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We propose a neural network model “MemN2N” with external memory, which performs 
multiple lookups on memory before producing output. It is a soft attention version of  
“Memory Network” [1], which has hard attention and requires explicit supervision of  attention, 
which severely limits its application. Furthermore, MemN2N can be trained end-to-end with 
backpropagation using supervision only on the final output.  

We proposed an external memory model with 
soft attention. The model can be trained end-to-
end with backpropagation. The experiments 
show good results on a toy QA tasks and 
competitive performance on language modeling. 
We also showed the model can be extended to 
writing and reinforcement learning. 
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•  Every memory location is readable 
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Attention during memory hops 

Text8 (Wikipedia) 

Story (1: 1 supporting fact) Support Hop 1 Hop 2 Hop 3 Story (2: 2 supporting facts) Support Hop 1 Hop 2 Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03 John dropped the milk. 0.06 0.00 0.00
Mary travelled to the hallway. 0.00 0.00 0.00 John took the milk there. yes 0.88 1.00 0.00
John went to the bedroom. 0.37 0.02 0.00 Sandra went back to the bathroom. 0.00 0.00 0.00
John travelled to the bathroom. yes 0.60 0.98 0.96 John moved to the hallway. yes 0.00 0.00 1.00
Mary went to the office. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 0.00 0.00

Story (16: basic induction) Support Hop 1 Hop 2 Hop 3 Story (18: size reasoning) Support Hop 1 Hop 2 Hop 3
Brian is a frog. yes 0.00 0.98 0.00 The suitcase is bigger than the chest. yes 0.00 0.88 0.00
Lily is gray. 0.07 0.00 0.00 The box is bigger than the chocolate. 0.04 0.05 0.10
Brian is yellow. yes 0.07 0.00 1.00 The chest is bigger than the chocolate. yes 0.17 0.07 0.90
Julius is green. 0.06 0.00 0.00 The chest fits inside the container. 0.00 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00 The chest fits inside the box. 0.00 0.00 0.00

Where is John?   Answer: bathroom    Prediction: bathroom Where is the milk?   Answer: hallway    Prediction: hallway

What color is Greg?  Answer: yellow    Prediction: yellow Does the suitcase fit in the chocolate?   Answer: no    Prediction: no

Figure 2: Example predictions on the QA tasks of [21]. We show the labeled supporting facts
(support) from the dataset which MemN2N does not use during training, and the probabilities p of
each hop used by the model during inference. MemN2N successfully learns to focus on the correct
supporting sentences.

Penn Treebank Text8
# of # of memory Valid. Test # of # of memory Valid. Test

Model hidden hops size perp. perp. hidden hops size perp. perp.
RNN [15] 300 - - 133 129 500 - - - 184
LSTM [15] 100 - - 120 115 500 - - 122 154
SCRN [15] 100 - - 120 115 500 - - - 161
MemN2N 150 2 100 128 121 500 2 100 152 187

150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the k

th hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple
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MemN2N applied to bAbI task 

words. The model writes all x to the memory up to a fixed buffer size, and then finds a continuous
representation for the x and q. The continuous representation is then processed via multiple hops
to output a. This allows back-propagatation of the error signal through multiple memory accesses
back to the input during training.

2.1 Single Layer
We start by describing our model in the a single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The memory vector mi of dimension d is computed by first embedding each xi in a continuous
space, in the simplest case, using an embedding matrix A (of size d ⇥ V ). Thus, the entire set of
{xi} are converted into memory vectors {mi}. The query q is also embedded (again, in the simplest
case via another embedding matrix B with the same dimensions as A) to obtain an internal state
u. In the embedding space, we compute the match between u and each memory mi by taking the
inner product followed by a softmax:

pi = Softmax(uT
mi). (1)

where Softmax(zi) = e
zi/

P
j e

zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).
2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:
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150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the k

th hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple
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•  Data 
–  Penn Treebank:  1M words,  10K vocab 
–  Text8 (Wikipedia):  16M words,  40K vocab 

•  Model: RNN controller, layer-wise weight tying 
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Experiment on bAbI Q&A data  (http://fb.ai/babi) 

•  Data: 20 bAbI tasks (Weston et al. arXiv 1502.05698, 2015b) 
•  Answer questions after reading short story 
•  Small vocabulary, simple language 
•  Different tasks require different reasoning 
•  Training data size 1K or 10K for each task  

our model is somewhat simpler, not requiring operations like sharpening. Furthermore, we apply
our memory model to textual reasoning tasks, which qualitatively differ from the more abstract
operations of sorting and recall tackled by the NTM.

