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We propose a neural network model “MemN2N” with external memory, which performs 
multiple lookups on memory before producing output. It is a soft attention version of  
“Memory Network” [1], which has hard attention and requires explicit supervision of  attention, 
which severely limits its application. Furthermore, MemN2N can be trained end-to-end with 
backpropagation using supervision only on the final output.  

We proposed an external memory model with 
soft attention. The model can be trained end-to-
end with backpropagation. The experiments 
show good results on a toy QA tasks and 
competitive performance on language modeling. 
We also showed the model can be extended to 
writing and reinforcement learning. 
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•  Every memory location is readable 
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Attention during memory hops 

Text8 (Wikipedia) 

Story (1: 1 supporting fact) Support Hop 1 Hop 2 Hop 3 Story (2: 2 supporting facts) Support Hop 1 Hop 2 Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03 John dropped the milk. 0.06 0.00 0.00
Mary travelled to the hallway. 0.00 0.00 0.00 John took the milk there. yes 0.88 1.00 0.00
John went to the bedroom. 0.37 0.02 0.00 Sandra went back to the bathroom. 0.00 0.00 0.00
John travelled to the bathroom. yes 0.60 0.98 0.96 John moved to the hallway. yes 0.00 0.00 1.00
Mary went to the office. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 0.00 0.00

Story (16: basic induction) Support Hop 1 Hop 2 Hop 3 Story (18: size reasoning) Support Hop 1 Hop 2 Hop 3
Brian is a frog. yes 0.00 0.98 0.00 The suitcase is bigger than the chest. yes 0.00 0.88 0.00
Lily is gray. 0.07 0.00 0.00 The box is bigger than the chocolate. 0.04 0.05 0.10
Brian is yellow. yes 0.07 0.00 1.00 The chest is bigger than the chocolate. yes 0.17 0.07 0.90
Julius is green. 0.06 0.00 0.00 The chest fits inside the container. 0.00 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00 The chest fits inside the box. 0.00 0.00 0.00

Where is John?   Answer: bathroom    Prediction: bathroom Where is the milk?   Answer: hallway    Prediction: hallway

What color is Greg?  Answer: yellow    Prediction: yellow Does the suitcase fit in the chocolate?   Answer: no    Prediction: no

Figure 2: Example predictions on the QA tasks of [21]. We show the labeled supporting facts
(support) from the dataset which MemN2N does not use during training, and the probabilities p of
each hop used by the model during inference. MemN2N successfully learns to focus on the correct
supporting sentences.

Penn Treebank Text8
# of # of memory Valid. Test # of # of memory Valid. Test

Model hidden hops size perp. perp. hidden hops size perp. perp.
RNN [15] 300 - - 133 129 500 - - - 184
LSTM [15] 100 - - 120 115 500 - - 122 154
SCRN [15] 100 - - 120 115 500 - - - 161
MemN2N 150 2 100 128 121 500 2 100 152 187

150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the k

th hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple
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MemN2N applied to bAbI task 

words. The model writes all x to the memory up to a fixed buffer size, and then finds a continuous
representation for the x and q. The continuous representation is then processed via multiple hops
to output a. This allows back-propagatation of the error signal through multiple memory accesses
back to the input during training.

2.1 Single Layer
We start by describing our model in the a single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The memory vector mi of dimension d is computed by first embedding each xi in a continuous
space, in the simplest case, using an embedding matrix A (of size d ⇥ V ). Thus, the entire set of
{xi} are converted into memory vectors {mi}. The query q is also embedded (again, in the simplest
case via another embedding matrix B with the same dimensions as A) to obtain an internal state
u. In the embedding space, we compute the match between u and each memory mi by taking the
inner product followed by a softmax:

pi = Softmax(uT
mi). (1)

where Softmax(zi) = e
zi/

P
j e

zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).
2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:
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150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the k

th hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple

7

•  Data 
–  Penn Treebank:  1M words,  10K vocab 
–  Text8 (Wikipedia):  16M words,  40K vocab 

•  Model: RNN controller, layer-wise weight tying 
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Experiment on bAbI Q&A data  (http://fb.ai/babi) 

•  Data: 20 bAbI tasks (Weston et al. arXiv 1502.05698, 2015b) 
•  Answer questions after reading short story 
•  Small vocabulary, simple language 
•  Different tasks require different reasoning 
•  Training data size 1K or 10K for each task  

our model is somewhat simpler, not requiring operations like sharpening. Furthermore, we apply
our memory model to textual reasoning tasks, which qualitatively differ from the more abstract
operations of sorting and recall tackled by the NTM.

Our model is also related to Bahdanau et al. [2]. In that work, a bidirectional RNN based encoder
and gated RNN based decoder were used for machine translation. The decoder uses an attention
model that finds which hidden states from the encoding are most useful for outputting the next
translated word; the attention model uses a small neural network that takes as input a concatenation
of the current hidden state of the decoder and each of the encoders hidden states. A similar attention
model is also used in Xu et al. [23] for generating image captions. Our “memory” is analogous to
their attention mechanism, although [2] is only over a single sentence rather than many, as in our
case. Furthermore, our model makes several hops on the memory before making an output; we will
see below that this is important for good performance. There are also differences in the architecture
of the small network used to score the memories compared to our scoring approach; we use a simple
linear layer, whereas they use a more sophisticated gated architecture.

