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We propose a neural network model “MemN2N” with external memory, which performs 
multiple lookups on memory before producing output. It is a soft attention version of  
“Memory Network” [1], which has hard attention and requires explicit supervision of  attention, 
which severely limits its application. Furthermore, MemN2N can be trained end-to-end with 
backpropagation using supervision only on the final output.  

We proposed an external memory model with 
soft attention. The model can be trained end-to-
end with backpropagation. The experiments 
show good results on a toy QA tasks and 
competitive performance on language modeling. 
We also showed the model can be extended to 
writing and reinforcement learning. 
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•  Every memory location is readable 
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•  In each hop, perform both read 
and write 
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Attention during memory hops 

Text8 (Wikipedia) 

Story (1: 1 supporting fact) Support Hop 1 Hop 2 Hop 3 Story (2: 2 supporting facts) Support Hop 1 Hop 2 Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03 John dropped the milk. 0.06 0.00 0.00
Mary travelled to the hallway. 0.00 0.00 0.00 John took the milk there. yes 0.88 1.00 0.00
John went to the bedroom. 0.37 0.02 0.00 Sandra went back to the bathroom. 0.00 0.00 0.00
John travelled to the bathroom. yes 0.60 0.98 0.96 John moved to the hallway. yes 0.00 0.00 1.00
Mary went to the office. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 0.00 0.00

Story (16: basic induction) Support Hop 1 Hop 2 Hop 3 Story (18: size reasoning) Support Hop 1 Hop 2 Hop 3
Brian is a frog. yes 0.00 0.98 0.00 The suitcase is bigger than the chest. yes 0.00 0.88 0.00
Lily is gray. 0.07 0.00 0.00 The box is bigger than the chocolate. 0.04 0.05 0.10
Brian is yellow. yes 0.07 0.00 1.00 The chest is bigger than the chocolate. yes 0.17 0.07 0.90
Julius is green. 0.06 0.00 0.00 The chest fits inside the container. 0.00 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00 The chest fits inside the box. 0.00 0.00 0.00

Where is John?   Answer: bathroom    Prediction: bathroom Where is the milk?   Answer: hallway    Prediction: hallway

What color is Greg?  Answer: yellow    Prediction: yellow Does the suitcase fit in the chocolate?   Answer: no    Prediction: no

Figure 2: Example predictions on the QA tasks of [21]. We show the labeled supporting facts
(support) from the dataset which MemN2N does not use during training, and the probabilities p of
each hop used by the model during inference. MemN2N successfully learns to focus on the correct
supporting sentences.

Penn Treebank Text8
# of # of memory Valid. Test # of # of memory Valid. Test

Model hidden hops size perp. perp. hidden hops size perp. perp.
RNN [15] 300 - - 133 129 500 - - - 184
LSTM [15] 100 - - 120 115 500 - - 122 154
SCRN [15] 100 - - 120 115 500 - - - 161
MemN2N 150 2 100 128 121 500 2 100 152 187

150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the k

th hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple
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MemN2N applied to bAbI task 

words. The model writes all x to the memory up to a fixed buffer size, and then finds a continuous
representation for the x and q. The continuous representation is then processed via multiple hops
to output a. This allows back-propagatation of the error signal through multiple memory accesses
back to the input during training.

2.1 Single Layer
We start by describing our model in the a single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The memory vector mi of dimension d is computed by first embedding each xi in a continuous
space, in the simplest case, using an embedding matrix A (of size d ⇥ V ). Thus, the entire set of
{xi} are converted into memory vectors {mi}. The query q is also embedded (again, in the simplest
case via another embedding matrix B with the same dimensions as A) to obtain an internal state
u. In the embedding space, we compute the match between u and each memory mi by taking the
inner product followed by a softmax:

pi = Softmax(uT
mi). (1)

where Softmax(zi) = e
zi/

P
j e

zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).
2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:
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150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the k

th hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple
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•  Data 
–  Penn Treebank:  1M words,  10K vocab 
–  Text8 (Wikipedia):  16M words,  40K vocab 

•  Model: RNN controller, layer-wise weight tying 
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Experiment on bAbI Q&A data  (http://fb.ai/babi) 

•  Data: 20 bAbI tasks (Weston et al. arXiv 1502.05698, 2015b) 
•  Answer questions after reading short story 
•  Small vocabulary, simple language 
•  Different tasks require different reasoning 
•  Training data size 1K or 10K for each task  

our model is somewhat simpler, not requiring operations like sharpening. Furthermore, we apply
our memory model to textual reasoning tasks, which qualitatively differ from the more abstract
operations of sorting and recall tackled by the NTM.

Our model is also related to Bahdanau et al. [2]. In that work, a bidirectional RNN based encoder
and gated RNN based decoder were used for machine translation. The decoder uses an attention
model that finds which hidden states from the encoding are most useful for outputting the next
translated word; the attention model uses a small neural network that takes as input a concatenation
of the current hidden state of the decoder and each of the encoders hidden states. A similar attention
model is also used in Xu et al. [23] for generating image captions. Our “memory” is analogous to
their attention mechanism, although [2] is only over a single sentence rather than many, as in our
case. Furthermore, our model makes several hops on the memory before making an output; we will
see below that this is important for good performance. There are also differences in the architecture
of the small network used to score the memories compared to our scoring approach; we use a simple
linear layer, whereas they use a more sophisticated gated architecture.

We also apply our model to language modeling, an extensively studied task. Goodman [6] showed
simple but effective approaches which combine n-grams with a cache. Bengio et al. [3] ignited
interest in using neural network based models for the task, with RNNs [14] and LSTMs [10, 19]
showing clear performance gains over traditional methods. Indeed, the current state-of-the-art is
held by variants of these models, for example very large LSTMs with Dropout [24] or RNNs with
diagonal constraints on the weight matrix [15]. With appropriate weight tying, our model can be
regarded as a modified form of RNN, where the recurrence is indexed by lookups to the word
sequence rather than indexed by the sequence itself.

4 Synthetic Question and Answering Experiments
We perform experiments on the synthetic QA tasks defined in [21]. A given QA task consists of
a set of statements, followed by a question whose answer is typically a single word (in a few tasks,
answers are a set of words). The answer is available to the model at training time, but must be
predicted at test time. There are a total of 20 different types of tasks that probe different forms of
reasoning and deduction. Here are samples of three of the tasks:
Sam walks into the kitchen. Brian is a lion. Mary journeyed to the den.

Sam picks up an apple. Julius is a lion. Mary went back to the kitchen.

Sam walks into the bedroom. Julius is white. John journeyed to the bedroom.

Sam drops the apple. Bernhard is green. Mary discarded the milk.

Q: Where is the apple? Q: What color is Brian? Q: Where was the milk before the den?

A. Bedroom A. White A. Hallway

Note that for each question, only some subset of the statements contain information needed for
the answer, and the others are essentially irrelevant distractors (e.g. the first sentence in the first
example). In the Memory Networks of Weston et al. [21], this supporting subset was explicitly
indicated to the model during training and the key difference between that work and this one is that
this information is no longer provided. Hence, the model must deduce for itself at training and test
time which sentences are relevant and which are not.

Formally, for one of the 20 QA tasks, we are given example problems, each having a set of I

sentences {xi} where I  320; a question sentence q and answer a. The examples are randomly
split into disjoint train and test sets each containing 1000 examples. Let the jth word of sentence
i be xij , represented by a one-hot vector of length V (where the vocabulary is of size V = 177,
reflecting the simplistic nature of the QA language). The same representation is used for the
question q and answer a. Two versions of the data are used, one that has 1000 training problems
per task and a second larger one with 10,000 per task.