Our model is also related to Bahdanau et al. [2]. In that work, a bidirectional RNN based encoder
and gated RNN based decoder were used for machine translation. The decoder uses an attention
model that finds which hidden states from the encoding are most useful for outputting the next
translated word; the attention model uses a small neural network that takes as input a concatenation
of the current hidden state of the decoder and each of the encoders hidden states. A similar attention
model is also used in Xu et al. [23] for generating image captions. Our “memory” is analogous to
their attention mechanism, although [2] is only over a single sentence rather than many, as in our
case. Furthermore, our model makes several hops on the memory before making an output; we will
see below that this is important for good performance. There are also differences in the architecture
of the small network used to score the memories compared to our scoring approach; we use a simple
linear layer, whereas they use a more sophisticated gated architecture.

We also apply our model to language modeling, an extensively studied task. Goodman [6] showed
simple but effective approaches which combine n-grams with a cache. Bengio et al. [3] ignited
interest in using neural network based models for the task, with RNNs [14] and LSTMs [10, 19]
showing clear performance gains over traditional methods. Indeed, the current state-of-the-art is
held by variants of these models, for example very large LSTMs with Dropout [24] or RNNs with
diagonal constraints on the weight matrix [15]. With appropriate weight tying, our model can be
regarded as a modified form of RNN, where the recurrence is indexed by lookups to the word
sequence rather than indexed by the sequence itself.

4 Synthetic Question and Answering Experiments
We perform experiments on the synthetic QA tasks defined in [21]. A given QA task consists of
a set of statements, followed by a question whose answer is typically a single word (in a few tasks,
answers are a set of words). The answer is available to the model at training time, but must be
predicted at test time. There are a total of 20 different types of tasks that probe different forms of
reasoning and deduction. Here are samples of three of the tasks:
Sam walks into the kitchen. Brian is a lion. Mary journeyed to the den.

Sam picks up an apple. Julius is a lion. Mary went back to the kitchen.

Sam walks into the bedroom. Julius is white. John journeyed to the bedroom.

Sam drops the apple. Bernhard is green. Mary discarded the milk.

Q: Where is the apple? Q: What color is Brian? Q: Where was the milk before the den?

A. Bedroom A. White A. Hallway

Note that for each question, only some subset of the statements contain information needed for
the answer, and the others are essentially irrelevant distractors (e.g. the first sentence in the first
example). In the Memory Networks of Weston et al. [21], this supporting subset was explicitly
indicated to the model during training and the key difference between that work and this one is that
this information is no longer provided. Hence, the model must deduce for itself at training and test
time which sentences are relevant and which are not.

Formally, for one of the 20 QA tasks, we are given example problems, each having a set of I

sentences {xi} where I  320; a question sentence q and answer a. The examples are randomly
split into disjoint train and test sets each containing 1000 examples. Let the jth word of sentence
i be xij , represented by a one-hot vector of length V (where the vocabulary is of size V = 177,
reflecting the simplistic nature of the QA language). The same representation is used for the
question q and answer a. Two versions of the data are used, one that has 1000 training problems
per task and a second larger one with 10,000 per task.

4.1 Model Details
Unless otherwise stated, all experiments used a K = 3 hops model with the adjacent weight sharing
scheme. For all tasks that output lists (i.e. the answers are multiple words), we take each possible
combination of possible outputs and record them as a separate answer vocabulary word.

Sentence Representation: In our experiments we explore two different representations for
the sentences. The first is the bag-of-words (BoW) representation that takes the sentence
xi = {xi1, xi2, ..., xin}, embeds each word and sums the resulting vectors: e.g mi =

P
j Axij and
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Experiment on Language modeling 

Input numbers Reserved for output 

Initial memory content 

words. The model writes all x to the memory up to a fixed buffer size, and then finds a continuous
representation for the x and q. The continuous representation is then processed via multiple hops
to output a. This allows back-propagatation of the error signal through multiple memory accesses
back to the input during training.

2.1 Single Layer
We start by describing our model in the a single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The memory vector mi of dimension d is computed by first embedding each xi in a continuous
space, in the simplest case, using an embedding matrix A (of size d ⇥ V ). Thus, the entire set of
{xi} are converted into memory vectors {mi}. The query q is also embedded (again, in the simplest
case via another embedding matrix B with the same dimensions as A) to obtain an internal state
u. In the embedding space, we compute the match between u and each memory mi by taking the
inner product followed by a softmax:

pi = Softmax(uT
mi). (1)

where Softmax(zi) = e
zi/

P
j e

zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).
2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:
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Extension to reinforcement learning  (http://arxiv.org/abs/1511.07401) 

•  Simple tasks defined on small 2D grid 
environment (e.g. visit multiple goals in order)  

•  Train MemN2N with reinforcement learning 
(policy gradient method) 

•  Environment is represented by text 
–  E.g.  
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Part 2 Schedule

• Motivation
• Unsupervised Learning 
– Literature review
– Generative models of  video

• [Stochastic Video Generation, Denton et al., ICML 2018]

• Self-supervised learning
– Review of  approaches from vision
– [Unsupervised Learning by Predicting Noise, 

Bojanowski & Joulin, ICML 2017] 



Unsupervised Learning
• Learning without labels (or from just a few)
– Need to capture structure inherent in data

• Practical importance:
– Very uneven distribution of  categories in real-world (Zipf ’s law)
– Lots of  rare categories with few examples
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Figure 2. Summary of the database content. (a) Sorted histogram of the number of in-

stances of each object description. Notice that there is a large degree of consensus with

respect to the entered descriptions. (b) Histogram of the number of annotated images as a

function of the area labeled. The first bin shows that 11571 images have less than 10% of

the pixels labeled. The last bin shows that there are 2690 pictures with more than 90% of

the pixels labeled. (c) Histogram of the number of labeled objects per image.

