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Part 1 Schedule

* Deep Supervised Learning
— Overview [ 30 mins]
— Convolutional Networks [ 30 mins |
— Residual Networks [ 20 mins |

— Large scale training [ 5 mins |



History of Neural Nets

* 15" era (1940s-1960%): Invention

— Connectionism [Hebb 1940’s]: complex behaviors arise from
interconnected networks of simple units

— Artificial neurons [Hebb, McCulloch & Pitts 40’s & 507s]

— Perceptrons [Rosenblatt 50’s]: Single layer with simple learning rule
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History ot Neural Nets

» 20d era (1980’5-1990%): Multi-layered networks

— Back-propagation [Rumelhart, Hinton & Williams 1986 + others]:
effective way to train multi-layered networks

— Convolutional networks [LeCun et al. 1989]: architecture adapted

for images
C3:f. maps 16@10x10
INPUT C1: feature maps S4:f. maps 16@5x5
82x32 c@28x28 S2: f. maps C5: layer
6@14x14 I 20 | Fo:layer OQUTPUT

| Fullconrl.ection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection



The Deep Learning era [2011-present]

* Big gains in performance on perceptual tasks:
— Vision
— Speech understanding

— Natural language processing
* E.g Translation between languages

* Three ingredients:

1. Deep neural network models (supervised training)
*  Closely related to models from 1980’ but much bigger

2. Fast GPU computation
3. Big labeled datasets

* Exciting progress on other Al tasks (e.g. playing Go)



Big Annotated Image Datasets

IMJAAGE |

B - Stanford Vision group [Deng et al. 2009]
| » ~14 million labeled images, 20k classes
B ° Images gathered from Internet
| * Human labels via Amazon Turk

Microsoft + universities [2014]
2 million objects in natural settings
Celnipel0lCeapl®elicd s Human labels via Amazon Turk



Powerful Hardware

* Deep neural nets highly amenable to implementation on
Graphics Processing Units (GPUs)

— Matrix multiply

— 2D convolution

* Latest generation

nVidia GPUs (Pascal)
deliver 10 TFlops

— Faster than fastest computer
in world 1n 2000

— 10 million times faster than 1980’s Sun workstation




Deep Neural Network for Vision

* Krizhevsky, Sutskever & Hinton [NIPS2012]

* 8 layer Convolutional network model [LeCun et al. 89]

* 7 hidden layers, 650,000 neurons, ~60,000,000 parameters
* Trained on 1.2 million ImageNet images (with labels)

* GPU implementation (50x speedup over CPU)
* Training time: 1 week on pair of GPUs
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Deep Learning vs Traditional Approaches
* Traditional Approach

Predicted label:
_— Simple Abacus
Classifier
L : J
Only part

Input Image

that is learnt

* Deep Neural Network

Predicted label:
Abacus

Input Image

I
End-to-end Learning



C
O
)

(C

(@]
Y=

(7))

(V)]
T
O
i)

Q
pd

Q

o]0}

(T
£

ImageNet Performance over time

28.2
25.8

X
S
@)
| -
| -
Q
o
(@R
@)
)

ILSVRC'10  ILSVRC'11



ImageNet Classification

Growth in Model Depth
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152 layers
A
§ /
— /
B 16.4 /
qt) 22 layers |/
N 11.7 I’
o /
S /
6.7 ,
8 layers 3.57

’—
-
— — e - -
———

ILSVRC'10  ILSVRC'11 ILSVRC'12 ILSVRC'13 ILSVRC'14  ILSVRC'15
AlexNet GoogleNet ResNet

5.0

Human



Depth 1s Key

3 layer NN

Hach layer 1s simple non-linear function

Composition of them yields
complex decision surfaces

Can learn very complex invariances

Visualization /‘ r
of features \ .& ‘*-d

in trained
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[Zeiler & Fergus, ECCV 2014]
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He, Zhang, Ren, & Sun. “Deep Residual Learning for Image Recognition”. ICCV 2015.
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He, Zhang, Ren, & Sun. “Deep Residual Learning for Image Recognition”. ICCV 2015.
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Mask R-CNN [He et al. 2017]