4.1 Model Details
Unless otherwise stated, all experiments used a K = 3 hops model with the adjacent weight sharing
scheme. For all tasks that output lists (i.e. the answers are multiple words), we take each possible
combination of possible outputs and record them as a separate answer vocabulary word.

Sentence Representation: In our experiments we explore two different representations for
the sentences. The first is the bag-of-words (BoW) representation that takes the sentence
xi = {xi1, xi2, ..., xin}, embeds each word and sums the resulting vectors: e.g mi =

P
j Axij and
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Experiment on Language modeling 

Input numbers Reserved for output 

Initial memory content 

words. The model writes all x to the memory up to a fixed buffer size, and then finds a continuous
representation for the x and q. The continuous representation is then processed via multiple hops
to output a. This allows back-propagatation of the error signal through multiple memory accesses
back to the input during training.

2.1 Single Layer
We start by describing our model in the a single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The memory vector mi of dimension d is computed by first embedding each xi in a continuous
space, in the simplest case, using an embedding matrix A (of size d ⇥ V ). Thus, the entire set of
{xi} are converted into memory vectors {mi}. The query q is also embedded (again, in the simplest
case via another embedding matrix B with the same dimensions as A) to obtain an internal state
u. In the embedding space, we compute the match between u and each memory mi by taking the
inner product followed by a softmax:

pi = Softmax(uT
mi). (1)

where Softmax(zi) = e
zi/

P
j e

zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).
2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:
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Extension to reinforcement learning  (http://arxiv.org/abs/1511.07401) 

•  Simple tasks defined on small 2D grid 
environment (e.g. visit multiple goals in order)  

•  Train MemN2N with reinforcement learning 
(policy gradient method) 

•  Environment is represented by text 
–  E.g.  
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Part 1 Schedule

• Deep Supervised Learning
– Overview [ 30 mins]
– Convolutional Networks [ 30 mins ]
– Residual Networks [ 20 mins ]
– Large scale training [ 5 mins ]



History of  Neural Nets

• 1st era (1940’s-1960’s): Invention
– Connectionism [Hebb 1940’s]: complex behaviors arise from 

interconnected networks of  simple units 
– Artificial neurons [Hebb, McCulloch & Pitts 40’s & 50’s] 
– Perceptrons [Rosenblatt 50’s]: Single layer with simple learning rule

Historical Overview
Origins of Neural Nets

Neural nets are an example of connectionism. Connectionism [Hebb
1940s] argues that complex behaviors arise from interconnected
networks of simple units. As opposed to formal operations on
symbols (computationalism).
Early work in 1940’s and 1950’s by Hebb, McCulloch and Pitts on
artificial neurons.
Perceptrons [Rosenblatt 1950’s]. Single layer networks with simple
learning rule.

Y LeCun
MA Ranzato

This Basic Model has not evolved much since the 50's

The first learning machine: the Perceptron 
Built at Cornell in 1960

The Perceptron was a linear classifier on 
top of a simple feature extractor
The vast majority of practical applications 
of ML today use glorified linear classifiers 
or glorified template matching.
Designing a feature extractor requires 
considerable efforts by experts.

y=sign (∑
i=1

N

W i F i ( X )+b)

A

Featur e Extra ctor

Wi

Perceptron book [Minsky and Pappert 1969]. Showed limitations of
single layer models (e.g. cannot solve XOR).

Fergus, Miller, Puhrsch Introduction to Deep Learning
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History of  Neural Nets
• 2nd era (1980’s-1990’s): Multi-layered networks
– Back-propagation [Rumelhart, Hinton & Williams 1986 + others]: 

effective way to train multi-layered networks 
– Convolutional networks [LeCun et al. 1989]: architecture adapted 

for images



The Deep Learning era [2011-present]

• Big gains in performance on perceptual tasks:
– Vision
– Speech understanding
– Natural language processing

• E.g. Translation between languages

• Three ingredients:
1. Deep neural network models (supervised training)

• Closely related to models from 1980’s but much bigger
2. Fast GPU computation
3. Big labeled datasets

• Exciting progress on other AI tasks (e.g. playing Go)



Big Annotated Image Datasets

  

Validation classification

  

Validation classification

  

Validation classification

[Deng et al. CVPR 2009] 

• Stanford Vision group [Deng et al. 2009]
• ~14 million labeled images, 20k classes
• Images gathered from Internet
• Human labels via Amazon Turk 

• Microsoft + universities [2014]
• 2 million objects in natural settings
• Human labels via Amazon Turk 



Powerful Hardware

• Deep neural nets highly amenable to implementation on 
Graphics Processing Units (GPUs)
– Matrix multiply
– 2D convolution

• Latest generation
nVidia GPUs (Pascal)
deliver 10 TFlops
– Faster than fastest computer 

in world in 2000
– 10 million times faster than 1980’s Sun workstation



Deep Neural Network for Vision
• Krizhevsky, Sutskever & Hinton [NIPS2012]
• 8 layer Convolutional network model [LeCun et al. ’89]
• 7 hidden layers, 650,000 neurons, ~ 60,000,000 parameters
• Trained on 1.2 million ImageNet images (with labels)
• GPU implementation (50x speedup over CPU)
• Training time: 1 week on pair of GPUs

Input Image Class Prediction



Deep Learning vs Traditional Approaches
• Traditional Approach

End-to-end Learning

  

Validation classification

Predicted label:
Abacus

Input Image

θ1 θ2 θ3 θ4 θ5 θ6

• Deep Neural Network

  

Validation classification
Predicted label:

Abacus

Input Image

Hand-designed 
feature extractor

[no parameters]

Simple
Classifier
θ

Only part
that is learnt



ImageNet Performance over time

Convolutional Neural Nets



Growth in Model Depth

shallow 8 layers

22 layers

152 layers

8 layers



Depth is Key

• Each layer is simple non-linear function
• Composition of  them yields

complex decision surfaces
• Can learn very complex invariances

• Visualization
of  features
in trained 
model

3 layer NN

[http://www.kdnuggets.com]

[Zeiler & Fergus, ECCV 2014]



He, Zhang, Ren, & Sun. “Deep Residual Learning for Image Recognition”. ICCV 2015.



He, Zhang, Ren, & Sun. “Deep Residual Learning for Image Recognition”. ICCV 2015.



Mask R-CNN [He et al. 2017]



Mask R-CNN [He et al. 2017]



Speech Recognition
• Similar jump in performance seen with adaption 

of  deep learning approaches

review articles
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wide range of different ways of express-
ing the same concept. 

A number of techniques are used 
to fill frame slots of the application 
domain from the training data.30,35,41 
Like acoustic and language model-
ing, deep learning based on recurrent 
neural networks can also significantly 
improve filling slots for language un-
derstanding.38

Six Major Challenges
Speech recognition technology is 
far from perfect. Indeed, technical  
challenges abound. Based on what we 
have learned over the past 40 years, we 
now discuss six of the most challenging 
areas to be addressed before we can real-
ize the dream of speech recognition. 