Figure 3. Examples of annotated scenes. These images have more than 80% of their pixels

labeled and span multiple scene categories. Notice that many different object classes are

labeled per image.
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Arguments for Unsupervised Learning

• Want to be able to exploit unlabeled data
– Vast amount of  it often available
– Essentially free

• Good regularizer for supervised learning
– Helps generalization
– Transfer learning
– Zero/one/few - shot learning



Unsupervised Learning

• Biological argument [from G. Hinton]:
– Our brains have 10^15 connections
– We live for 10^9 secs
– Need 10^6 bits/sec
– Insufficient information from occasional high level label
– Only source with enough information is input itself

• Challenging problem: big focus on many DL 
groups



Historical Note

• Deep Learning revival started in ~2006
– Hinton & Salakhudinov Science paper on RBMs

• Unsupervised Learning was focus from 2006-
2012

• In ~2012 great results in vision, speech with 
supervised methods appeared
– Less interest in unsupervised learning



Overview of  Unsupervised Approaches

• Given just data {X}
– Unlike supervised learning there are no provided 

labels {Y}

1.  Density modeling, i.e. build model of  p(X)
– Enables sampling of  new data 
– Evaluate probability of  a data point
– Can be conditional model, e.g. p(X_t | X_{t-1},…)
– Requires (deep) generative architectures



2. “Self  supervised” learning
• Find supervision signal y within the input data
• This signal is then used as a target:

• Allows the use of  standard supervised learning losses and 
architectures

• Pre-training of  representation for subsequent task
• Typically involves some insight into domain to pick y
• Inspired by word2vec (Mikolov et al. 2013)

– E.g.   The cat sat on the mat
– X = {The, cat, NULL, on the mat}
– Y = {sat}



1. Density Modeling of  Natural Signals 
using Deep Learning
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• Encoder/Decoder will be deep network 
• Slightly different architectures for decoder (needs to output image)
• Architecture depends on application
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Variational Auto-Encoder

Encoder
q(z|x)

Decoder
p(x|z)

Input x

Features z

• Makes auto-encoder into a true generative model

At training
time only

Prior p(z)
Motivation

Deep generative models: Intro
Deep generative models: Recent algorithms

Extensions

Variational autoencoders
Generative adversarial networks
Generative moment matching networks
Evaluating generative models

Variational autoencoder

Rearranging the ELBO:
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Prior term

Emily Denton Deep generative models of natural images

[Kingma & Welling 2013] 

e.g. N(0,I)



Generative Adversarial Networks

Discriminator
D

Generator
G

Sample x

Features z

• Mini—max game between G and D

Decoder-only 
model but with 
adversarial loss term

See Sebastian Nowozin’s lectures

Prior p(z)
[Goodfellow et al. 2014] 

e.g. N(0,I)

^

outputs different. The output in question is a single scalar. In GANs, one network produces a rich,
high dimensional vector that is used as the input to another network, and attempts to choose an input
that the other network does not know how to process. 3) The specification of the learning process
is different. Predictability minimization is described as an optimization problem with an objective
function to be minimized, and learning approaches the minimum of the objective function. GANs
are based on a minimax game rather than an optimization problem, and have a value function that
one agent seeks to maximize and the other seeks to minimize. The game terminates at a saddle point
that is a minimum with respect to one player’s strategy and a maximum with respect to the other
player’s strategy.

Generative adversarial networks has been sometimes confused with the related concept of “adversar-
ial examples” [28]. Adversarial examples are examples found by using gradient-based optimization
directly on the input to a classification network, in order to find examples that are similar to the
data yet misclassified. This is different from the present work because adversarial examples are
not a mechanism for training a generative model. Instead, adversarial examples are primarily an
analysis tool for showing that neural networks behave in intriguing ways, often confidently clas-
sifying two images differently with high confidence even though the difference between them is
imperceptible to a human observer. The existence of such adversarial examples does suggest that
generative adversarial network training could be inefficient, because they show that it is possible to
make modern discriminative networks confidently recognize a class without emulating any of the
human-perceptible attributes of that class.

