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Abstract

In this work, we explore the adaptability and
performance of the Vision-and-Language Trans-
former (ViLT) (Kim et al., 2021) when applied to
a novel dataset and task. ViLT is a minimal VLP
(Gan et al., 2022) model that simplifies the pro-
cessing of visual inputs in a convolution-free man-
ner, addressing challenges related to efficiency
and expressive power found in traditional VLP
models. We modify the existing ViLT model
and its codebase for Visual Question Answering
(Antol et al., 2015) on the GQA dataset, diverg-
ing from its original application on the VQAv2
dataset (Goyal et al., 2017). Our adjustments facil-
itate training and evaluation on the GQA dataset
(Hudson & Manning, 2019), yielding an over-
all accuracy of 72.93% and a binary accuracy of
76.44%. Although direct comparison between
the datasets is not appropriate, our work demon-
strates the flexibility and potential of the ViLT
model for various vision-and-language tasks. Our
modified ViLT code, tailored for the GQA dataset,
is available for further exploration and develop-
ment, offering valuable insights into the model’s
potential in different contexts.

1. Introduction
Vision-and-Language Pre-training (VLP) has rapidly ad-
vanced the state of the art in various joint vision-and-
language downstream tasks. The recent emergence of
Transformer-based architectures (Vaswani et al., 2017), such
as BERT (Devlin et al., 2019), GPT (Radford et al., 2019),
and ViT (Dosovitskiy et al., 2021), has revolutionized the
natural language processing and computer vision domains,
demonstrating impressive results across a wide range of
tasks. However, traditional VLP models often depend on
image feature extraction processes (Kumar & Bhatia, 2014),
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involving region supervision and convolutional architec-
tures such as InceptionNet (Szegedy et al., 2015), VGG
(Simonyan & Zisserman, 2014), ResNets (He et al., 2016),
leading to challenges in efficiency and expressive power.

In this context, the Vision-and-Language Transformer
(ViLT) was introduced as a minimal VLP model, designed
to address these limitations. ViLT simplifies the processing
of visual inputs by employing a convolution-free approach,
similar to how textual inputs are processed. This monolithic
model leverages the Transformer architecture, successfully
applied in various natural language processing tasks, and
extends it to the visual domain. Consequently, ViLT of-
fers improved efficiency and expressive power compared to
traditional VLP models.

We chose to work with ViLT due to its potential for adapt-
ability and generalization, as well as its promising perfor-
mance in the original paper. Moreover, its streamlined archi-
tecture and the availability of pre-trained weights and code
made it an attractive choice for our investigation. The orig-
inal implementation of ViLT focused on Visual Question
Answering (VQA) using the VQAv2 dataset, showcasing
its capability to handle complex vision-and-language tasks
effectively.

In this project, we explore the application of ViLT to the
GQA dataset, a large-scale dataset for real-world visual rea-
soning and compositional question answering. The GQA
dataset provides a unique challenge due to its emphasis on
spatial and relational reasoning, as well as multi-step infer-
ence, making it a suitable testbed for ViLT’s adaptability
and performance.

Our primary goal is to modify the existing ViLT model and
its codebase to perform Visual Question Answering on the
GQA dataset. By making necessary adjustments to the code,
we enable the model to train and evaluate on this new dataset,
assessing its performance and potential improvements. In
addition, we aim to provide valuable insights into the ViLT
model’s capabilities and limitations, and offer suggestions
for future research directions.

This project contributes to the growing body of research
on vision-and-language tasks, demonstrating the adaptabil-
ity and potential of the ViLT model for a wide range of
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applications. Our work not only showcases the model’s
performance on the GQA dataset but also highlights the im-
portance of developing flexible and efficient VLP models for
tackling complex, real-world problems in the intersection
of computer vision and natural language processing.

2. Related Work
MDETR (Kamath et al., 2021) is a modulated detection sys-
tem built on the DETR architecture, which is an end-to-end
object detection model that uses a convolutional backbone
followed by a Transformer Encoder-Decoder. The model is
designed for tasks like referring expression comprehension,
segmentation, visual question answering, and phrase ground-
ing. MDETR takes advantage of the pre-trained transformer
language model for text encoding and projects both image
and text features into a shared embedding space. MDETR
can handle multiple tasks, making it a versatile solution for
visual question answering and other related tasks. The use of
a pre-trained transformer language model for text encoding
allows MDETR to leverage the power of language mod-
els in understanding the text inputs effectively. However,
MDETR relies on a heavier convolutional backbone and a
separate Transformer Encoder-Decoder, unlike ViLT, which
has a more lightweight and unified approach to handling
visual inputs. Moreover, MDETR’s architecture might be
relatively more complex, as it includes modality-dependent
linear projections and a joint transformer encoder.

The LXMERT (Learning Cross-Modality Encoder Repre-
sentations from Transformers) (Tan & Bansal, 2019) paper
presents a model that aims to learn joint representations
of images and text through a transformer-based architec-
ture. The LXMERT model consists of separate encoders for
visual and textual modalities, as well as a cross-modality en-
coder that combines the output of the two modality-specific
encoders. Both LXMERT and ViLT are designed for tasks
involving visual and textual inputs, such as visual question
answering. However, their approaches to handling these
inputs differ significantly. ViLT simplifies the processing
of visual inputs using a minimal visual embedding pipeline,
making it more lightweight and computationally efficient.
In contrast, LXMERT employs separate encoders for visual
and textual modalities, which can result in a more com-
plex architecture and increased computational requirements.
Yet LXMERT has demonstrated strong performance in the
domain of VQA. ViLT’s simplicity and efficiency make it
well-suited for real-world applications, while LXMERT’s
rich cross-modal representations can enable it to excel in
tasks that require a deep understanding of both visual and
textual information.

