Skip to content
Udacity Self-Driving Car Nanodegree: programming a self-driving car
Branch: master
Clone or download
Pull request Compare This branch is 2 commits ahead, 2 commits behind udacity:master.
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
data
imgs
ros
.gitignore
Dockerfile
LICENSE
README.md
requirements.txt

README.md

This is the project repo for the final project of the Udacity Self-Driving Car Nanodegree: Programming a Real Self-Driving Car. For more information about the project, see the project introduction here.

Please use one of the two installation options, either native or docker installation.

Native Installation

  • Be sure that your workstation is running Ubuntu 16.04 Xenial Xerus or Ubuntu 14.04 Trusty Tahir. Ubuntu downloads can be found here.

  • If using a Virtual Machine to install Ubuntu, use the following configuration as minimum:

    • 2 CPU
    • 2 GB system memory
    • 25 GB of free hard drive space

    The Udacity provided virtual machine has ROS and Dataspeed DBW already installed, so you can skip the next two steps if you are using this.

  • Follow these instructions to install ROS

  • Dataspeed DBW

  • Download the Udacity Simulator.

Docker Installation

Install Docker

Build the docker container

docker build . -t capstone

Run the docker file

docker run -p 4567:4567 -v $PWD:/capstone -v /tmp/log:/root/.ros/ --rm -it capstone

Port Forwarding

To set up port forwarding, please refer to the instructions from term 2

Usage

  1. Clone the project repository
git clone https://github.com/udacity/CarND-Capstone.git
  1. Install python dependencies
cd CarND-Capstone
pip install -r requirements.txt
  1. Make and run styx
cd ros
catkin_make
source devel/setup.sh
roslaunch launch/styx.launch
  1. Run the simulator

Real world testing

  1. Download training bag that was recorded on the Udacity self-driving car.
  2. Unzip the file
unzip traffic_light_bag_file.zip
  1. Play the bag file
rosbag play -l traffic_light_bag_file/traffic_light_training.bag
  1. Launch your project in site mode
cd CarND-Capstone/ros
roslaunch launch/site.launch
  1. Confirm that traffic light detection works on real life images
You can’t perform that action at this time.