3 Adversarial nets

The adversarial modeling framework is most straightforward to apply when the models are both
multilayer perceptrons. To learn the generator’s distribution pg over data x, we define a prior on
input noise variables pz(z), then represent a mapping to data space as G(z; ✓g), where G is a
differentiable function represented by a multilayer perceptron with parameters ✓g . We also define a
second multilayer perceptron D(x; ✓d) that outputs a single scalar. D(x) represents the probability
that x came from the data rather than pg . We train D to maximize the probability of assigning the
correct label to both training examples and samples from G. We simultaneously train G to minimize
log(1 � D(G(z))). In other words, D and G play the following two-player minimax game with
value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. The procedure is formally presented in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3



Generating Samples

Generated example

High-level features

Features

Features

- Sample from prior p(z)

- Push through
decoder network 

Prior p(z)

Decoder1

Decoder2

Decoder3



Conditional Generation

Generated frame xt+1

High-level features

Features

Features

Prior p(z)

^Previous frame xt
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E.g. consider video data

• Encode previous 
frames(s)
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• After unsupervised
“pre-training”, refine
model with few labels on 
target task 

• Unsupervised
training phase learns
“good” representation
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Stacked Auto-Encoders

Encoder1Decoder1

Input

High-level features

Features

Encoder2Decoder2

Features

Encoder3Decoder3

• Ladder Networks 
[Rasmus et al. 2015]
• Reconstruction 

constraint at each 
layer

• Trained end-to-end

• Can be trained layer-wise
- Stacked RBMs 
[Hinton & Salakhutdinov 2006] 



Many Others Approaches

• Autoencoder (most unsupervised Deep 
Learning methods)
– Restricted / Deep Boltzmann Machines 
– Denoising autoencoders 
– Predictive sparse decomposition 

• Decoder-only
– Sparse coding & hierarchical variants



Pixel-CNN

• Conditional generative model of  images
• Generate each pixel, in raster-scan order
• Just predict distribution over a single pixel (can be multi-modal)
• See also Video Pixel Networks [Kalchbrenner et al., 2016], 
• NADE [Larochelle & Murray 2011] & RIDE [Theis and Bethge, NIPS 2015]. 
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Figure 1: Left: A visualization of the PixelCNN that maps a neighborhood of pixels to prediction for
the next pixel. To generate pixel xi the model can only condition on the previously generated pixels
x1, . . . xi�1. Middle: an example matrix that is used to mask the 5x5 filters to make sure the model
cannot read pixels below (or strictly to the right) of the current pixel to make its predictions. Right:
Top: PixelCNNs have a blind spot in the receptive field that can not be used to make predictions.
Bottom: Two convolutional stacks (blue and purple) allow to capture the whole receptive field.

combine the strengths of both models by introducing a gated variant of PixelCNN (Gated PixelCNN)
that matches the log-likelihood of PixelRNN on both CIFAR and ImageNet, while requiring less than
half the training time.

We also introduce a conditional variant of the Gated PixelCNN (Conditional PixelCNN) that allows
us to model the complex conditional distributions of natural images given a latent vector embedding.
We show that a single Conditional PixelCNN model can be used to generate images from diverse
classes such as dogs, lawn mowers and coral reefs, by simply conditioning on a one-hot encoding
of the class. Similarly one can use embeddings that capture high level information of an image to
generate a large variety of images with similar features. This gives us insight into the invariances
encoded in the embeddings — e.g., we can generate different poses of the same person based on a
single image. The same framework can also be used to analyse and interpret different layers and
activations in deep neural networks.

2 Gated PixelCNN

PixelCNNs (and PixelRNNs) [30] model the joint distribution of pixels over an image x as the
following product of conditional distributions, where xi is a single pixel:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1). (1)

The ordering of the pixel dependencies is in raster scan order: row by row and pixel by pixel within
every row. Every pixel therefore depends on all the pixels above and to the left of it, and not on any
of other pixels. The dependency field of a pixel is visualized in Figure 1 (left).

A similar setup has been used by other autoregressive models such as NADE [14] and RIDE [26].
The difference lies in the way the conditional distributions p(xi|x1, ..., xi�1) are constructed. In
PixelCNN every conditional distribution is modelled by a convolutional neural network. To make
sure the CNN can only use information about pixels above and to the left of the current pixel, the
filters of the convolution are masked as shown in Figure 1 (middle). For each pixel the three colour
channels (R, G, B) are modelled successively, with B conditioned on (R, G), and G conditioned on R.
This is achieved by splitting the feature maps at every layer of the network into three and adjusting the
centre values of the mask tensors. The 256 possible values for each colour channel are then modelled
using a softmax.

PixelCNN typically consists of a stack of masked convolutional layers that takes an N x N x 3 image
as input and produces N x N x 3 x 256 predictions as output. The use of convolutions allows the
predictions for all the pixels to be made in parallel during training (all conditional distributions from
Equation 1). During sampling the predictions are sequential: every time a pixel is predicted, it is
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combine the strengths of both models by introducing a gated variant of PixelCNN (Gated PixelCNN)
that matches the log-likelihood of PixelRNN on both CIFAR and ImageNet, while requiring less than
half the training time.