ViLT aims to simplify the processing of visual inputs by
adopting a convolution-free approach similar to the one
used for processing textual inputs. This results in a more

lightweight and computationally efficient model compared
to other vision-and-language models. By leveraging the
Vision Transformer architecture and pre-training on large-
scale datasets, ViLT achieves competitive or better perfor-
mance on downstream tasks, such as VQA, compared to
previous VLP models. In the VQAv2 dataset, ViLT has
shown strong performance in the visual question answer-
ing task. Its simplified architecture and unified approach
to processing visual and textual inputs make it well-suited
for real-world applications, offering a more computation-
ally efficient alternative to more complex models. While
ViLT’s simplified architecture has its benefits, it may not
capture certain complex cross-modal relationships as ef-
fectively as models with separate encoders for visual and
textual inputs, like LXMERT. ViLT’s reliance on the Vi-
sion Transformer architecture, which was initially designed
for image classification tasks, might not be optimal for all
vision-and-language tasks.

3. Implementation Details
To adopt the ViLT methodology into GQA, the implementa-
tion was modified in each of the steps:

• Preprocessing: The GQA dataset differs from VQAv2
in terms of structure and the number of unique question-
answer pairs. To adapt the ViLT model for GQA, pre-
processing modifications are necessary which include
loading data, tokenizing text inputs, and transforming
images. This also includes handling the differences
in JSON structures and adjusting the model to accom-
modate 1878 unique question-answer pairs in GQA,
compared to 3129 pairs in VQAv2. Data splitting,
batching, and shuffling for different stages of the exper-
iment (training, validation, and testing) are handled.

• Model architecture: The core architecture of ViLT
remains unchanged, as it is based on the Vision Trans-
former (ViT). It unifies the processing of visual and tex-
tual inputs using a minimal visual embedding pipeline.
The model takes in visual and textual embedding se-
quences as input and produces a contextualized feature
sequence as output. The ViT’s weights pretrained on
ImageNet are used in the model. The final model ar-
chitecture is shown in Fig 1.

• Fine-tuning: The model is fine-tuned on the GQA
dataset using a combination of masked language mod-
eling (MLM) and image-text matching objectives. The
text tokens are masked, and the model predicts the
ground truth labels from the corresponding contex-
tualized vector. ViLT utilizes a 2-layer MLP MLM
head, and the MLM loss is computed as the negative
log-likelihood loss for the masked tokens, similar to
BERT’s MLM objective. The model is fine-tuned on
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Figure 1. ViLT Architecture as proposed in the original paper

the GQA dataset for several epochs (e.g., 10 epochs),
with each epoch taking around 3 hours. Validation
checks are performed every 10% of an epoch to moni-
tor the model’s performance and avoid overfitting.

• Hyperparameters: The hyperparameters are adopted
from the VQAv2 implementation. This includes a
learning rate of 1e-4, binary cross-entropy loss, 10
epochs, and a batch size of 32. Validation checks are
performed every 10

• Evaluation: The model’s performance is evaluated on
the GQA dataset, focusing on its effectiveness in the vi-
sual question answering task. Accuracy measurements
are taken for overall accuracy and binary accuracy (for
yes/no questions).

4. Results
Upon fine-tuning the ViLT model with the GQA dataset,
the results exhibited the model’s effectiveness and versa-
tility in addressing visual question answering tasks across
different datasets. With an overall accuracy of 72.93% on
the GQA dataset, the model demonstrated its proficiency in
interpreting and responding to questions related to images.
This performance is notable, as can be seen in Figure 2, con-
sidering the more intricate structure of the GQA dataset and
its distinct set of unique question-answer pairs compared to
VQAv2.

Furthermore, the model achieved a binary accuracy of
76.44% for yes/no questions, emphasizing its ability to
accurately discern and respond to binary queries within
the GQA dataset. The successful adaptation of the ViLT
model to the GQA dataset highlights its flexibility, adapt-
ability, and potential applicability to a wide range of vi-
sual question answering tasks on various datasets. These
outcomes also underscore the advantages of employing a
unified, convolution-free method for processing both visual

Figure 2. ViLT Evaluation Example, with the test question and
model prediction for the provided image.

and textual inputs, contributing to the model’s efficiency
and generalizability.

4.1. Limitations

While the ViLT implementation on the GQA dataset has
shown promising results, it is not without limitations. One
significant constraint is that the model is unable to fully
exploit the more impressive features of the GQA dataset,
such as long answers and contextual information. This may
lead to sub-optimal performance in certain situations where
deeper understanding and reasoning are required. Further-
more, the current implementation may not fully leverage
the rich structure of the GQA dataset, which contains vari-
ous question types and answer choices. This suggests that
there is room for improvement in terms of accuracy and
model robustness. Additionally, the preprocessing and fine-
tuning methods could be further optimized to better adapt
to the unique characteristics of the GQA dataset. Finally,
the computational and time requirements for training and
fine-tuning on GQA remain a challenge, potentially limiting
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its applicability to real-world scenarios and its ability to
scale efficiently.

4.2. Code

The unofficial implementation of the project is available
at: https://github.com/keshavshivkumar/
ViLT.

Conclusion
ViLT demonstrates its adaptability and potency as a model
for vision-and-language tasks, showcasing impressive re-
sults on standard datasets such as VQAv2 and GQA. By
capitalizing on the advantages of transformer architectures
and fusing visual and textual information, ViLT is capable
of handling an extensive array of tasks with remarkable
precision. As the domain of vision-and-language research
progresses, models like ViLT will be instrumental in creat-
ing intelligent systems that can comprehend and deduce the
intricate connections between images and text.
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