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Part 2 Schedule

e Motivation

* Unsupervised Learning
— Literature review

— Generative models of video
* [Stochastic Video Generation, Denton et al., ICML 2018]

* Selt-supervised learning
— Review of approaches from vision

— [Unsupervised Learning by Predicting Noise,
Bojanowski & Joulin, ICML 2017]



Unsupervised Learning

* Learning without labels (or from just a few)
— Need to capture structure inherent in data

* Practical importance:

— Very uneven distribution of categories in real-world (Zipt’s law)

— Lots of rare categories with few examples

Objects in Vision Dataset (LabelMe) Words in Wikipedia Corpus
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Arguments for Unsupervised Learning

* Want to be able to exploit unlabeled data

— Vast amount of it often available

— Essentially free

* Good regularizer for supervised learning

— Helps generalization
— Transter learning

— Zero/one/few - shot learning



Unsupervised Learning

* Biological argument [from G. Hintonl:

— Our brains have 10715 connections
— We live for 1079 secs
— Need 1076 bits/sec

— Insufficient information from occasional high level label

— Only source with enough information is input itself

* Challenging problem: big focus on many DL
groups



Historical Note

* Deep Learning revival started in ~20006
— Hinton & Salakhudinov Science paper on RBMs

* Unsupervised Learning was focus from 20006-

2012

* In ~2012 great results in vision, speech with
supervised methods appeared

— Less interest in unsupervised learning



Overview of Unsupervised Approaches

* Given just data {X}

— Unlike supervised learning there are no provided
labels {Y}

1. Density modeling, i.e. build model of p(X)
— Enables sampling of new data
— Evaluate probability of a data point
— Can be conditional model, e.g. p(X_t | X_{t-1},...)

— Requires (deep) generative architectures



2. “Selt supervised” learning

Find supervision signal y within the input data

This signal is then used as a target:
y: X =Y

x — y(x)

Allows the use of standard supervised learning losses and

architectures |

Pre-training of representation for subsequent task
Typically involves some 1nsight into domain to pick y

Inspired by word2vec (Mikolov et al. 2013)

— E.g. The cat sat on the mat
— X = {The, cat, NULL, on the mat}
— Y = {sat}



1. Density Modeling of Natural Signals
using Deep Learning



Auto-Encoder

Features
Feed-back /
generative / Decoder Feed-forward /
top-down bottom-up patk
path
Input

* Encoder/Decoder will be deep network
» Slightly different architectures for decoder (needs to output image)
* Architecture depends on application



Variational Auto-Encoder

[Kingma & Welling 2013]
Features z <::“> Prior p(z)

@ ﬁ e.g. N(0,I)

Decoder

At training
P (X ‘ Z) time only

U i

Input x

* Makes auto-encoder into a true generative model

Eq(zle) log p(z|2) — Drr(q(2]2)]Ip(2))
Reconstr:l;cion term Pl‘iO?rterm




Generative Adversarial Networks
[ Goodfellow et al. 2014]
Features z <: Prior p(z)

e.g. N(0,I)
Decoder-only

model but with
Generator adversarial loss term

G

See Sebastian Nowozin’s lectures

Sam@ple 5\( :‘[> -

* Mini—max game between G and D

m(%n max V(D,G) = Egrpp (@) log D(x)] +E,p, (2)[log(l — D(G(2)))]




Generating Samples

High-level features <:| Prior p(z)

=
Decoder,

U

- Push through Features
decoder network ]
Decoder,

- Sample from prior p(z)

U

Features

:
U

Generated example




Conditional Generation

E.g. consider video data g;‘> High-level features <:| Prior p(z)

Decoder,

* Encode previous
frames(s)

:>|

Features Features

* [Optional] add latent u

noise from prior Decoder
,

e Reconstruct next frame {}

via decoder Features Features

=
Decoder,

<:‘l

c A
Previous frame x, Generated frame X,,;



Supervised Fine-Tuning

High-level features @ Label y

< ¥
After unsupervised

“pre-training”, refine -
model with few labels on s ﬂ
Feature
J

target task

Unsupervised

training phase learns I
Feature
L]

“good” representation

i 4

Previous frame x,



Stacked Auto-Encoders

High-level features

e Ladder Networks M A
Rasmus et al. 2015
[' Reconstruc!cion -
constraint at each " []
layer Features
* Trained end-to-end O\
Encr,
* (Can be trained layer-wise
- Stacked RBMs P—

[Hinton & Salakhutdinov 2006 ]

=

Input



Many Others Approaches

* Autoencoder (most unsupervised Deep
Learning methods)