We also introduce a conditional variant of the Gated PixelCNN (Conditional PixelCNN) that allows
us to model the complex conditional distributions of natural images given a latent vector embedding.
We show that a single Conditional PixelCNN model can be used to generate images from diverse
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of the class. Similarly one can use embeddings that capture high level information of an image to
generate a large variety of images with similar features. This gives us insight into the invariances
encoded in the embeddings — e.g., we can generate different poses of the same person based on a
single image. The same framework can also be used to analyse and interpret different layers and
activations in deep neural networks.
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PixelCNNs (and PixelRNNs) [30] model the joint distribution of pixels over an image x as the
following product of conditional distributions, where xi is a single pixel:
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The ordering of the pixel dependencies is in raster scan order: row by row and pixel by pixel within
every row. Every pixel therefore depends on all the pixels above and to the left of it, and not on any
of other pixels. The dependency field of a pixel is visualized in Figure 1 (left).

A similar setup has been used by other autoregressive models such as NADE [14] and RIDE [26].
The difference lies in the way the conditional distributions p(xi|x1, ..., xi�1) are constructed. In
PixelCNN every conditional distribution is modelled by a convolutional neural network. To make
sure the CNN can only use information about pixels above and to the left of the current pixel, the
filters of the convolution are masked as shown in Figure 1 (middle). For each pixel the three colour
channels (R, G, B) are modelled successively, with B conditioned on (R, G), and G conditioned on R.
This is achieved by splitting the feature maps at every layer of the network into three and adjusting the
centre values of the mask tensors. The 256 possible values for each colour channel are then modelled
using a softmax.

PixelCNN typically consists of a stack of masked convolutional layers that takes an N x N x 3 image
as input and produces N x N x 3 x 256 predictions as output. The use of convolutions allows the
predictions for all the pixels to be made in parallel during training (all conditional distributions from
Equation 1). During sampling the predictions are sequential: every time a pixel is predicted, it is

2

African elephant Coral Reef

Sandbar Sorrel horse

Lhasa Apso (dog) Lawn mower

Brown bear Robin (bird)

Figure 3: Class-Conditional samples from the Conditional PixelCNN.

Figure 4: Left: source image. Right: new portraits generated from high-level latent representation.

Figure 5: Linear interpolations in the embedding space decoded by the PixelCNN. Embeddings from
leftmost and rightmost images are used for endpoints of the interpolation.

7

[van den Oord et al., arXiv 1606.05328, 2016] 



Wavenet

• Generative model of  raw speech waveform
• Condition on previous parts of  waveform
• Dilated causal convolution layers
• Discrete output distribution (use softmax)

• In order to deal with long-range temporal dependencies needed for raw audio generation,
we develop new architectures based on dilated causal convolutions, which exhibit very
large receptive fields.

• We show that when conditioned on a speaker identity, a single model can be used to gener-
ate different voices.

• The same architecture shows strong results when tested on a small speech recognition
dataset, and is promising when used to generate other audio modalities such as music.

We believe that WaveNets provide a generic and flexible framework for tackling many applications
that rely on audio generation (e.g. TTS, music, speech enhancement, voice conversion, source sep-
aration).

2 WAVENET

In this paper we introduce a new generative model operating directly on the raw audio waveform.
The joint probability of a waveform x = {x1, . . . , xT } is factorised as a product of conditional
probabilities as follows:

p (x) =
TY

t=1

p (xt | x1, . . . , xt�1) (1)

Each audio sample xt is therefore conditioned on the samples at all previous timesteps.

Similarly to PixelCNNs (van den Oord et al., 2016a;b), the conditional probability distribution is
modelled by a stack of convolutional layers. There are no pooling layers in the network, and the
output of the model has the same time dimensionality as the input. The model outputs a categorical
distribution over the next value xt with a softmax layer and it is optimized to maximize the log-
likelihood of the data w.r.t. the parameters. Because log-likelihoods are tractable, we tune hyper-
parameters on a validation set and can easily measure if the model is overfitting or underfitting.

2.1 DILATED CAUSAL CONVOLUTIONS

Input

Hidden Layer

Hidden Layer

Hidden Layer

Output

Figure 2: Visualization of a stack of causal convolutional layers.

The main ingredient of WaveNet are causal convolutions. By using causal convolutions, we
make sure the model cannot violate the ordering in which we model the data: the prediction
p (xt+1 | x1, ..., xt) emitted by the model at timestep t cannot depend on any of the future timesteps
xt+1, xt+2, . . . , xT as shown in Fig. 2. For images, the equivalent of a causal convolution is a
masked convolution (van den Oord et al., 2016a) which can be implemented by constructing a mask
tensor and doing an elementwise multiplication of this mask with the convolution kernel before ap-
plying it. For 1-D data such as audio one can more easily implement this by shifting the output of a
normal convolution by a few timesteps.

At training time, the conditional predictions for all timesteps can be made in parallel because all
timesteps of ground truth x are known. When generating with the model, the predictions are se-
quential: after each sample is predicted, it is fed back into the network to predict the next sample.