Speech Recognition

* Similar jump in performance seen with adaption
of deep learning approaches

24
~ *,\% Technology of 1970s-2010 (GMM-HMM)
S 22 —
5 —é
® 20
; 18 o—_ Technology since 2010 (DNN)
t \
T
1
S 14

12

0 500 1,000 1,500 2,000 2,500

Training Data (hours)

[A Historical Perspective of Speech Recognition, Huang, Baker & Reddy, CACM 2014]



Speech Recognition
* E.g. Baidu’s Deep Speech 2 system [2015]

— Input: spoken speech. Output: text

— 100 million parameters; 11-layer Recurrent Neural
Network model

— English training set: 11,940 hours of labeled speech
data containing 8 million utterances

— Beats humans on 3 of 4 evaluation sets

Read Speech
Test set DS1 DS2 Human
WSJ eval’92 4.94 3.60 5.03
WSJ eval’93 6.94 4.98 8.08

LibriSpeech test-clean ~ 7.89  5.33 5.83
LibriSpeech test-other 21.74  13.25 12.69

Table 13: Comparison of WER for two speech systems and human level performance on read speech.

[ http:/ /arxivorg/pdf/1512.02595v1 .pdf |



http://arxiv.org/pdf/1512.02595v1.pdf

Natural Language Processing

* Recurrent Neural Networks
— [Werbos 1988, Hochreiter & Schmidhuber 1997]

* E.g. Machine Translation

f=(La, croissance, économique, s'est, ralentie, ces, derniéres, années, .)

Enghsh—German BPE-based sub words

+ Monolingual corpus
+ Ensemble
(Sennrich et al., 2015a)

BPE-based sub words
Large Target Vocabulary + Monolingual corpus
+ OOV replacement (Sennrich et al., 2015a)
+ Ensemble
(Jean et al., 2015)

o
N

2575

Translation Quality

(BLEU score)

Syntax-based MT
(Sennrich & Haddow, 2015)
Large Target Vocabulary e e e e
+ OOV replacement

A A A A ALK (Jean et al., 2015)

23.25
BPE-based sub words
(Sennrich et al., 2015)

e = (Economic, growth, has, slowed, down, in, recent, years, .) 29

[Sutskever et al. 2014, Year
Cho et al. 2014, & others]




Natural Language Processing

* Recurrent Neural Networks
— [Werbos 1988, Hochreiter & Schmidhuber 1997]

* E.g Language modeling

— Synthesize realistic text

Google 1B word dataset Samples from [Jozefowicz et al. 2016]:

< S > With even more new technologies coming onto
the market quickly during the past three years , an
increasing number of companies now must tackle the

challenges online . < § > Check back for updates on
this breaking news story . < S > About 800 people

0

0

0

0

40 ever-changing and ever-changing environmental

0

0

: gathered at Hever Castle on Long Beach from noon to

Test Perplexity

KN 5-Gram (Chdba NNMF Shazceret  LSTM 2048512 Big LSTM+CNN me R three to four times that of the funeral cortege .
et al. 2013) al. 2015) (Jozefowicz etal.  (Jozefowicz et al.
2016) 2016)



Practical Applications

e Real-world machine translation

Google

Translate
English French Portuguese Detectlanguage ~ LTS
"The Babel fish is small, yellow, leech-like, and probably the oddest thing in the X
Universe. It feeds on brainwave energy received not from its own carrier, but from
those around it. It absorbs all unconscious mental frequencies from this brainwave
energy to nourish itself with.
LDNRN: R 279/5000

 Facebook serves
2B translations/day

— 40 different languages
— All using deep nets

Portuguese = Finnish Mongolian ~

"Babel-kala on pieni, keltainen, pyoreaa ja luultavasti kaikkein epatavin asia

maailmankaikkeudessa, joka ruokkii aivojen aaltoenergiaa, joka ei ole peraisin omaa

kantoaallosta vaan ympardivista kennoista, joka absorboi kaikki tajunnalliset henkiset

taajuudet tasta aivotallennuksesta Ruokkia itseaan.
rDo <

# Suggest an edit

Yann LeCun added 7 new photos — with Joan Bruna Estrach
and 3 others.
May13- @ =

Congratulations Dr. Michael Mathieu!