There is no data like more data. 
Today we have some very exciting op-
portunities to collect large amounts 
of data, thus giving rise to “data del-
uge.” Thanks in large part to the Inter-
net, there are now readily accessible 
large quantities of everyday speech, 
reflecting a variety of materials and 
environments previously unavailable. 
Recently emerging voice search in mo-
bile phones has provided a rich source 
of speech data, which, because of the 
recording of mobile phone users’ ac-
tions, can be considered as partially 
“labeled.” Apple Siri (powered by Nu-
ance), Google, and Microsoft all have 
accumulated a massive amount of user 
data in using voice systems on their 
products.

New Web-based tools could be 
made available to collect, annotate, 
and process substantial quantities of 
speech in a cost-effective manner in 
many languages. Mustering the assis-
tance of interested individuals on the 
Web could generate substantial quan-
tities of language resources very effi-
ciently and cost effectively. This could 
be especially valuable for creating sig-
nificant new capabilities for resource 
“impoverished” languages.

The ever-increasing amount of data 
presents both an opportunity and a 
challenge for advancing the state of the 
art in speech recognition as illustrated 
in Figure 3, in which our Microsoft col-
leagues Li Deng and Eric Horvitz used 
the data from a number of published 
papers to illustrate the key point. The 
numbers in Figure 3 are not precise 
even with our best effort to derive a co-

hesive chart from data scattered over a 
period of approximately 10 years. 

We have barely scratched the sur-
face in sampling the many kinds of 
speech, environments, and channels 
that people routinely experience. In 
fact, we currently provide to our auto-
matic systems only a very small frac-
tion of the amount of materials that hu-
mans utilize to acquire language. If we 
want our systems to be more powerful 
and to understand the nature of speech 
itself, we need to make more use of 
it and label more of it. Well-labeled 
speech corpora have been the corner-
stone on which today’s systems have 
been developed and evolved. However, 
most of the large quantities of data are 
not labeled or poorly “labeled,” and la-
beling them accurately is costly. 

Computing infrastructure. The use 
of GPUs5,14 is a significant advancement 
in recent years that makes the training 
of modestly sized deep networks prac-
tical. A known limitation of the GPU 
approach is the training speed-up is 
small when the model does not fit in 
GPU memory (typically less than six 
gigabytes). It is recently reported that 
distributed optimization approach can 
greatly accelerate deep learning as well 
as enabling training larger models.7 
A cluster of massive distributed ma-
chines has been used to train a mod-
estly sized speech DNN leading to over 
10x acceleration in comparison to the 
GPU implementation. 

Moore’s Law has been a depend-
able indicator of the increased capabil-
ity for computation and storage in our 
computational systems for decades. 
The resulting effects on systems for 
speech recognition and understanding 

have been enormous, permitting the 
use of larger and larger training data-
bases and recognition systems, and the 
incorporation of more detailed models 
of spoken language. Many of the future 
research directions and applications 
implicitly depend upon continued ad-
vances in computational capabilities, 
which seems justified given the recent 
progress of using distributed comput-
er systems to train large-scale DNNs. 
With the ever-increased amount of 
training data as illustrated in Figure 3, 
it is expected to take weeks or months 
to train a modern speech system even 
with a massively distributed comput-
ing cluster. 

As Intel and others have recently 
noted, the power density on micro-
processors has increased to the point 
that higher clock rates would begin 
to melt the silicon. Consequently, 
industry development is currently fo-
cused on implementing microproces-
sors on multiple cores. The new road 
maps for the semiconductor industry 
reflect this trend, and future speed-
ups will come more from parallelism 
than from having faster individual 
computing elements. 

For the most part, algorithm de-
signers for speech systems have ig-
nored investigation of such parallel-
ism, partly because the advancement 
of scalability has been so reliable. Fu-
ture research directions and applica-
tions will require significantly more 
computation resources for creating 
models, and consequently research-
ers will need to consider massive dis-
tributed parallelism in their designs. 
This will be a significant change from 
the status quo. In particular, tasks 

Figure 3. There is no data like more data. Recognition word error rate vs. the amount  
of training hours for illustrative purposes only. This figure illustrates how modern speech 
recognition systems can benefit from increased training data.

12

14

16

18

20

22

24

0 500 1,000 1,500 2,000 2,500

Training Data (hours)

Technology since 2010 (DNN)

Technology of 1970s–2010 (GMM-HMM)

W
or

d 
E

rr
or

 R
at

e 
(%

)

[A Historical Perspective of  Speech Recognition, Huang, Baker & Reddy, CACM 2014]



Speech Recognition
• E.g. Baidu’s Deep Speech 2 system [2015]
– Input: spoken speech. Output: text
– 100 million parameters; 11-layer Recurrent Neural 

Network model 
– English training set: 11,940 hours of  labeled speech 

data containing 8 million utterances
– Beats humans on 3 of  4 evaluation sets

Model size Model type Regular Dev Noisy Dev

18 ⇥ 106 GRU 10.59 21.38
38 ⇥ 106 GRU 9.06 17.07
70 ⇥ 106 GRU 8.54 15.98
70 ⇥ 106 RNN 8.44 15.09
100 ⇥ 106 GRU 7.78 14.17
100 ⇥ 106 RNN 7.73 13.06

Table 11: Comparing the effect of model size on the WER of the English speech system on both the regular and
noisy development sets. We vary the number of hidden units in all but the convolutional layers. The GRU model
has 3 layers of bidirectional GRUs with 1 layer of 2D-invariant convolution. The RNN model has 7 layers of
bidirectional simple recurrence with 3 layers of 2D-invariant convolution. Both models output bigrams with a
temporal stride of 3. All models contain approximately 35 million parameters and are trained with BatchNorm
and SortaGrad.

Test set DS1 DS2

Baidu Test 24.01 13.59

Table 12: Comparison of DS1 and DS2 WER on an internal test set of 3,300 examples. The test set contains a
wide variety of speech including accents, low signal-to-noise speech, spontaneous and conversational speech.

simple RNN. In fact, for the 100 million parameter networks the simple RNN performs better than
the GRU network and is faster to train despite the 2 extra layers of convolution.

Table 11 shows that the performance of the system improves consistently up to 100 million parame-
ters. All further English DS2 results are reported with this same 100 million parameter RNN model
since it achieves the lowest generalization errors.

Table 12 shows that the 100 million parameter RNN model (DS2) gives a 43.4% relative improve-
ment over the 5-layer model with 1 recurrent layer (DS1) on an internal Baidu dataset of 3,300
utterances that contains a wide variety of speech including challenging accents, low signal-to-noise
ratios from far-field or background noise, spontaneous and conversational speech.

6.1.2 Read Speech

Read speech with high signal-to-noise ratio is arguably the easiest large vocabulary for a continuous
speech recognition task. We benchmark our system on two test sets from the Wall Street Journal
(WSJ) corpus of read news articles. These are available in the LDC catalog as LDC94S13B and
LDC93S6B. We also take advantage of the recently developed LibriSpeech corpus constructed using
audio books from the LibriVox project [46].

Table 13 shows that the DS2 system outperforms humans in 3 out of the 4 test sets and is competitive
on the fourth. Given this result, we suspect that there is little room for a generic speech system to
further improve on clean read speech without further domain adaptation.