2

[van den Oord et al., arXiv 1609.03499, 2016] 



An aside: 
Reasoning and Planning in World 

• Solving AI requires more than just perception

• Essence of  intelligence 
is ability to predict

• To plan ahead
need to simulate
world & reason
about possible actions

[Craik 1943; Dennett 1978; Sutton & Barto 1981; Sutton 1991]

World 
Simulator



[Yann LeCun]

Y LeCun
What we need is Model-Based Reinforcement Learning

The essence of intelligence is the ability to predict

To plan ahead, we must simulate the world, so as to minimizes the 
predicted value of some objective function.

Agent
World

Simulator

Actor

Critic

World
Simulator

Actor

Critic

World
Simulator

Actor

Critic

World
Simulator

Actor

Critic

Perception

Planning in the World

• Try out different action sequences in mind of  
robot/agent

• Need accurate world simulator

Action 1 Action 2 Action 3

State t+1 State t+2 State t+3



Video Prediction
• Predict pixels of  next frame, given previous ones
• Enables learning of  world model/simulator
• Challenging due to inherent uncertainty in the dynamics 

of  the world 
● Pixel wise loss functions can cause blurring due to 

multiple futures being accounted for 
t=0s                t = 1s           t = 2s              t = 4s

ground
truth

PhysNet
prediction[Lerer, Gross, Fergus 

ICML 2016]



Video Prediction
• Lots of  prior work, e.g.: 
– LSTMs: Srivastava et al. (2015); Finn et al. (2016)
– Discrete latent variables: Ranzato et al. (2014)
– Optical flow: Xue et al. (2016); Walker et al. (2015)
– Action-conditional: Chiappa et al. (2017) and Oh et al. 

(2015) 

[Mathieu, Couprie, 
LeCun, ICLR 2016]



Handling Uncertainty
● Video prediction is challenging due to inherent 

uncertainty in the dynamics of  the world 
● Pixel wise loss functions can cause blurring due to 

multiple futures being accounted for 

● Two broad approaches:
○ GANs (Mathieu et al. 2015; Vondrick et al. 2016)
○ Latent variables (Henaff et al., 2017; Babaeizadeh et 

al. 2018; Denton & Fergus 2018) 



Stochastic Video Generation 
with a Learned Prior

ICML 2018

Emily Denton1 and Rob Fergus12



Stochastic video generation, Denton & Fergus 2018

LSTM
!

Dec

Enc

xt
^

xt-1

zt	 ~		N ("#(t)	,$#(t)I)

Learned prior dependent on 
all previous frames

Enc

LSTM#

● Combines a deterministic frame predictor 
with time-dependent stochastic latent 
variables

● Learned prior over the latent variables can 
can be interpreted as a predictive model of  
uncertainty

[Denton et al. ICML 2018]
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[Babaeizadeh et al. Stochastic variational video prediction. ICLR, 2018.]

Babaeizadeh et al. (2018) Denton et al. (2018)
Inference
Feed forward net encodes entire video 
sequence:

zt ~ q!(z|	x1:T)

Inference
Recurrent net produces different distribution 
for every t:

q!(z| x)	=								q!(t)(zt	| x1:t		)

zt	 ~	q!(t)(zt	| x1:t		)
t

[Denton et al. ICML 2018]



[Babaeizadeh et al. Stochastic variational video prediction. ICLR, 2017.]

Generation

zt ~ N(0,	I)	

Generation

zt ~ N (!"(x1:t-1	) ,	#"(x1:t-1	)I)

Babaeizadeh et al. (2018) Denton et al. (2018)
Inference
Feed forward net encodes entire video 
sequence:

zt ~ q$(z|	x1:T)

Inference
Recurrent net produces different distribution 
for every t:

q$(z| x)	=								q$(t)(zt	| x1:t		)

zt	 ~	q$(t)(zt	| x1:t		)
t

[Denton et al. ICML 2018]



● Stochastic variant of the Moving MNIST 
dataset (Srivastava et al., 2015)

Green: Ground truth input
Red: generated frames 

● Model conditioned on 5 frames and 
trained to predict next 10 frames 

● Best SSIM chosen from 100 
samples

Stochastic Moving MNIST

[Denton et al. ICML 2018]



Prior predicts low variance distribution for deterministic parts of the video, high 
variance distribution as points of uncertainty 

Learned prior can be interpreted as a model of uncertainty

Black dashed lines: 
digit 1 collides with wall

Red dashed lines: 
digit 2 collides with wallPredicted variance from 

our models learned prior

[Denton et al. ICML 2018]



Digit trajectory prior to collision

Peaked predicted and ground truth
distributions prior to collision

[Denton et al. ICML 2018]



● Sawyer robotic arm pushing a variety of objects around a table top
● 30 frames in sequence, 64x64 resolution
● Movements of the arm are highly stochastic

[Ebert et al. Self-supervised visual planning with temporal skip connections. CoRL, 2017.]