With committee members Camille Couprie, Kyunghyun Cho, Joan Bruna
Estrach, and Rob Fergus.

= A AL ¥
Ben Niankoro Mallé j'espére un jour avoir la chance aprés le Vietnam me faire
1t coacher par vous lors de ma Thése Yann LeCun

| hope one day get lucky after Vietnam get me coached by you during my
thesis Yann LeCun
Automatically Translated




Industrial Applications

* Internet Companies

— Facebook, Google, Amazon etc..

* E.g. Facebook
— 1B+ images/day uploaded
— Fach passed through 2 deep nets

* Object recognition / offensive content

i Face recognition | Michael Eyal Sharon




Practical Applications

* Speech recognition on your smartphone




Practical Applications

* Self-driving cars
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Scientific Applications

Particle Physics SCience -

Home News Journals Topics Careers

Latest News Sciencelnsider ScienceShots Sifter From the Magazine About News Quizzes

Astronomy

SHARE
Alis changing how we do science. Get a glimpse

By Science News Staff | Jul. 5, 2017, 11:00 AM

Al's early proving ground: the hunt for new particles

Particle physicists began fiddling with artificial intelligence (Al) in the late 1980s, just as the
term “neural network” captured the public's imagination. Their field lends itself to Al and
machine-learning algorithms because nearly every experiment centers on finding subtle
spatial patterns in the countless, similar readouts of complex particle detectors—just the sort
of thing at which Al excels. “It took us several years to convince people that this is not just
some magic, hocus-pocus, black box stuff,” says Boaz Klima, of Fermi National Accelerator
Laboratory (Fermilab) in Batavia, Illinois, one of the first physicists to embrace the techniques.
Now, Al techniques number among physicists’ standard tools.

L]
( ; e I I O I I llC S Particle physicists strive to understand the

inner workings of the universe by smashing
subatomic particles together with
enormous energies to blast out exotic new
bits of matter. In 2012, for example, teams
working with the world’s largest proton
collider, the Large Hadron Collider (LHC) in
Switzerland, discovered the long-predicted
l-\ il d : : Higgs boson, the fleeting particle that is
e 1C1n€ the linchpin to physicists’ explanation of
how all other fundamental particles get Neural networks search for fingerprints of
their mass. new particles in the debris of collisions at

©0

Chemistry

(5




Skin Cancer Classification

[Dermatologist-level classification of skin cancer with deep neural networks, Esteva, A. et al., Nature 2017]

Skin lesion image Deep convolutional neural network (Inception v3) Training classes (757) Inference classes (varies by task)

/@ Acral-lentiginous melanoma
/@ Amelanotic melanoma
AN ///@ Lentigo melanoma
\ [N "

P e 2% malignant melanocytic lesion

AT el T TN e AN N AN )(
. S Blue nevus
Halo nevus & © 8% benign melanocytic lesion
Convolution @® Mongolian spot
AvgPool \@ -
MaxPool @
Concat ©
= Dropout .
= Fully connected .
= Softmax .
a Carcinoma: 135 images Melanoma: 130 images Melanoma: 111 dermoscopy images
1 1 . 1
4
%* - 2 i 3 2 | o8
= £ 2 | 3 2 e
8 1 1 .g ' ' 'g | |
Q b Q Vo Q Vo
@ L 3 2 ¢ ! 2 | 1
— Algorithm: AUC = 0.96 ' ! — Algorithm: AUC = 0.94 ' — Algorithm: AUC =0.91 ' |
® Dermatologists (25) b ® Dermatologists (22) o ® Dermatologists (21) ¢
¢ Average dermatologist |+ | ¢ Average dermatologist « | ¢ Average dermatologist +
0 S 0 . 0 PR
0 1 0 1 0 1
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Diabetic Retinopathy