Read Speech

Test set DS1 DS2 Human

WSJ eval’92 4.94 3.60 5.03
WSJ eval’93 6.94 4.98 8.08
LibriSpeech test-clean 7.89 5.33 5.83
LibriSpeech test-other 21.74 13.25 12.69

Table 13: Comparison of WER for two speech systems and human level performance on read speech.
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Natural Language Processing
• Recurrent Neural Networks

– [Werbos 1988, Hochreiter & Schmidhuber 1997]

• E.g. Machine Translation

[Sutskever et al. 2014, 
Cho et al. 2014, & others] 
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Natural Language Processing
• Recurrent Neural Networks

– [Werbos 1988, Hochreiter & Schmidhuber 1997]

• E.g. Language modeling
– Synthesize realistic text
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Google 1B word dataset

< S > With even more new technologies coming onto 
the market quickly during the past three years , an 
increasing number of  companies now must tackle the 
ever-changing and ever-changing environmental 
challenges online . < S > Check back for updates on 
this breaking news story . < S > About 800 people 
gathered at Hever Castle on Long Beach from noon to 
2pm , three to four times that of  the funeral cortege . 

Samples from [Jozefowicz et al. 2016]:



Practical Applications
• Real-world machine translation

• Facebook serves 
2B translations/day
– 40 different languages
– All using deep nets



Industrial Applications

• Internet Companies
– Facebook, Google, Amazon etc..

• E.g. Facebook
– 1B+ images/day uploaded
– Each passed through 2 deep nets
• Object recognition / offensive content
• Face recognition



Practical Applications

• Speech recognition on your smartphone



Practical Applications

• Self-driving cars



Scientific Applications
• Particle Physics 

• Astronomy

• Chemistry

• Genomics

• Medicine



Skin Cancer Classification
[Dermatologist-level classification of  skin cancer with deep neural networks, Esteva, A. et al., Nature 2017]



Diabetic Retinopathy
[Development and Validation of  a Deep Learning Algorithm for Detection of  Diabetic 
Retinopathy in Retinal Fundus Photography, Gulshan, V. et al. JAMA 2016]

Copyright 2016 American Medical Association. All rights reserved.

Additional sensitivity analyses were conducted for sev-
eral subcategories: (1) detecting moderate or worse diabetic reti-
nopathy only; (2) detecting severe or worse diabetic retinopa-
thy only; (3) detecting referable diabetic macular edema only;
(4) image quality; and (5) referable diabetic retinopathy on 2
data sets, each restricted to mydriatic and nonmydriatic im-
ages, respectively. For each subcategory 1 through 4, the al-
gorithm achieved high sensitivity and specificity (see section
on “Performance on Individual Diabetic Retinopathy Sub-
types, Image Quality,” eTable 1, and eFigure 4 in the Supple-
ment). For example, for the EyePACS-1 data set, at the first op-
erating point for moderate or worse diabetic retinopathy, the
algorithm had a sensitivity of 90.1% (95% CI, 87.2%-92.6%) and
specificity of 98.2% (95% CI, 97.8%-98.5%). For severe or worse
diabetic retinopathy only at the first operating point, the al-
gorithm had a sensitivity of 84.0% (95% CI, 75.3%-90.6%) and
specificity of 98.8% (95% CI, 98.5%-99.0%). For diabetic macu-
lar edema only, the algorithm’s sensitivity was 90.8% (95% CI,
86.1%-94.3%) and specificity was 98.7% (95% CI, 98.4%-
99.0%). The algorithm’s performance on mydriatic images was
very close to its performance on nonmydriatic images (and both
were similar to the overall algorithm performance; see eTable
2 in the Supplement).

Multiple networks with varying number of images and
grades per image were trained to determine how smaller train-
ing data sets related to the performance of the trained algo-
rithms. In the first subsampling experiment (Figure 4A), the

effects of data set size on algorithm performance were exam-
ined and shown to plateau at around 60 000 images (or ap-
proximately 17 000 referable images). In the second experi-
ment (Figure 4B) on subsampling grades, 2 trends emerged:
(1) increasing the number of grades per image on the training
set did not yield an increase in relative performance (31.6% ab-
solute difference) and (2) using only 1 grade per image on the
tuning set led to a decline of 36% in performance compared
with using all the available grades on the tuning set (an aver-
age of 4.5 grades), and that performance steadily increased as
more grades were made available for the tuning set. This sug-
gests that additional grading resources should be devoted to
grading the tuning set (on which evaluation is done), which
improves the quality of the reference standard and the algo-
rithm performance.

Discussion
These results demonstrate that deep neural networks can be
trained, using large data sets and without having to specify
lesion-based features, to identify diabetic retinopathy or dia-
betic macular edema in retinal fundus images with high sen-
sitivity and high specificity. This automated system for the de-
tection of diabetic retinopathy offers several advantages,
including consistency of interpretation (because a machine will
make the same prediction on a specific image every time), high

Figure 2. Validation Set Performance for Referable Diabetic Retinopathy
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Messidor-2: AUC, 99.0%; 95% CI, 98.6%-99.5%B
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Performance of the algorithm (black curve) and ophthalmologists (colored
circles) for the presence of referable diabetic retinopathy (moderate or worse
diabetic retinopathy or referable diabetic macular edema) on A, EyePACS-1
(8788 fully gradable images) and B, Messidor-2 (1745 fully gradable images).
The black diamonds on the graph correspond to the sensitivity and specificity of
the algorithm at the high-sensitivity and high-specificity operating points.
In A, for the high-sensitivity operating point, specificity was 93.4% (95% CI,
92.8%-94.0%) and sensitivity was 97.5% (95% CI, 95.8%-98.7%); for the

high-specificity operating point, specificity was 98.1% (95% CI, 97.8%-98.5%)
and sensitivity was 90.3% (95% CI, 87.5%-92.7%). In B, for the high-sensitivity
operating point, specificity was 93.9% (95% CI, 92.4%-95.3%) and sensitivity
was 96.1% (95% CI, 92.4%-98.3%); for the high-specificity operating point,
specificity was 98.5% (95% CI, 97.7%-99.1%) and sensitivity was 87.0% (95%
CI, 81.1%-91.0%). There were 8 ophthalmologists who graded EyePACS-1 and 7
ophthalmologists who graded Messidor-2. AUC indicates area under the
receiver operating characteristic curve.
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Some Issues with Deep Learning

• Difficult to inspect models
– Cannot understand why certain 

output was produced
– Cf. Probabilistic graphical models

[Blei et al. 2003]

• No good theoretical understanding or performance 
guarantees
– Hard to analyze: very high dimensional, highly non-convex 

• Need lots of  labeled data
– Not always possible to obtain



Importance of  Model Architecture
• Previously: Hand-design the feature representation
• Deep Learning: Learn the features but still need to hand-design the model 

architecture
– Attempts to meta-learn it, e.g. [Neural architecture search with reinforcement learning, Zoph & Le, 

arXiv 1611.01578, 2016].

raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4)
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[Deep learning, LeCun, Bengio, 
Hinton, Nature 2015]

• Deep nets with generic structure (i.e. fully connected) do not work
• Architecture of  network has to be appropriate to domain
• E.g. for images, exploit 2D grid, local dependencies etc. 



Convolutional Neural Networks

• LeCun et al. 1989
• Neural network with specialized connectivity structure
• Can view as a multi-scale Hubel-Wiesel architecture
– Alternating layer of: simple cells (filtering) and complex cells 

(averaging) 
– Higher stages compute more global, more invariant features



ConvNet Architecture
• Exploits two properties of  images:

• 1. Dependencies are local
– No need to have each

unit connect to every
pixel

• 2. Spatially stationary statistics
– Translation invariant dependencies
– Only approximately true
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Multistage Hubel-Wiesel Architecture 

Slide: Y.LeCun

• Stack multiple stages of  simple cells / complex cells layers
• Higher stages compute more global, more invariant features
• Classification layer on top

History:
• Neocognitron [Fukushima 1971-1982]
• Convolutional Nets [LeCun 1988-2007] 
• HMAX [Poggio 2002-2006]
• Many others….