BAIR robot push dataset (Ebert et al., 2017)

[Denton et al. ICML 2018]



Babaeizadeh 
et al. (2018)

SVG-LP
(ours)

BAIR robot push dataset

[Babaeizadeh et al. Stochastic variational video prediction. ICLR, 2018.]

[Denton et al. ICML 2018]



Babaeizadeh 
et al. (2018)

SVG-LP
(ours)

BAIR robot push dataset

[Babaeizadeh et al. Stochastic variational video prediction. ICLR, 2018.]

[Denton et al. ICML 2018]



Babaeizadeh 
et al. (2018)

SVG-LP
(ours)

BAIR robot push dataset

[Babaeizadeh et al. Stochastic variational video prediction. ICLR, 2018.]

[Denton et al. ICML 2018]



2. Self-supervised Learning



Unsupervised learning 
as a pre-training step

• Target task is high-level understanding of  signal
– E.g. Classification, detection

• Unsupervised learning to pre-train models
– Then fine-tune with labels on target task

• Some success in NLP
– Word2vec for word embeddings
– Language modeling for machine translation

• No equivalent success in computer vision or other domains

• But there are a lot of  attempts!



Range of self-supervised systems

images

• Doersch et al. (2015)
• Zhang et al. (2016)
• Zhang et al. (2017)
• Noroozi et al. (2016)
• Pathak et al. (2016)

richer data



Range of self-supervised systems

images

• Doersch et al. (2015)
• Zhang et al. (2016)
• Zhang et al. (2017)
• Noroozi et al. (2016)
• Pathak et al. (2016)

richer data

… …

videos

• Wang et al. (2015)
• Misra et al. (2016)
• Pathak et al. (2017)



Range of self-supervised systems

images

• Doersch et al. (2015)
• Zhang et al. (2016)
• Zhang et al. (2017)
• Noroozi et al. (2016)
• Pathak et al. (2016)

richer data

… …

videos

• Wang et al. (2015)
• Misra et al. (2016)
• Pathak et al. (2017)

sound & depth

• Owens et al. (2016)
• Zhang et al. (2017)
• Bansal et al. (2016)



Range of self-supervised systems

images

• Doersch et al. (2015)
• Zhang et al. (2016)
• Zhang et al. (2017)
• Norouzi et al. (2016)
• Pathak et al. (2016)

richer data

… …

videos

• Wang et al. (2015)
• Misra et al. (2016)
• Pathak et al. (2017)

sound & depth

• Owens et al. (2016)
• Zhang et al. (2017)
• Bansal et al. (2016)

actions

• Agarwal et al. (2015)
• Jayaraman et al. (2015)
• Pinto et al. (2016)
• Agarwal et al. (2016)
• Pinto et al. (2017)
• Pinto et al. (2016)



Image colorization

Richard Zhang, Phillip Isola, Alexei (Alyosha) Efros
Colorful Image Colorization

slides from Zhang

http://richzhang.github.io/colorization/



Grayscale image: L channel Color information: ab channels

abL



abL

Concatenate (L,ab)Grayscale image: L channel

“Free” 
supervisory

signal

Semantics? Higher-
level abstraction?



Deep
Net

Context as supervision
[]
Collobert & Weston 2008; Mikolov et al. 2013



A B

? ? ?
??

? ? ?

Unsupervised Visual Representation Learning by Context Prediction
[Doersch et al. ICCV 2015]



Relative Position Task

Randomly Sample 
Patch Sample Second Patch

CNN CNN

Classifier

8 possible locations



Unsupervised Learning of Visual Representations
by Solving Jigsaw Puzzles, Noorozi et al. (2016)

[Noorozi et al. (2016)]



[Noorozi et al. (2016)]



[Noorozi et al. (2016)]



Feature Learning by Inpainting
[Context Encoders: Feature Learning by Inpainting, Pathak et al. (2016)]

[Pathak et al. (2016)]



Context Encoders
Encoder Decoder

• Encoder can be substituted with any network 
architecture like AlexNet etc.

• Decoder is a set of UpConv/deconv/frac-strided-
conv layers

[Pathak et al. (2016)]



Combined L2 + GAN loss

Input Image L2 Loss Adversarial Loss Joint Loss

[Pathak et al. (2016)]



Unsupervised Learning of Visual Representations 
using Videos, Wang & Gupta 2015

Idea: Object Tracking in Videos

[Wang & Gupta 2015]



Approach

[Wang & Gupta 2015]

• Use object tracking in 
videos

• Classify if  patches belong 
to the same track or not



Patch Mining In Videos

• Track 8M patches in 100K videos from YouTube.

• Use off-the-shelf tracking algorithms with no learning.

Patch
Pairs

Patch
Pairs

[Wang & Gupta 2015]



VOC 2007 Detection Performance
(pretraining for R-CNN)

No PretrainingLayoutImageNet

%
 A
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ge
 P
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ci
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n

68.6

61.7

42.4

VGG (16-layer)

60.5

Tracking

[Wang & Gupta 2015]



Leveraging Temporal Video Structure

[Shuffle and learn: unsupervised learning using temporal order 
verification, Misra et al. ECCV 2016]

• Videos have temporal structure

• Can we use this to learn an image representation?



