbers refer to figure 18.
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D.2 Precision current source

Improving on the previous design, it is possible to build a current source that is suitable to control
the tunable lens (see fig. 26).

DAC

The DAC converter for controlling the current source is an external integrate component U1 that
is isolated from most of the noise form the microcontroller by a galvanic isolation U2. This allows
to have two different grounds, an analogue GND2 and a digital one GND1. Therefore it doesn’t
matter if the digital ground has some voltage jumps when the microcontroller switches its outputs.

The microcontroller U1 is a precision 16 bits DAC. It outputs a voltage VOUT = VREF ×D/216,
where D is a 16bits digital signal transmitted from the microcontroller and VREF is a +2.5V
reference from an external regulator U3. The input impedance for the reference voltage and the
ground of the DAC depends of the output voltage that is asked. To prevent this from having a
negative influence on the DAC precision, the +2.5V reference voltage and the ground reference are
buffered with op-amps U4 and U5.

The DAC output voltage is buffered and symmetrised in the range ±2.5V with an external
op-amp U6. C2 and C3 are just here to low-pass filter the output with a critical frequency of 1kHz.
This op-amp produces a command voltage VI that is used to drive the analogue current source.

Current source

This current source can be understand as a PID controller (PI2 in this case) with a transfer
function A = A1A2. This controller forms a feedback loop when it is closed with an element β
that measures the current going through the tunable lens coil. This way, the control element A1A2

outputs whatever is needed to set the difference between the control voltage VI and the output of
β to 0.

In the β block, the current is again measured by placing a sense resistor RS in serie with the
lens. In this case however, RS is a precision power resistor (Y092610R0000T9L) with a low temp
coefficient. The voltage drop is measured with an instrumentation amplifier U9 (INA821). The
negative lead of the in-amp is on the high side of RS to have an overall negative feedback when
the loop is closed. The A1 and A2 blocks act as one effective op-amp. It can provide high output
current with the power op-amp U8 at the output, but it also has low noise and drift when it is
placed in a feedback loop because the input is a high precision op-amp U7. This way, only the noise
from U7 and U9 matters and this can be made low.

Frequency response

One complication is the frequency dependence of the feedback network when we look at the
time response of the system. The DC behaviour can be understood by ignoring the components
C4 , C5 , R5 and R8. However, if they are removed, the inductance of the lens coil LOPT will form a
low pass filter and create a resonance with the active parts. This will cause the circuit to behave
as an oscillator, which is obviously unwanted. This problem happens if a sine wave of frequency
ω is amplified by a factor greater and gets a phase shift of 180◦ after going through the amplifier
A1A2 and the return network β. To prevent this, the open loop gain A1(ω)A2(ω)β(ω) must have a
modulus smaller than 1 when the phase shift is higher than 180◦. This is a theoretic criteria and
a rule of thumb for stability in practice, is that the gain |A1A2β| must be smaller than 1 when the
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Figure 26: Improved current source
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phase shift is higher than 145◦. This gives a bit a room to accommodate for the unknowns in a real
circuit. Furthermore this criteria has a nice graphical interpretation : in a Bode plot, the 1/β gain
must cross the A1A2 curve with a 20dB/decade rolloff.

Figure 27 is the Bode plot of the open-loop response of the circuit. The op-amp U7 and U8

behaves each as a PI controller so A1A2 is a PI2 controller with reaction feedback adjusted so that
the blue and red curves cross at 20dB/decade. The tick lines are piecewise approximations that I
used to calculate C4, C5, R5, R8 to have the desired behaviour and the dashed lines are SPICE
simulations.
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Figure 27: Open-loop Bode diagram of the current source
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D.3 Schematic
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