Components of Each Layer

Pixels /
Features

Filter with 
learned dictionary

[Optional]
Spatial local
pooling

Non-linearity

Output 
Features

[Optional]
Normalization

across data/features



Filtering
• Convolution
– Filter is learned during training
– Same filter at each location

Input Feature Map

.

.

.



Non-Linearity

• Rectified linear function
– Applied per-pixel
– output = max(0,input)

Input feature map Output feature map

Black = negative; white = positive values Only non-negative values



Non-Linearity

• Traditional options:
– Tanh
– Sigmoid: 1/(1+exp(-x))

• More recent ones:
– Leaky ReLU, ELU, SELU, PReLU

f (y) = y

y

f (y)

f (y) = y

f (y) = ay

y

f (y)

f (y) = 0

Figure 1. ReLU vs. PReLU. For PReLU, the coefficient of the
negative part is not constant and is adaptively learned.

2. Approach
In this section, we first present the PReLU activation

function (Sec. 2.1). Then we derive our initialization
method for deep rectifier networks (Sec. 2.2). Lastly we
discuss our architecture designs (Sec. 2.3).

2.1. Parametric Rectifiers
We show that replacing the parameter-free ReLU activa-

tion by a learned parametric activation unit improves clas-
sification accuracy1.

Definition

Formally, we consider an activation function defined as:

f(yi) =

(
yi, if yi > 0

aiyi, if yi  0
. (1)

Here yi is the input of the nonlinear activation f on the ith
channel, and ai is a coefficient controlling the slope of the
negative part. The subscript i in ai indicates that we allow
the nonlinear activation to vary on different channels. When
ai = 0, it becomes ReLU; when ai is a learnable parameter,
we refer to Eqn.(1) as Parametric ReLU (PReLU). Figure 1
shows the shapes of ReLU and PReLU. Eqn.(1) is equiva-
lent to f(yi) = max(0, yi) + ai min(0, yi).

If ai is a small and fixed value, PReLU becomes the
Leaky ReLU (LReLU) in [20] (ai = 0.01). The motiva-
tion of LReLU is to avoid zero gradients. Experiments in
[20] show that LReLU has negligible impact on accuracy
compared with ReLU. On the contrary, our method adap-
tively learns the PReLU parameters jointly with the whole
model. We hope for end-to-end training that will lead to
more specialized activations.

PReLU introduces a very small number of extra param-
eters. The number of extra parameters is equal to the total
number of channels, which is negligible when considering
the total number of weights. So we expect no extra risk
of overfitting. We also consider a channel-shared variant:

1Concurrent with our work, Agostinelli et al. [1] also investigated
learning activation functions and showed improvement on other tasks.

f(yi) = max(0, yi) + amin(0, yi) where the coefficient is
shared by all channels of one layer. This variant only intro-
duces a single extra parameter into each layer.

Optimization

PReLU can be trained using backpropagation [17] and opti-
mized simultaneously with other layers. The update formu-
lations of {ai} are simply derived from the chain rule. The
gradient of ai for one layer is:

@E
@ai

=
X

yi

@E
@f(yi)

@f(yi)

@ai
, (2)

where E represents the objective function. The term @E
@f(yi)

is the gradient propagated from the deeper layer. The gradi-
ent of the activation is given by:

@f(yi)

@ai
=

(
0, if yi > 0

yi, if yi  0
. (3)

The summation
P

yi
runs over all positions of the feature

map. For the channel-shared variant, the gradient of a is
@E
@a =

P
i

P
yi

@E
@f(yi)

@f(yi)
@a , where

P
i sums over all chan-

nels of the layer. The time complexity due to PReLU is
negligible for both forward and backward propagation.

We adopt the momentum method when updating ai:

�ai := µ�ai + ✏
@E
@ai

. (4)

Here µ is the momentum and ✏ is the learning rate. It is
worth noticing that we do not use weight decay (l2 regular-
ization) when updating ai. A weight decay tends to push ai
to zero, and thus biases PReLU toward ReLU. Even without
regularization, the learned coefficients rarely have a magni-
tude larger than 1 in our experiments. Further, we do not
constrain the range of ai so that the activation function may
be non-monotonic. We use ai = 0.25 as the initialization
throughout this paper.

Comparison Experiments

We conducted comparisons on a deep but efficient model
with 14 weight layers. The model was studied in [10]
(model E of [10]) and its architecture is described in Ta-
ble 1. We choose this model because it is sufficient for rep-
resenting a category of very deep models, as well as to make
the experiments feasible.

As a baseline, we train this model with ReLU applied
in the convolutional (conv) layers and the first two fully-
connected (fc) layers. The training implementation follows
[10]. The top-1 and top-5 errors are 33.82% and 13.34% on
ImageNet 2012, using 10-view testing (Table 2).
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2. Approach
In this section, we first present the PReLU activation

function (Sec. 2.1). Then we derive our initialization
method for deep rectifier networks (Sec. 2.2). Lastly we
discuss our architecture designs (Sec. 2.3).

2.1. Parametric Rectifiers
We show that replacing the parameter-free ReLU activa-

tion by a learned parametric activation unit improves clas-
sification accuracy1.

Definition

Formally, we consider an activation function defined as:

f(yi) =
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yi, if yi > 0

aiyi, if yi  0
. (1)

Here yi is the input of the nonlinear activation f on the ith
channel, and ai is a coefficient controlling the slope of the
negative part. The subscript i in ai indicates that we allow
the nonlinear activation to vary on different channels. When
ai = 0, it becomes ReLU; when ai is a learnable parameter,
we refer to Eqn.(1) as Parametric ReLU (PReLU). Figure 1
shows the shapes of ReLU and PReLU. Eqn.(1) is equiva-
lent to f(yi) = max(0, yi) + ai min(0, yi).

If ai is a small and fixed value, PReLU becomes the
Leaky ReLU (LReLU) in [20] (ai = 0.01). The motiva-
tion of LReLU is to avoid zero gradients. Experiments in
[20] show that LReLU has negligible impact on accuracy
compared with ReLU. On the contrary, our method adap-
tively learns the PReLU parameters jointly with the whole
model. We hope for end-to-end training that will lead to
more specialized activations.

PReLU introduces a very small number of extra param-
eters. The number of extra parameters is equal to the total
number of channels, which is negligible when considering
the total number of weights. So we expect no extra risk
of overfitting. We also consider a channel-shared variant:

1Concurrent with our work, Agostinelli et al. [1] also investigated
learning activation functions and showed improvement on other tasks.

f(yi) = max(0, yi) + amin(0, yi) where the coefficient is
shared by all channels of one layer. This variant only intro-
duces a single extra parameter into each layer.

Optimization

PReLU can be trained using backpropagation [17] and opti-
mized simultaneously with other layers. The update formu-
lations of {ai} are simply derived from the chain rule. The
gradient of ai for one layer is:

@E
@ai

=
X
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@f(yi)

@f(yi)

@ai
, (2)

where E represents the objective function. The term @E
@f(yi)

is the gradient propagated from the deeper layer. The gradi-
ent of the activation is given by:

@f(yi)
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0, if yi > 0
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nels of the layer. The time complexity due to PReLU is
negligible for both forward and backward propagation.