Positive Tuples Negative Tuples

[Misra et al. ECCV 2016]
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AlexNet architecture

Shared 
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[Misra et al. ECCV 2016]



Results: Finetune on Action 
Recognition
Dataset Initialization Mean Classification Accuracy

UCF101 Random 38.6
Ours 50.2

ImageNet pre-trained 67.1
HMDB51 Random 13.3

Ours 18.1
UCF101 pre-trained 15.2

ImageNet pre-trained 28.5
[Misra et al. ECCV 2016]



AudioImage

Common 
sources

Visual + Audio
[Ambient Sound Provides Supervision for Visual Learning, 
[Owens et al. (2016)]



Audio label

conv
5

256 
filters

13

Top responses (unit #90 
of 256)

Unit visualizations
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Main issue with all these methods

• All these models rely on expert knowledge

• Need to define y(x) for each new domain

• Not clear how to select a y(x) that is a good 
target to learn all-purpose features



[Dosovitskiy et al. ICLR 2014]

• 1 class = single image + its 
transformations

• Learn to classify each “class”

• Domain knowledge about 
appropriate transformations

• does not scale



Unsupervised Learning by Predicting Noise 

Target space

Features AssignmentImages

cj

Pf(X)

CNN

• Inspired by Dosovitskiy et al. 

• Learn mapping from images 
to a sphere

• Fix targets on sphere

• Simultaneously:
– Learn the mapping
– Optimize the assignment 

between images and targets

[Bojanowski & Joulin, ICML 2017]



Deep Discriminative Clustering

• We are given a set of  n images

• We want to learn a visual features f  without using 
labels

• We use the L2 loss 

[Bojanowski & Joulin, ICML 2017]



Label Collapse Problem

• Optimization over Y would lead to a collapse

• Repulsive costs are tricky to use

• Can impose constraints on Y but hard to 
optimize

[Bojanowski & Joulin, ICML 2017]



Fixing the Target Representation

• Instead, we fix the target representation
• Allow a reassignment between targets and images

• Targets C are uniformly sampled on the sphere

• Final objective function
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8
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-0.4

-0.2

0

0.2
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[Bojanowski & Joulin, ICML 2017]



Optimization

• We minimize our cost function in an on-line 
fashion

• We use the following algorithm:
Require: T batches of images, �0 > 0

for t = {1, . . . , T} do
Obtain batch b and representations r
Compute f✓(Xb)

Compute P ⇤
by minimizing w.r.t. P

Compute r✓L(✓) using P ⇤

Update ✓  ✓ � �tr✓L(✓)
end for

[Bojanowski & Joulin, ICML 2017]



Optimizing the Permutation Matrix

• At theta fixed, the permutation is obtained by 
solving

• Which is a linear program on the set of  
permutation matrices

• We can use the Hungarian algorithm 

[Bojanowski & Joulin, ICML 2017]



Experimental Setup

• AlexNet architecture

• Learn unsupervised features on ImageNet training set

• Retrain a classifier on top for a target transfer task, i.e. 
PASCAL VOC Classification / Detection

[Bojanowski & Joulin, ICML 2017]



Baselines
• Self  supervised models
– Wang & Gupta – Temporal coherence in videos
– Doersch et al. – Predict context patches
– Zhang et al. – Predict color
– Norouzi & Favaro – Solve jigsaw puzzles 

• Unsupervised model
– GAN
– Auto-encoder
– BI-GAN (Donahue et al.)

[Bojanowski & Joulin, ICML 2017]



Pascal VOC - results

Classification Detection

Trained layers fc6-8 all all

ImageNet labels 78.9 79.9 56.8

Agrawal et al. 31.0 54.2 43.9
Pathak et al. 34.6 56.5 44.5
Wang & Gupta 55.6 63.1 47.4
Doersch et al. 55.1 65.3 51.1
Zhang et al. 61.5 65.6 46.9

Autoencoder 16.0 53.8 41.9
GAN 40.5 56.4 -
BiGAN 52.3 60.1 46.9

NAT 56.7 65.3 49.4

• compare  favorably to SOTA

• Poor performance of  AE / 
GAN

[Bojanowski & Joulin, ICML 2017]



Nearest Neighbor Queries

[Bojanowski & Joulin, ICML 2017]



Bojanowski & Joulin Summary

• Simple unsupervised approach

• No domain expert knowledge

• Scales to very large datasets

• Close to supervised pipeline

• SOTA performance (at the time) amongst unsupervised 
methods



Summary

• Power of  DL comes from ability to learn good 
representations 

• Wide range of  Unsupervised / Self-Supervised 
methods that devise “free” supervisory signals 
which can be used to learn representations via 
DL

• Unsolved problem:
– Should be domain agnostic
– Should be (nearly) as good as supervised methods