[Development and Validation of a Deep Learning Algorithm for Detection of Diabetic
Retinopathy in Retinal Fundus Photography, Gulshan, V. et al. JAMA 2010]

Figure 2. Validation Set Performance for Referable Diabetic Retinopathy
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Some Issues with Deep Learning

* No good theoretical understanding or performance
guarantees

— Hard to analyze: very high dimensional, highly non-convex

* Difficult to inspect models ' l
Per-document Observed . Topic
topic proportions word Topics  parameter

R

— Cannot understand why certain

output was produced

O+OFO—-@—H OO

B n
D K

— Cf. Probabilistic graphical models | b | Zan Wan

[Blei et al. 2003]

e Need lots of labeled data

— Not always possible to obtain



Importance of Model Architecture

Previously: Hand-design the feature representation

Deep Learning: Learn the features but still need to hand-design the model
architecture

— Attempts to meta-learn it, e.g. [Neural architecture search with reinforcement learning, Zoph & Le,
arXiv 1611.01578, 2016].

Deep nets with generic structure (i.e. fully connected) do not work
Architecture of network has to be appropriate to domain
* E.g for images, exploit 2D grid, local dependencies etc.

Samoyed (16); Papillon (5.7);

P P T B gl P et B R Y G Y VT DT P P T L TR T e e L

Convolutions and RelLU
AT L L & & @S L& S5 S @ L T £ o o o o e S N e e S N & =

W of S fff ) S I S il - ) S/

volutions and RelLU

Con
P = S - - S

[Deep learning, L.eCun, Bengio,
Hinton, Nature 2015]




Convolutional Neural Networks

* LeCun et al. 1989
* Neural network with specialized connectivity structure

e (Can view as a multi-scale Hubel-Wiesel architecture

— Alternating layer of: simple cells (filtering) and complex cells
(averaging)

— Higher stages compute more global, more invariant features

C3:f. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5

INPUT
6@28x28
S2: f. maps CS:layer pg. jayer OUTPUT
1 84 10

s 6@14x14 r 20
=T

| FuIIconrl.ection | Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection



ConvNet Architecture

* Exploits two properties of images:

* 1. Dependencies are local

— No need to have each
unlt COHneCt tO every Red component Green component Blue component
0

pixel :

10

5
10
15 15
20 20

25
30

* 2. Spatially Stationary Statjazzo 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
— Translation invariant dependencies
— Only approximately true




Multistage Hubel-Wiesel Architecture

 Stack multiple stages of simple cells / complex cells layers
* Higher stages compute more global, more invariant features

* (lassification layer on top

-
-
3
S

(Rl

]

History:

* Neocognitron [Fukushima 1971-1982
* Convolutional Nets [LLeCun 1988-200
* HMAX [Poggio 2002-2000]

* Many others....
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Components of Each Layer

Pixels/ | Fitter with : '
Features”| learned dictionary

Non-linearity

[Optional] B [Optional]

Spatial local = \ - Normalization Output

Features

T

across data/features




— Filter is learned during training

— Same filter at each location




e Rectified linear function
— Applied per-pixel

— output = max(0,input)

white ='positive values Only non-negative values




* Traditional options:
— Tanh /f
— Sigmoid: 1/(1+exp(-x)) =/ |

e More recent ones:
{aiyia ify; <0

— Leaky ReLU, ELU, SELU, PReLU’ "~

x ifx >0
ae® —a ifzr<0’

selu(z) = A {

JO)=ay

[https:/ /towardsdatascience.com/selu-make-fnns-great-again-snn-8d61526802a9]

[Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet

[Self-Normalizing Neural Networks, Klambauer et al. arXiv:1706.02515.pdf, Sept 2017] Classification, Kaiming He ct al. arXivi1502.01852v1.pdf, Feb 2015 ]