We adopt the momentum method when updating ai:

�ai := µ�ai + ✏
@E
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. (4)

Here µ is the momentum and ✏ is the learning rate. It is
worth noticing that we do not use weight decay (l2 regular-
ization) when updating ai. A weight decay tends to push ai
to zero, and thus biases PReLU toward ReLU. Even without
regularization, the learned coefficients rarely have a magni-
tude larger than 1 in our experiments. Further, we do not
constrain the range of ai so that the activation function may
be non-monotonic. We use ai = 0.25 as the initialization
throughout this paper.

Comparison Experiments

We conducted comparisons on a deep but efficient model
with 14 weight layers. The model was studied in [10]
(model E of [10]) and its architecture is described in Ta-
ble 1. We choose this model because it is sufficient for rep-
resenting a category of very deep models, as well as to make
the experiments feasible.

As a baseline, we train this model with ReLU applied
in the convolutional (conv) layers and the first two fully-
connected (fc) layers. The training implementation follows
[10]. The top-1 and top-5 errors are 33.82% and 13.34% on
ImageNet 2012, using 10-view testing (Table 2).
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[Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification, Kaiming He et al. arXiv:1502.01852v1.pdf, Feb 2015 ][Self-Normalizing Neural Networks, Klambauer et al. arXiv:1706.02515.pdf, Sept 2017]

[https://towardsdatascience.com/selu-make-fnns-great-again-snn-8d61526802a9]



Pooling

• Spatial Pooling
– Non-overlapping / overlapping regions
– Sum or max

Max

Sum



Batch Normalization (BN)

• Recap: Normalizing image input (LeCun et al 1998 “Efficient 
Backprop”)

• BN: data-driven normalization, for each layer, 
for each mini-batch
– Greatly accelerate training
– Less sensitive to initialization
– Improve regularization

Ioffe & Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015



Batch Normalization (BN)

! "! = ! − %
& ' = ("! + *

• %: mean of  ! in mini-batch
• &: std of  ! in mini-batch
• (: scale
• *: shift

• %, &: functions of  !,
analogous to responses

• (, *: parameters to be learned, 
analogous to weights

Ioffe & Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015



Batch Normalization (BN)

2 modes of  BN:
• Train mode:
• !, " are functions of  a batch of  #

• Test mode:
• !, " are pre-computed on training set

Caution: make sure your 
BN usage is correct!
(this causes many of  my bugs in 
my research experience!)

# $# = # − !
" ' = ($# + *

Ioffe & Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015



Batch Normalization (BN)

Figure credit: Ioffe & Szegedy
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Ioffe & Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015



Summary of  Convnet Model
• Feed-forward: 
– Convolve input
– Non-linearity (rectified linear)
– [Optional] Pooling (local max)
– [Optional] Batch Normalization 

• Fully-connected classifier layer at top 
• Supervised loss function (uses image label)
• Train convolutional filters by 

back-propagating classification error
Input Image

Convolution (Learned)

Non-linearity

Pooling

LeCun et al. 1998

Feature maps



Training

• Many parameters: O(106+) 
– 2nd order methods not practical (Hessian too big) 

• Big datasets: O(106)
– Expensive to compute full objective, i.e. loss on all 

examples  

• Use 1st order methods and update using subset 
of  examples
– Pick random batch at each iteration



Stochastic Gradient Descent (SGD)

• Fixed learning rate
– Large as possible without being unstable, e.g. 0.01 

• Momentum term   
– Typically ~0.9
– Smooths updates à helps convergence
– Also Nesterov version: apply momentum before 

gradient



Annealing of  Learning Rate
• Start large, slowly reduce when the training error 

stops decreasing
• Explore different scales of  energy surface



AdaGrad

• Learning rate now scaled per-dimension 
• Decreased for dimensions with high variance
• Issue: learning rate monotonically decreases
– Stop making progress after while

[Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, Duchi et al., 
JMLR 2011] 



RMSProp

• Similar to AdaGrad, but now with moving 
average
– Small      emphasizes recent gradients 



ADAM
• ADApative Moment Estimation
• Combines AdaGrad and RMSProp

• Idea: maintain moving averages of  gradient and 
gradient2

• Update

For more details, see: 
https://moodle2.cs.huji.ac.il/nu15/pluginfile.php/316969/mod_resource/conte
nt/1/adam_pres.pdf

[Adam: A Method for Stochastic Optimization, Kingma & Ba, arXiv:1412.6980] 

https://moodle2.cs.huji.ac.il/nu15/pluginfile.php/316969/mod_resource/content/1/adam_pres.pdf


Batch-size
• [Accurate, Large Minibatch SGD: Training ImageNet in 

1 Hour, Goyal et al., arXiv 1706.02677, 2017]
• Scale learning rate with batch-size
• Large-batch size efficiently implemented via 

synchronous parallel training

Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour

Priya Goyal Piotr Dollár Ross Girshick Pieter Noordhuis
Lukasz Wesolowski Aapo Kyrola Andrew Tulloch Yangqing Jia Kaiming He

Facebook

Abstract

Deep learning thrives with large neural networks and
large datasets. However, larger networks and larger
datasets result in longer training times that impede re-
search and development progress. Distributed synchronous
SGD offers a potential solution to this problem by dividing
SGD minibatches over a pool of parallel workers. Yet to
make this scheme efficient, the per-worker workload must
be large, which implies nontrivial growth in the SGD mini-
batch size. In this paper, we empirically show that on the
ImageNet dataset large minibatches cause optimization dif-
ficulties, but when these are addressed the trained networks
exhibit good generalization. Specifically, we show no loss
of accuracy when training with large minibatch sizes up to
8192 images. To achieve this result, we adopt a hyper-
parameter-free linear scaling rule for adjusting learning
rates as a function of minibatch size and develop a new
warmup scheme that overcomes optimization challenges
early in training. With these simple techniques, our Caffe2-
based system trains ResNet-50 with a minibatch size of 8192
on 256 GPUs in one hour, while matching small minibatch
accuracy. Using commodity hardware, our implementation
achieves ⇠90% scaling efficiency when moving from 8 to
256 GPUs. Our findings enable training visual recognition
models on internet-scale data with high efficiency.

1. Introduction

Scale matters. We are in an unprecedented era in AI
research history in which the increasing data and model
scale is rapidly improving accuracy in computer vision
[22, 41, 34, 35, 36, 16], speech [17, 40], and natural lan-
guage processing [7, 38]. Take the profound impact in com-
puter vision as an example: visual representations learned
by deep convolutional neural networks [23, 22] show excel-
lent performance on previously challenging tasks like Ima-
geNet classification [33] and can be transferred to difficult
perception problems such as object detection and segmen-

64 128 256 512 1k 2k 4k 8k 16k 32k 64k

mini-batch size

20

25

30

35

40

Im
a

g
e

N
e

t 
to

p
-1

 v
a

lid
a

tio
n

 e
rr

o
r

Figure 1. ImageNet top-1 validation error vs. minibatch size.
Error range of plus/minus two standard deviations is shown. We
present a simple and general technique for scaling distributed syn-
chronous SGD to minibatches of up to 8k images while maintain-
ing the top-1 error of small minibatch training. For all minibatch
sizes we set the learning rate as a linear function of the minibatch
size and apply a simple warmup phase for the first few epochs of
training. All other hyper-parameters are kept fixed. Using this
simple approach, accuracy of our models is invariant to minibatch
size (up to an 8k minibatch size). Our techniques enable a lin-
ear reduction in training time with ⇠90% efficiency as we scale
to large minibatch sizes, allowing us to train an accurate 8k mini-
batch ResNet-50 model in 1 hour on 256 GPUs.

tation [8, 10, 28]. Moreover, this pattern generalizes: larger
datasets and neural network architectures consistently yield
improved accuracy across all tasks that benefit from pre-
training [22, 41, 34, 35, 36, 16]. But as model and data
scale grow, so does training time; discovering the potential
and limits of large-scale deep learning requires developing
novel techniques to keep training time manageable.