— Restricted / Deep Boltzmann Machines
— Denoising autoencoders
— Predictive sparse decomposition

* Decoder-only

— Sparse coding & hierarchical variants



Pixel-CNN

[van den Oord et al., arXiv 1606.05328, 2016]

° . . . . n2
Conditional generative model of images p(x) = [[ p@ilars s i),
1=1

* Generate each pixel, in raster-scan order

Just predict distribution over a single pixel (can be multi-modal)

See also Video Pixel Networks [Kalchbrenner et al., 2016],
NADE [Larochelle & Murray 2011] & RIDE [Theis and Bethge, NIPS 2015].
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Wavenet

[van den Oord et al., arXiv 1609.03499, 2016]

Generattve model of raw speech waveform
T

Condition on previous parts of waveform p(x)=][p(z:|21,...,2:21)
. . t=1
Dilated causal convolution layers

Discrete output distribution (use softmax)
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An aside:
Reasoning and Planning in World

* Solving Al requires more than just perception

* HEssence of intelligence Perception

is ability to predict /\

 To plan ahead &
SR

World
Simulator

need to simulate v;or|d Robo

world & reason \‘/ System

about possible actions Action

[Craik 1943; Dennett 1978; Sutton & Barto 1981; Sutton 1991]



Planning in the World

* 'Try out different action sequences in mind of
robot/agent

e Need accurate world simulator

Agent
World . World . World . World
Simulator Simulator Simulator Simulator
Action 1 Action 2 Action 3
—»{ Actor > Actor > Actor »  Actor [—>
—> Critic | Critic » Critic > Critic

[Yann LeCun]



Video Prediction

* Predict pixels of next frame, given previous ones
* Enables learning of world model/simulator

* Challenging due to inherent uncertainty in the dynamics
of the world

e Pixel wise loss functions can cause blurring due to
multiple futures being accounted for

t=0s t=1s t=2s t =4s

ground
truth

PhysNet

[Lerer, Gross, Fergus Pprediction

ICML 2016]




Video Prediction

* Lots of prior work, e.g.:
— LSTMs: Srivastava et al. (2015); Finn et al. (20106)
— Discrete latent variables: Ranzato et al. (2014)
— Optical flow: Xue et al. (2016); Walker et al. (2015)

— Action-conditional: Chiappa et al. (2017) and Oh et al.
(2015)

[Mathieu, Couprie,
LeCun, ICLR 2016]




Handling Uncertainty

Video prediction is challenging due to inherent
uncertainty in the dynamics of the world

Pixel wise loss functions can cause blurring due to
multiple futures being accounted for

Two broad approaches:
o GANs (Mathieu et al. 2015; Vondrick et al. 2016)

o Latent variables (Henaft et al., 2017; Babaeizadeh et
al. 2018; Denton & Fergus 2018)



Stochastic Video Generation

with a Learned Prior
ICMIL. 2018

Emily Denton! and Rob Fergus!?

1

facebook
Artificial Intelligence Research




Stochastic video generation, Denton & Fergus 2018

Xt

Learned prior dependent on
T all previous frames
LSTM :> /
!

@ Z, ~ N ( Mt/)(t) ,O-lp(t)l) ® (Combines a deterministic frame predictor

with time-dependent stochastic latent

I 1 1 variables
LSTMy, [ )
X1 1
: @ ® [carned prior over the latent variables can
: ___________ h can be iﬁterpreted as a predictive model of
uncertainty

[Denton et al. ICML 2018§]



Training
at time ft:

Prediction model \
_.| H H><>

[Denton et al. ICML 2018§]



Training
at time ft:

X,
Utilize recurrent approximate
inference network (not used at

test time)
LSTM ‘D /

—\ Zt ~L/ON (U, N

[e\e) TT
K X1 / LSTM
X

Prediction model \

Train model by optimize evidence
lower bound (ELBO)

k Inference model

\_

[Denton et al. ICML 2018§]



Training
at time ft:

Prediction model

|
N
L
.
&
/

Reconstruction
loss
L

k Inference model

[Denton et al. ICML 2018§]



Training
at time ft:

Prediction model

Reconstruction
loss

Prior loss

DKL

/
/

(N (uyh

Tyg)

LSTMd)

k Inference model
k Learned prior

K X1

[Denton et al. ICML 2018§]



Training
at time t:

A
X
Prior loss

DKL

Prediction model
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[Denton et al. ICML 2018§]



Generation
at time ¢:

Prediction model \
_.| H H><>

[Denton et al. ICML 2018§]



Generation
at time ¢:

Prediction model \
H c_rl><>

Generated frames passed back into the
input of the prediction model and the prior

N~

k Learned prior

[Denton et al. ICML 2018§]



Babaeizadeh et al. (2018)

Inference
Feed forward net encodes entire video

sequence:

z. ~ qy(2| X1.1)

Denton et al. (2018)

Inference
Recurrent net produces different distribution

for every #
qy(z | x) =H qu[t](zt| X1t )
t

Zy ~ Q¢(t)<zt | X1 )

[Babaeizadeh et al. Stochastic variational video prediction. ICLR, 2078.]