* Spatial Pooling

— Non-overlapping / overlapping regions

— Sum or max




Batch Normalization (BN)

¢ Recap: Normalizing image input (LeCun et al 1998 “Efficient
Backprop”)

* BN: data-driven normalization, for each layer,
for each mini-batch

— Greatly accelerate training
— Less sensitive to initialization

— Improve regularization

loffe & Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015



Batch Normalization (BN)

X — .
X = X = — » y=yX+Lf
U: mean of X in mini-batch * U, 0: functions of X,
o: std of x in mini-batch analogous to responses
y: scale * ¥, B: parameters to be learned,
f: shift analogous to weights

loffe & Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015



Batch Normalization (BN)

X = 9?:—“ » y=yX+p

2 modes of BN:

* Train mode:

* U, 0 are functions of a batch of x Caution: make sure your
BN usage 1s correct!

* Test mode: . .
L (this causes many of my bugs in
* U, 0 are pre-computed on training set my research experiencel)

loffe & Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015



accuracy

Batch Normalization (BN)

Inception
BN-Baseline
BN-x5
BN-x30

4=+ BN-x5-Sigmoid
4 Steps to match Inception

|

|

|

|
15M 20M

25M

30M  itet.

Figure credit: Ioffe & Szegedy

loffe & Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015



Summary of Convnet Model

* Feed-forward: [ Feature maps ]
— Convolve input ﬁ
— Non-linearity (rectified linear) [ Pooling ]
— [Optional] Pooling (local max)
— [Optional] Batch Normalization ﬁ
[ Non-linearity ]

* Fully-connected classifier layer at top

* Supervised loss function (uses image lab[ﬂ‘\ ﬁ

Convolution (Learned) ]

* Train convolutional filters by

back-propagating classification error ﬁ
G5:1. maps 16@10x10 [ Input Image ]

C1:feature maps S4:f. maps 16@5x5
INPUT
32x32 6@=8x23 S2:f. maps

Convolutions Subsampling Convolutions  Subsampling Full connection Lecun Ct al 1 998



Training

* Many parameters: O(10°+)
— 27 order methods not practical (Hessian too big)
* Big datasets: O(10°)

— Expensive to compute full objective, i.e. loss on all
examples

* Use 1* order methods and update using subset
of examples

— Pick random batch at each iteration



Stochastic Gradient Descent (SGD)

Ap = pAy_q1 — nVLt(é’t)
Ori1 = 0 + Ay

* Fixed learning rate 7

— Large as possible without being unstable, e.g. 0.01

* Momentum term (4
— Typically ~0.9
— Smooths updates = helps convergence

— Also Nesterov version: apply momentum before
oradient



Annealing of Learning Rate

* Start large, slowly reduce when the training error
stops decreasing

* Explore different scales of energy surtface




AdaGrad

* Learning rate now scaled per-dimension
* Decreased for dimensions with high variance

* Issue: learning rate monotonically decreases

— Stop making progress after while

, VL, (6;)
\/::'—1 V Ly (et’)2

Or+1 = 04

[Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, Duchi et al.,
JMLR 2011]



RMSProp

* Similar to AdaGrad, but now with moving
average

— Small |4 emphasizes recent gradients

Ay = pAi_q + (1 — M)VLt(Ht)Q

V L;(6;)
Opiq = 0, —
t+1 t 1] \/Kt




ADAM

* ADApative Moment Estimation
* Combines AdaGrad and RMSProp

* Idea: maintain moving averages of gradient and
gradient?