The goal of this report is to demonstrate the feasibility of,
and to communicate a practical guide to, large-scale train-
ing with distributed synchronous stochastic gradient descent
(SGD). As an example, we scale ResNet-50 [16] training,
originally performed with a minibatch size of 256 images
(using 8 Tesla P100 GPUs, training time is 29 hours), to
larger minibatches (see Figure 1). In particular, we show
that with a large minibatch size of 8192, we can train
ResNet-50 in 1 hour using 256 GPUs while maintaining
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Some Practical Debugging Tips
• Train on small subset of  data

– Train error should à 0. 
– If  not, check data (& pre-processing) and size of  model. 

• Training diverges:
– Learning rate may be too large → decrease learning rate.
– BPROP is buggy → numerical gradient checking.

• Parameters collapse / loss is minimized but train accuracy is low
– Check loss function:

• Is it appropriate for the task you want to solve?
• Does it have degenerate solutions? Check “pull-up” term.

• Model is underperforming
– Compute flops and nr. params. →  if  too small, make net larger
– Visualize hidden units/params → fix optimization

• Model is too slow
– Compute flops and nr. params. → GPU,distrib. framework, make net smaller 

[M. Ranzato]



Convolutional Network Layer 1 Filters



Layer 1: Patches that give largest activations
Layer 2

Layer 3: Top-9 PatchesLayer 3 Layer 5



Initialization

LeCun et al 1998 “Efficient Backprop”
Glorot & Bengio 2010 “Understanding the difficulty of  training deep feedforward neural networks”

1 3 5 7 9 11 13 15
depth

exploding

vanishing

ideal

Forward:

!"# $ = ('
(
)(*+!"# ,( )!"#[/]

Backward:

!"# 1
1/ = ('

(
)(234!"# ,( )!"#[

1
1$]

Both forward (response) and backward (gradient) 
signal can vanish/explode

[Slide: Kaiming He]



Initialization

• Initialization under linear assumption

LeCun et al 1998 “Efficient Backprop”
Glorot & Bengio 2010 “Understanding the difficulty of  training deep feedforward neural networks”

∏" #"
$%&'( )" = +,#-./0 (healthy forward)

and
∏" #"

123&'( )" = +,#-.40(healthy backward)

#"
$%&'( )" = 1

or*
#"
123&'( )" = 1

*: #"
123 = #"67

$% , so 81%93:;
81%93<;

=
%=>?@
ABC

%DEF?@
GH < ∞.

It is sufficient to use either form.

“Xavier” init in Caffe

[Slide: Kaiming He]



Initialization

• Initialization under ReLU

∏"
#
$ %"

&'()* +" = -.%/012 (healthy forward)
and

∏"
#
$ %"

345()* +" = -.%/062(healthy backward)

1
2%"

&'()* +" = 1
or

1
2%"

345()* +" = 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. ICCV 2015.

With 9 layers, a factor of  2 per layer has 
exponential impact of  2:

“MSRA” init in 
Caffe

[Slide: Kaiming He]



Initialization

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. ICCV 2015.

ours

Xavier

22-layer ReLU net:
good init converges faster

!"#$ % = 1
ours
Xavier

30-layer ReLU net:
good init is able to converge

1
2!"#$ % = 1

1
2!"#$ %
= 1!"#$ % = 1

*Figures show the beginning of  training

[Slide: Kaiming He]



Simply stacking layers?

0 1 2 3 4 5 60 

10

20

iter. (1e4)

train error (%)

0 1 2 3 4 5 60

10

20

iter. (1e4)

test error (%)
CIFAR-10

56-layer

20-layer

56-layer

20-layer

• Plain nets: stacking 3x3 conv layers…
• 56-layer net has higher training error and test error than 20-layer net

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

[Slide: Kaiming He]



Simply stacking layers?
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56-layer
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plain-18
plain-34

ImageNet-1000

34-layer

18-layer

• “Overly deep” plain nets have higher training error
• A general phenomenon, observed in many datasets

solid: test/val
dashed: train

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

[Slide: Kaiming He]



7x7 conv, 64, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2
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3x3 conv, 512

3x3 conv, 512

fc 1000

a shallower
model

(18 layers)

a deeper
counterpart
(34 layers)

7x7 conv, 64, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128
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3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

fc 1000

“extra” 
layers

• Richer solution space

• A deeper model should not have higher 
training error

• A solution by construction:
• original layers: copied from a learned 

shallower model
• extra layers: set as identity
• at least the same training error

• Optimization difficulties: solvers cannot 
find the solution when going deeper…

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

[Slide: Kaiming He]



Deep Residual Learning

• Plain net

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

any small
subnet

!

"(!)

weight layer

weight layer

relu

relu

" ! is any desired mapping,

hope the small subnet fit "(!)

[Slide: Kaiming He]



Deep Residual Learning

• Residual net

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

! " is any desired mapping,

hope the small subnet fit !(")
hope the small subnet fit %(")

let ! " = % " + "
weight layer

weight layer

relu

relu

"

! " = % " + "

identity
"

%(")

[Slide: Kaiming He]



Deep Residual Learning

• ! " is a residual mapping w.r.t. identity

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

• If  identity were optimal,
easy to set weights as 0

• If  optimal mapping is closer to identity,
easier to find small fluctuations

weight layer

weight layer

relu

relu

"

# " = ! " + "

identity
"

!(")

[Slide: Kaiming He]



CIFAR-10 experiments
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CIFAR-10 ResNets
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• Deep ResNets can be trained without difficulties
• Deeper ResNets have lower training error, and also lower test error

solid: test
dashed: train

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

[Slide: Kaiming He]



ImageNet experiments
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34-layer

18-layer
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34-layer

• Deep ResNets can be trained without difficulties
• Deeper ResNets have lower training error, and also lower test error

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

[Slide: Kaiming He]



ImageNet experiments

• A practical design of  going deeper

3x3, 64

3x3, 64

relu

relu

64-d

3x3, 64

1x1, 64
relu

1x1, 256
relu

relu

256-d

all-3x3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

bottleneck
(for ResNet-50/101/152)

similar 
complexity

[Slide: Kaiming He]



ImageNet experiments

7.4

6.7

6.1
5.7

4

5

6

7

8

ResNet-34ResNet-50ResNet-101ResNet-152
10-crop testing, top-5 val error (%)

this model has
lower time complexity

than VGG-16/19

• Deeper ResNets have lower error

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

[Slide: Kaiming He]



Issues on learning deep models

•Representation ability

•Optimization ability

•Generalization ability

• Ability of model to fit training data, if 
optimum could be found

• If model A’s solution space is a superset of 
B’s,  A should be better.

• Feasibility of finding an optimum

• Not all models are equally easy to optimize

• Once training data is fit, how good is the 
test performance

[The Tradeoffs of Large Scale Learning, Bottou & Bousquet, 2011]
[Slide: Kaiming He]



How do ResNets address these issues?