[Denton et al. ICML 2018§]



Babaeizadeh et al. (2018) Denton et al. (2018)

Inference Inference
Feed forward net encodes entire video Recurrent net produces different distribution
sequence: for every #
7| x =H Uz, | x,.
Z, ~ C1¢(Z| xl:T) CI¢( | ) t Q¢ ( t | 1:t )

Zy ~ qd>(t)<zt | X1 )

Generation Generation

z,~ N(O,I) z. ~N (.uz/)(xl:t-l) ,O-l/J(Xl:t-l )D

[Babaeizadeh et al. Stochastic variational video prediction. ICLR, 2017.]

[Denton et al. ICML 2018§]



Stochastic Moving MNIST 9 9 9 9 9

e Stochastic variant of the Moving MNIST
dataset (Srivastava et al., 2015)

Green: Ground truth input
Red: generated frames

e Model conditioned on 5 frames and
trained to predict next 10 frames

e Best SSIM chosen from 100
samples

[Denton et al. ICML 2018§]



Learned prior can be interpreted as a model of uncertainty

Prior predicts low variance distribution for deterministic parts of the video, high
variance distribution as points of uncertainty

Black dashed lines: Red dashed lines:

Predicted variance from digit 1 collides with wall  digit 2 collides with wall
our models learned prior

Vari_ance of predicted pl:iqr distribu_tiA(r_om SVGTLP on|Stochastic Moving MNIST

003 1 1 1 1 1 \I 1

Average variance

‘p____________g_g___".—

b

1 1 1 1 1 1 1 1 1 L1 1 11 1 1 1 1
12 14 21 23 29 31 43 a7 51 6061 68 743 80 83 88 90
Time step

[Denton et al. ICML 2018§]



Ground truth

SVG-LP

samples

samples

Digit trajectory prior to collision

Peaked predicted and ground truth

distributions prior to collision

Initial digit trajectory

’ (center points)
@l

-4
4 0 4
Ax

[Denton et al. ICML 2018§]



BAIR robot push dataset (Ebert et al., 2017)

e Sawyer robotic arm pushing a variety of objects around a table top
e 30 frames in sequence, 64x64 resolution
e Movements of the arm are highly stochastic

[Ebert et al. Self-supervised visual planning with temporal skip connections. CoRL, 2017.]

[Denton et al. ICML 2018]



BAIR robot push dataset

SVG-LP
(ours)
T=10
Babaeizadeh
et al. (2018)
T =10

Bes
Truth PSNR Sample Sample Sample

[Babaeizadeh et al. Stochastic variational video prediction. ICLR, 2018.]

[Denton et al. ICML 2018]



BAIR robot push dataset

SVG-LP
(ours)
T=10
Babaeizadeh
et al. (2018)
T =10

Ses 2
Truth PSNR Sample Sample Sample

[Babaeizadeh et al. Stochastic variational video prediction. ICLR, 2018.]

[Denton et al. ICML 2018]



BAIR robot push dataset

SVG-LP
(ours)
T=10
Babaeizadeh
et al. (2018)
T =10

Hes
Truth PSNR Sample Sample Sample

[Babaeizadeh et al. Stochastic variational video prediction. ICLR, 2018.]

[Denton et al. ICML 2018]



2. Selt-supervised Learning



Unsupervised learning
as a pre—training step

Target task is high-level understanding of signal
— E.g Classtfication, detection

Unsupervised learning to pre-train models
— Then fine-tune with labels on target task

Some success in NL.P
— Word2vec for word embeddings

— Language modeling for machine translation

No equivalent success in computer vision or other domains

But there are a lot of attempts!