. Update Mean gradient

\/ Mean gradient2

For more details, see:
https://moodle2.cs.huji.ac.il/nul5/pluginfile.php/316969/mod resource/conte
nt/1/adam_pres.pdf

[Adam: A Method for Stochastic Optimization, Kingma & Ba, arXiv:1412.6980]


https://moodle2.cs.huji.ac.il/nu15/pluginfile.php/316969/mod_resource/content/1/adam_pres.pdf

Batch-size

* [Accurate, Large Minibatch SGD: Training ImageNet in
1 Hour, Goyal et al., arXiv 1706.02677, 2017]
* Scale learning rate with batch-size

* Large-batch size efficiently implemented via
synchronous parallel training

N
o

W
(&)

W
o

[\
(&)

64 128 256 512 1k 2k 4k 8k 16k 32k 64k
mini-batch size

ImageNet top-1 validation error

N
o



Some Practical Debugging Tips

Train on small subset of data
~ Train error should =2 0.
- If not, check data (& pre-processing) and size of model.

Training diverges:
- Learning rate may be too large — decrease learning rate.
- BPROP is buggy — numerical gradient checking.

Parameters collapse / loss is minimized but train accuracy is low
- Check loss function:

Is it appropriate for the task you want to solve?

Does it have degenerate solutions? Check “pull-up” term.

Model is underperforming
- Compute flops and nr. params. — if too small, make net larger
- Visualize hidden units/params — fix optimization

Model is too slow
- Compute flops and nr. params. — GPU,distrib. framework, make net smaller

[M. Ranzato]



Convolutional Network Layer 1 Filters

V1 physiology: orientation selectivity
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Layer 1: Patches that give largest activations F ﬁ-;il.!! .Eﬁ
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Initialization

Both forward (response) and backward (gradient)

signal can vanish/explode

Forward:

Varly] = (ﬂn Var|w; )Var[x]

Backward:
Var[ ]_(H Uty [ YV ar ]
0x al ady

exploding

ideal
\\\\ vanishing
1 3 5 7 9 11 13 15

depth
LeCun et al 1998 “Efficient Backprop”
Glorot & Bengio 2010 “Understanding the difficulty of training deep feedforward neural networks”

[Slide: Kaiming He]



Initialization

* Initialization under linear assumption

[1,n0"Var[w,]| = constg, (healthy forward)
and
[1,n9"" Var[w,| = consty,, (healthy backward)

in _ %. ,out _ . in Constyw _ Myast
= 'n =N SO = — < 00,
ngVar|lwy| =1 d A+1 50 Constry  nil
=) or* It 1s sufficient to use either form.

no* Var[wy] = 1

“Xavier” 1nit in Caffe

LeCun et al 1998 “Efficient Backprop”
Glorot & Bengio 2010 “Understanding the difficulty of training deep feedforward neural networks”

[Slide: Kaiming He]



Initialization

e Initialization under RelLU

[1g4 %né"l/ar[wd] = constg,, (healthy forward)
and

[14 %Tl?lutVaT (W, | = consty,y (healthy backward)

o —
2 Varlwa] =1 With D layers, a factor of 2 per layer has

=) or exponential impact of 2D

EngutVar[Wd] =1

“MSRA” init in
Caffe

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. ICCV 2015.

[Slide: Kaiming He]



Initialization

22-layer ReLLU net: 30-layer ReLLU net:
good 1nit converges faster good 1nit 1s able to converge

0.85

HE=]
5 5
w w
0851
1
osb EnVar[w]
---------- nVar[w] =1
B?E 1 1 1 1 B?E 1 1 1 1 1 1 1 L 1
a 0.5 1 1.5 2 25 3 o 1 2 3 4 5 a8 T 8 a2
Epoch Epoch

*Figures show the beginning of training

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. ICCV 2015.

[Slide: Kaiming He]



Simply stacking layers?

test error (%o)

u}]er

20-layer

CIFAR-10
train error (%o)
20y 20,
56-layer
10] 10
20-layer
05 i P 4 5 3 %

3
iter. (le4)

* Plain nets: stacking 3x3 conv layers...

2

3 7 5 3
iter. (1e4)

* 50-layer net has higher training error and test error than 20-layer net

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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Simply stacking layers?