•Representation ability

•Optimization ability

•Generalization ability

• No explicit advantage on representation 
(only re-parameterization), but

• Allow models to go deeper

• Enable very smooth forward/backward prop

• Greatly ease optimizing deeper models 

• Not explicitly address generalization, but

• Deeper+thinner is good generalization

[The Tradeoffs of Large Scale Learning, Bottou & Bousquet, 2011]
[Slide: Kaiming He]



Deep Learning for Computer Vision

backbone 
structure

ImageNet
data

classificatio
n network

pre-
train

features

detection
network

(e.g. R-CNN)

segmentation
network

(e.g. FCN)
…

...

human pose
estimation

network

depth
estimation

network

target
data

fine-tune

[Slide: Kaiming He]



Example: Object Detection

ü boat
ü person

Image Classification
(what?)

Object Detection
(what + where?)

[Slide: Kaiming He]



Object Detection: Faster R-CNN

• Faster R-CNN
• Solely based on CNN
• No external modules
• Each step is end-to-end

End-to-End
training

image

CNN

feature 
map

Region Proposal Net

proposals

features

RoI pooling

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

[Slide: Kaiming He]



Mask R-CNN
Faster R-CNN

FCN on RoI
Jonathan Long, Evan Shelhamer, Trevor Darrell. “Fully Convolutional Networks for Semantic Segmentation”. CVPR 2015.

Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.
Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick. “Mask R-CNN”. ICCV 2017.

[Slide: Kaiming He]



Mask R-CNN frame-by-frame



pixels in, pixels out

semantic
segmentation

7
8

monocular depth + normals Eigen & Fergus 2015

boundary prediction Xie & Tu 2015optical flow Fischer et al. 2015

colorization
Zhang et al.2016

[Slide: Evan Shelhamer]
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Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the di↵erent operations.

as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [1] has two drawbacks. First, it
is quite slow because the network must be run separately for each patch, and
there is a lot of redundancy due to overlapping patches. Secondly, there is a
trade-o↵ between localization accuracy and the use of context. Larger patches
require more max-pooling layers that reduce the localization accuracy, while
small patches allow the network to see only little context. More recent approaches
[11,4] proposed a classifier output that takes into account the features from
multiple layers. Good localization and the use of context are possible at the
same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled

U-Net: Convolutional Network for Biomedical Image 
Segmentation

U-Net: Convolutional Networks for Biomedical Image Segmentation: Ronneberger et.al.
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U-Net: Convolutional Network for Biomedical Image 
Segmentation 5

a b c d

Fig. 3. HeLa cells on glass recorded with DIC (di↵erential interference contrast) mi-
croscopy. (a) raw image. (b) overlay with ground truth segmentation. Di↵erent colors
indicate di↵erent instances of the HeLa cells. (c) generated segmentation mask (white:
foreground, black: background). (d) map with a pixel-wise loss weight to force the
network to learn the border pixels.

where ` : ⌦ ! {1, . . . ,K} is the true label of each pixel and w : ⌦ ! R is
a weight map that we introduced to give some pixels more importance in the
training.

We pre-compute the weight map for each ground truth segmentation to com-
pensate the di↵erent frequency of pixels from a certain class in the training
data set, and to force the network to learn the small separation borders that we
introduce between touching cells (See Figure 3c and d).

The separation border is computed using morphological operations. The
weight map is then computed as

w(x) = wc(x) + w0 · exp
 
� (d1(x) + d2(x))2

2�2

!
(2)

where wc : ⌦ ! R is the weight map to balance the class frequencies, d1 : ⌦ ! R
denotes the distance to the border of the nearest cell and d2 : ⌦ ! R the distance
to the border of the second nearest cell. In our experiments we set w0 = 10 and
� ⇡ 5 pixels.

In deep networks with many convolutional layers and di↵erent paths through
the network, a good initialization of the weights is extremely important. Oth-
erwise, parts of the network might give excessive activations, while other parts
never contribute. Ideally the initial weights should be adapted such that each
feature map in the network has approximately unit variance. For a network with
our architecture (alternating convolution and ReLU layers) this can be achieved
by drawing the initial weights from a Gaussian distribution with a standard
deviation of

p
2/N , where N denotes the number of incoming nodes of one neu-

ron [5]. E.g. for a 3x3 convolution and 64 feature channels in the previous layer
N = 9 · 64 = 576.

3.1 Data Augmentation

Data augmentation is essential to teach the network the desired invariance and
robustness properties, when only few training samples are available. In case of

7

a b c d

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth
(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).

Table 2. Segmentation results (IOU) on the ISBI cell tracking challenge 2015.

Name PhC-U373 DIC-HeLa

IMCB-SG (2014) 0.2669 0.2935
KTH-SE (2014) 0.7953 0.4607
HOUS-US (2014) 0.5323 -
second-best 2015 0.83 0.46
u-net (2015) 0.9203 0.7756

algorithms on this data set use highly data set specific post-processing methods1

applied to the probability map of Ciresan et al. [1].
We also applied the u-net to a cell segmentation task in light microscopic im-

ages. This segmenation task is part of the ISBI cell tracking challenge 2014 and
2015 [10,13]. The first data set “PhC-U373”2 contains Glioblastoma-astrocytoma
U373 cells on a polyacrylimide substrate recorded by phase contrast microscopy
(see Figure 4a,b and Supp. Material). It contains 35 partially annotated train-
ing images. Here we achieve an average IOU (“intersection over union”) of 92%,
which is significantly better than the second best algorithm with 83% (see Ta-
ble 2). The second data set “DIC-HeLa”3 are HeLa cells on a flat glass recorded
by di↵erential interference contrast (DIC) microscopy (see Figure 3, Figure 4c,d
and Supp. Material). It contains 20 partially annotated training images. Here we
achieve an average IOU of 77.5% which is significantly better than the second
best algorithm with 46%.

5 Conclusion

The u-net architecture achieves very good performance on very di↵erent biomed-
ical segmentation applications. Thanks to data augmentation with elastic defor-

1 The authors of this algorithm have submitted 78 di↵erent solutions to achieve this
result.

2 Data set provided by Dr. Sanjay Kumar. Department of Bioengineering University
of California at Berkeley. Berkeley CA (USA)

3 Data set provided by Dr. Gert van Cappellen Erasmus Medical Center. Rotterdam.
The Netherlands

U-Net: Convolutional Networks for Biomedical Image Segmentation: Ronneberger et.al.



• It is easy to get billions of public images and 
hashtags 

• Hashtags are more structured than captions  

• Hashtags were often assigned to make images 
"searchable"

Hashtag 
Supervision 

 X

#cheesecake #birthday

Exploring the Limits of 
Weakly Supervised Pretraining

[Mahajan et al., ECCV 2018]

[Slide: Laurens van der Maaten]



• But hashtags are not perfect supervision

• Some hashtags are not visually relevant

• Other hashtags are not in the photo

• And there are many false negatives

• Is this noise bias or variance? Is scaling up 
sufficient to reduce the variance?

Hashtag 
Supervision

82

#cat #travel #thailand #family
#building #fence #...

Exploring the Limits of 
Weakly Supervised Pretraining

[Mahajan et al., ECCV 2018]

[Slide: Laurens van der Maaten]



• Select a set of hashtags

• Download all public Instagram images that has 
at least one of these hashtags

• Use WordNet synsets to merge hashtags into 
canonical form (merge #brownbear and 
#ursusarctos)

• Final dataset has ~3.5 billion images 

Experiments

83

[Slide: Laurens van der Maaten]