Range of self-supervised systems

richer data

2
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Range of self-supervised systems

videos

richer data

e Doersch et al. (2015) ¢ Wang et al. (2015)
¢ Zhang et al. (2016) Micra ef al (2016&)
¢ Zhang et al. (2017) ¢ Misra eral. (2010)
¢ Noroozi et al. (2016) ¢ Pathak et al. (2017)
e Pathak et al. (2016)




Range of self-supervised systems

videos sound & depth

richer data

¢ L;/IOC‘-’SC'-“- CL’I al(.ﬂ(%@).\i) e Wang et al. (2015) ¢ Owens et al. (2016)
¢ Zhang et al. (2016) i n - (A1

Tl o 017 e Misra et al. (2016) e Zhang et al. (2017)
¢ Zhang et al. (2017) ) ' \ ’ Bancal er ol (9016
 Noroozi et al. (2016) * Pathak et al. (2017) ¢ Bansal et al. (2016)
e Pathak et al. (2016)




Range of self-supervised systems

K

. actions
videos  sound & depth
richer data

N L}OC‘”SCI-“ 5'} 1‘]-( (20/]-\5) ¢ Wang et al. (2015) ¢ Owens et al. (2016) ¢ Agarwal et al. (2015)
Thane et a ), © ayaraman et al. (2 5)
¢ Lnang € al. \.40].\)/ Ve ~ = e L.yv“..x"“.x"‘. et al. (2015)
g sea et al. (2016) e Zhane et al. (2017) 1€
- - | / Nange el p a 9
¢ Zh ang et al. (2017) e Misra et al. (2016) S cral t:k’ . {/ e l‘mLo et al. \4%6) .
e Norouzi et al. (2016) * Pathak et al. (2017) ¢ Bansal et al. (2016) ¢ Agarwal et al. (2016)
e Pathak et al. (2016) i :‘:‘:nm < “: \f%z%
e Pinto et al. (2016)
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Colorful Image Colorization
Richard Zhang, Phillip Isola, Alexei (Alyosha) Efros

slides from Zhang

http://richzhang.github.io/colorization/
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“1Semantics? Higher-
Gravyscale i image -
X ¢ RIxW3 level abstraction? [ x v)

“Free”
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Context as supervision

Collobert & Weston 2008; Mikolov et al. 2013

store-bought gimmicks and appliances, the toasters and




Unsupervised Visual Representation Learning by Context Prediction

[Doersch et al. ICCV 2015]




Relative Position Task

8 possible locations

NN CNR : ”
I I y p

Patch Sample Second Patch




Unsupervised Learning of Visual Representations
by Solving Jigsaw Puzzles, Noorozi et al. (2016)

What do we learn when we solve a Jigsaw puzzle?

;!i

[Noorozi et al. (2016)]



Hash Set

e Ee Reorder patches

according fo the selected

hash table
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[Noorozi et al. (2016)]
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[Noorozi et al. (2016)]



Feature Learning by Inpainting

[Context Encoders: Feature Learning by Inpainting, Pathak et al. (2016)]

[Pathak et al. (2016)]



Context Encoders

Encoder Decoder

* Encoder can be substituted with any network
architecture like AlexNet etc.

* Decoder is a set of UpConv/deconv/frac-strided-
conv layers

[Pathak et al. (2016)]



Combined L2 + GAN loss

Input Image L2 Loss Adversarial Loss Joint Loss

[Pathak et al. (2016)]



Unsupervised Learning of Visual Representations
using Videos, Wang & Gupta 2015

Idea: Object Tracking in Videos

[Wang & Gupta 2015]



12
/,

Learning to Rank

N

Conv Conv Conv
Net Net Net

Tracked Neggtive

(First Frame) (Last Frame) (Random)
(b) Samese-triplet Network

(a) Unsupervised Trackingin Videos

Approach

D: Distancein deep feature space

(¢) Ranking Objective

Use object tracking in
videos

Classify if patches belong

to the same track or not

[Wang & Gupta 2015]



Patch Mining In Videos
* Track 8M patches in 100K videos from YouTube.

* Use oft-the-shelf tracking algorithms with no learning.

[Wang & Gupta 2015]



% Average Precision

VOC 2007 Detection Performance
(pretraining for R-CNN)

L VGG (16-layer)

61.7

Q)
U1

ImageNet Layout| Tracking No Pretraining

[Wang & Gupta 2015]



Leveraging Temporal Video Structure

[Shuftle and learn: unsupervised learning using temporal order

verification, Misra et al. ECCV 2016]
* Videos have temporal structure

* Can we use this to learn an image representation?