CIFAR-10 ImageNet-1000
2 \-\ J 6ol \ N~ e,
LAY 1 56-layer \\-\_W,{
-‘ 44-layer 5 2
0 I ISRl Wt e 32-layer g S v
% 10, ! : \\'\ —\.' """ ——— Zo—layer %40- ......................................... Y 34—layer
\‘/'/‘V‘u' .
S~ plain-24 3
plain-32 .
ain- . plain-18
—bain st solid: test/val l=piain-34 18-layer
’ 1 P endedy ’ ° dashed: train 0 10 2 o 40 50

iter. (le4)

* “Overly deep” plain nets have higher training error
* A general phenomenon, observed in many datasets

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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a shallower
model

(18 layers)

fc 1000

a deeper
counterpart

(34 layers)

* Richer solution space

* A deeper model should not have higher

training error

“extra”’

layers

* A solution by construction:
* original layers: copied from a learned
shallower model
* extra layers: set as identity

* atleast the same training error

* Optimization difficulties: solvers cannot

find the solution when going deeper...

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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Deep Residual Learning

e Plain net

any small

subnet

"

H(x) is any desired mapping,
hope the small subnet fit H (x)

weight layer

lrelu

weight layer

|
HO) lre u

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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Deep Residual Learning

e Residual net

H(x) is any desired mapping,
X hope-the-small subnetfit H )
weight layer hope the small subnet fit F (x)
F(x) l relu identity let H(x) = F(x) + x
weight layer X

H(x) =F(x)+x

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

[Slide: Kaiming He]



Deep Residual Learning

* F(x) is a residual mapping w.r.t. identity

X
weight layer * If identity were optimal,
easy to set weights as 0
F(x) l relu identity
weight layer X * If optimal mapping 1s closer to identity,
easier to find small fluctuations

H(x) =F(x)+x

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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CIFAR-10 experiments

CIFAR-10 plain nets

2
1 56-layer
44-layer
S \ 32-layer
S 10 ---------------------------------------------------- \ -----------------------------
E ““\.a 20-layer
\ .
VY% VL
Sff— plain-2d
plain-32
_giiggg solid: test
0 1 P 4 5 6 dashed: train

3
iter. (le4)

error (%)

CIFAR-10 ResNets

2
ResNet-20
ResNet-32
ResNet-44
{ ===ResNet-56
‘.~ === ResNet-110)
10p
5
C0

iter. (1e4)

* Deep ResNets can be trained without difficulties

* Deeper ResNets have lower training error, and also lower test error

20-layer
32-layer
44-layer
56-layer
110-layer

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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error (%)

ImageNet

ImageNet plain nets

60+
5
34-layer
’ lid
solid: test
lain-18

—;)1:;2-34 dashed: train 1 8_1ayer

2 0 10 20 30 40 50

iter. (le4)

experiments

error (%)

ImageNet ResNets

18-layer
\ v/ .
i
ResNet-18 VAL ‘
=—ResNet-34 . . . . 34-13y€1'
0 10 20 30 40 50
iter. (le4)

Deep ResNets can be trained without difficulties
Deeper ResNets have lower training error, and also lower test error

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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ImageNet experiments

* A practical design of going deeper

64-d

256-d

y

A
1x1, 64

l relu

3x3, 64 |

l relu

relu

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

1x1, 256

bottleneck
(for ResNet-50/101/152)
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* Deeper ResNets have lower error
this model has

lower time complexity

ImageNet experiments
than VGG-16/19

(@)

u

7.4
6.7
" 6.1
5.7 I

ResNet-152 ResNet-101 ResNet-50 ResNet-34
10-crop testing, top-5 val error (%o)

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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Issues on learning deep models

’ Representatlon ablllty * Ability of model to fit training data, if

optimum could be found

* If model A’s solution space is a superset of
B’s, A should be better.

* Optimization ability
* Feasibility of finding an optimum

* Not all models are equally easy to optimize

. . . ore
Generalization ablllty * Once training data is fit, how good is the

test performance

[The Tradeoffs of Large Scale Learning, Bottou & Bousquet, 2011]
[Slide: Kaiming He]



How do ResNets address these issues?

* Representation ability
* No explicit advantage on representation

(only re-parameterization), but

* Allow models to go deeper

* Optimization ability

* Enable very smooth forward/backward prop

* Greatly ease optimizing deeper models

* Generalization ability

Not explicitly address generalization, but

* Deeper+thinner is good generalization

[The Tradeoffs of Large Scale Learning, Bottou & Bousquet, 2011]
[Slide: Kaiming He]



Deep Learning for Computer Vision

backbone
structure

ImageNet
data

! |
—)

pre-
train

detection
network
(e.g. R-CNN)

segmentation
network
(e.g. FCN)

classificatio
)

n network . human pose
eatures estimation
network

depth
estimation
network

target
data

: |
—

fine-tune
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Example: Object Detection

boat : 0.853 Losos . mwiPerson :0.993

Image Classification Object Detection
(what?) (what + where?)

[Slide: Kaiming He]



Object Detection: Faster R-CNN

* Faster R-CNN
* Solely based on CNN
* No external modules
* Each step is end-to-end

features

Rol pooling

proposals

Vi

Region Proposal Net

'feature

map

CNN =
. 4

End-to-End
training

Shaoging Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.
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Mask R-CNN

Faster R-CNN

box
//
A /
(1 A y
/] /1
. /1 1
RolAlign|
conv’™
//
/ e Y
V4 i pe

FCN on Rol

Jonathan Long, Evan Shelhamer, Trevor Darrell. “Fully Convolutional Networks for Semantic Segmentation”. CVPR 2015.
Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick. “Mask R-CNN”. ICCV 2017.
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pixels in, pixels out

colorization
Zhang et al.2016

monocular depth + normals Eigen & Fergus 2015

semantic e r s
segmentation |
!'.:_:,. o

convolutional
network

optical flow Fischer et al. 2015 boundary prediction Xie & Tu 2015 7

[Slide: Evan Shelhamer] 8



U-Net: Convolutional Networks for Biomedical Image Segmentation: Ronneberger et.al.

U-Net: Convolutional Network for Biomedical Image

input
image
tile

572 x 572

2842

' 128 128 I

256 128

1 E N ERE
Nl N t
' 256 256 512 256
L > « Ml
2Nl % S
R - $= =
¥ 52 s 1024 512

1 64 64 .
Segmentation
128 64 64 2
ol olols output
segmentation
AN (@ oojl OO
Sl 8 8 map
o 2 - o| EE
B s sl &l &l &
X X
Of
o] 8

=»conv 3x3, ReLU
= copy and crop

¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1



U-Net: Convolutional Networks for Biomedical Image Segmentation: Ronneberger et.al.

U-Net: Convolutional Network for Biomedical Image
Segmentation




Exploring the Limits of
Weakly Supervised Pretraining

[Mahajan et al., ECCV 2018

Hashtag
Supervision

- It is easy to get billions of public images and
hashtags

- Hashtags are more structured than captions

- Hashtags were often assigned to make images
“searchable”

#cheesecake #birthday

facebook
Artificial Intelligence Research

[Slide: Laurens van der Maaten]



Exploring the Limits of
Weakly Supervised Pretraining

Mah | ECCV 2018
Hashtag /[ a‘ ajan eta Z CCV 2018

Supervision

. But hashtags are not perfect supervision
. Some hashtags are not visually relevant

. Other hashtags are not in the photo

. And there are many false negatives

. Is this noise bias or variance? Is scaling up
sufficient to reduce the variance?

#cat #travel #thailand #family

facebook
Artificial Intelligence Research

[Slide: Laurens van der Maaten]



Experiments

. Select a set of hashtags

. Download all public Instagram images that has
at least one of these hashtags

. Use WordNet synsets to merge hashtags into
canonical form (merge #brownbear and
#ursusarctos)

. Final dataset has ~3.5 billion images

facebook
Artificial Intelligence Research

[Slide: Laurens van der Maaten]

Most Recent

#brownbear

164,637 posts