[Misra et al. ECCV 2016]



lexNet architecture

(-
S |o
c |8 Correct
§ q% /Incorrect
18 |© Tuple
=== Shared
parameters

[Misra et al. ECCV 2016]



Results: Finetune on Action
Recognition

Dataset

Initialization

Mean Classification Accuracy

UCF101 Random 38.6
Ours 50.7

ImageNet pre-trained 67.1

HMDB5T Random 13.3
Ours 18.1

UCF101 pre-trained 15.2

ImageNet pre-trained 28.5

[Misra et al. ECCV 2016]




Visual + Audio

[Ambient Sound Provides Supervision for Visual Learning,
[Owens et al. (2016)]

sources
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Main i1ssue with all these methods

* All these models rely on expert knowledge

* Need to define y(x) for each new domain

* Not clear how to select a y(x) that 1s a good
target to learn all-purpose features



[Dosovitskiy et al. ICLLR 2014]

b sl ‘g"’er
;'-" a5 /.k

1 class = smgle image + its
transformations

b

Learn to classify each “class

Domain knowledge about
appropriate transformations

does not scale



Unsupervised Learning by Predicting Noise
[Bojanowski & Joulin, ICML 2017]

Target space

j

Features

{
CIEC10]
>[o©ol - ]
=FE oW (00 0) B[]
]
f(X) p

Assignment

Inspired by Dosovitskiy et al.

Learn mapping from images
to a sphere

Fix targets on sphere

Simultaneously:
— Learn the mapping

— Optimize the assignment
between images and targets



Deep Discriminative Clustering

* We are given a set of n images

{x1,...,2,}
* We want to learn a visual features £ without using

labels

ol .
min ; Hzl/m U(fo(zi),ys)

o1 9
minmin || fo(X) — Y3

* We use the 1.2 loss

[Bojanowski & Joulin, ICML 2017]



Label Collapse Problem

* Optimization over Y would lead to a collapse
* Repulsive costs are tricky to use
* Can impose constraints on Y but hard to

optimize

[Bojanowski & Joulin, ICML 2017]



Fixing the Target Representation

Instead, we fix the target representation

Allow a reassignment between targets and images

Y = PC P={Pc{0,1}"** | P1=1,P'1=1}

Targets C are uniformly sampled on the sphere

1
in min — || fo(X) — PC||3
min min _— || fo(X) IF

Final objective function
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[Bojanowski & Joulin, ICML 2017]



Optimization

e We minimize our cost function in an on-line
fashion

* We use the following algorithm:

Require: T batches of images, A\g > 0

fort={1,...,7T} do
Obtain batch b and representations r
Compute fo(Xp)
Compute P* by minimizing w.r.t. P
Compute VyL(0) using P*
Update 6 < 0 — A\ Vo L(6)

end for

[Bojanowski & Joulin, ICML 2017]



Optimizing the Permutation Matrix

* At theta fixed, the permutation 1s obtained by

solving

max Tr (PC fy (X)").

* Which is a linear program on the set of

permutation matrices O(nb?)

* We can use the Hungarian algorithm

[Bojanowski & Joulin, ICML 2017]



Experimental Setup

* AlexNet architecture
* Learn unsupervised features on ImageNet training set

* Retrain a classifier on top for a target transfer task, i.e.
PASCAL VOC C(Classification / Detection

[Bojanowski & Joulin, ICML 2017]



Baselines

* Self supervised models
— Wang & Gupta — Temporal coherence in videos
— Doersch et al. — Predict context patches
— Zhang et al. — Predict color

— Norouzi & Favaro — Solve jigsaw puzzles

* Unsupervised model
— GAN

— Auto-encoder

— BI-GAN (Donahue et al.)

[Bojanowski & Joulin, ICML 2017]



Pascal VOC - results

Classification Detection

Trained layers fc6-8 all all
ImageNet labels 78.9  79.9 56.8
Agrawal et al. 31.0 54.2 43.9
Pathak et al. 34.6  56.5 44.5
Wang & Gupta  55.6  63.1 47.4
Doersch et al. 55.1 65.3 51.1
Zhang et al. 61.5 65.6 46.9
Autoencoder 16.0  53.8 41.9
GAN 40.5  56.4 -

BiGAN 52.3  60.1 46.9
NAT 56.7  65.3 49.4

* compare favorably to SOTA

* Poor performance of AE /

GAN

[Bojanowski & Joulin, ICML 2017]



Nearest Neighbor Queries

[Bojanowski & Joulin, ICML 2017]



Bojanowski & Joulin Summary

Simple unsupervised approach
No domain expert knowledge
Scales to very large datasets
Close to supervised pipeline

SOTA performance (at the time) amongst unsupervised
methods



Summary

* Power of DL comes from ability to learn good
representations

* Wide range of Unsupervised / Self-Supervised
methods that devise “free” supervisory signals
which can be used to learn representations via

DL
* Unsolved problem:
— Should be domain agnostic

— Should be (nearly) as good as supervised methods