We also apply our model to language modeling, an extensively studied task. Goodman [6] showed
simple but effective approaches which combine n-grams with a cache. Bengio et al. [3] ignited
interest in using neural network based models for the task, with RNNs [14] and LSTMs [10, 19]
showing clear performance gains over traditional methods. Indeed, the current state-of-the-art is
held by variants of these models, for example very large LSTMs with Dropout [24] or RNNs with
diagonal constraints on the weight matrix [15]. With appropriate weight tying, our model can be
regarded as a modified form of RNN, where the recurrence is indexed by lookups to the word
sequence rather than indexed by the sequence itself.

4 Synthetic Question and Answering Experiments
We perform experiments on the synthetic QA tasks defined in [21]. A given QA task consists of
a set of statements, followed by a question whose answer is typically a single word (in a few tasks,
answers are a set of words). The answer is available to the model at training time, but must be
predicted at test time. There are a total of 20 different types of tasks that probe different forms of
reasoning and deduction. Here are samples of three of the tasks:
Sam walks into the kitchen. Brian is a lion. Mary journeyed to the den.

Sam picks up an apple. Julius is a lion. Mary went back to the kitchen.

Sam walks into the bedroom. Julius is white. John journeyed to the bedroom.

Sam drops the apple. Bernhard is green. Mary discarded the milk.

Q: Where is the apple? Q: What color is Brian? Q: Where was the milk before the den?

A. Bedroom A. White A. Hallway

Note that for each question, only some subset of the statements contain information needed for
the answer, and the others are essentially irrelevant distractors (e.g. the first sentence in the first
example). In the Memory Networks of Weston et al. [21], this supporting subset was explicitly
indicated to the model during training and the key difference between that work and this one is that
this information is no longer provided. Hence, the model must deduce for itself at training and test
time which sentences are relevant and which are not.

Formally, for one of the 20 QA tasks, we are given example problems, each having a set of I

sentences {xi} where I  320; a question sentence q and answer a. The examples are randomly
split into disjoint train and test sets each containing 1000 examples. Let the jth word of sentence
i be xij , represented by a one-hot vector of length V (where the vocabulary is of size V = 177,
reflecting the simplistic nature of the QA language). The same representation is used for the
question q and answer a. Two versions of the data are used, one that has 1000 training problems
per task and a second larger one with 10,000 per task.

4.1 Model Details
Unless otherwise stated, all experiments used a K = 3 hops model with the adjacent weight sharing
scheme. For all tasks that output lists (i.e. the answers are multiple words), we take each possible
combination of possible outputs and record them as a separate answer vocabulary word.

Sentence Representation: In our experiments we explore two different representations for
the sentences. The first is the bag-of-words (BoW) representation that takes the sentence
xi = {xi1, xi2, ..., xin}, embeds each word and sums the resulting vectors: e.g mi =

P
j Axij and
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Experiment on Language modeling 

Input numbers Reserved for output 

Initial memory content 

words. The model writes all x to the memory up to a fixed buffer size, and then finds a continuous
representation for the x and q. The continuous representation is then processed via multiple hops
to output a. This allows back-propagatation of the error signal through multiple memory accesses
back to the input during training.

2.1 Single Layer
We start by describing our model in the a single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The memory vector mi of dimension d is computed by first embedding each xi in a continuous
space, in the simplest case, using an embedding matrix A (of size d ⇥ V ). Thus, the entire set of
{xi} are converted into memory vectors {mi}. The query q is also embedded (again, in the simplest
case via another embedding matrix B with the same dimensions as A) to obtain an internal state
u. In the embedding space, we compute the match between u and each memory mi by taking the
inner product followed by a softmax:

pi = Softmax(uT
mi). (1)

where Softmax(zi) = e
zi/

P
j e

zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).
2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:
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Extension to reinforcement learning  (http://arxiv.org/abs/1511.07401) 

•  Simple tasks defined on small 2D grid 
environment (e.g. visit multiple goals in order)  

•  Train MemN2N with reinforcement learning 
(policy gradient method) 

•  Environment is represented by text 
–  E.g.  
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reward 

Instruction 

Items on map 
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better in AlphaGo than a value function ( )≈ ( )θ σv s v sp  derived from the 
SL policy network.

Evaluating policy and value networks requires several orders of 
magnitude more computation than traditional search heuristics. To 
efficiently combine MCTS with deep neural networks, AlphaGo uses 
an asynchronous multi-threaded search that executes simulations on 
CPUs, and computes policy and value networks in parallel on GPUs. 
The final version of AlphaGo used 40 search threads, 48 CPUs, and 
8 GPUs. We also implemented a distributed version of AlphaGo that 

exploited multiple machines, 40 search threads, 1,202 CPUs and  
176 GPUs. The Methods section provides full details of asynchronous 
and distributed MCTS.

Evaluating the playing strength of AlphaGo
To evaluate AlphaGo, we ran an internal tournament among variants 
of AlphaGo and several other Go programs, including the strongest 
commercial programs Crazy Stone13 and Zen, and the strongest open 
source programs Pachi14 and Fuego15. All of these programs are based 

Figure 4 | Tournament evaluation of AlphaGo. a, Results of a  
tournament between different Go programs (see Extended Data Tables 
6–11). Each program used approximately 5 s computation time per move.  
To provide a greater challenge to AlphaGo, some programs (pale upper 
bars) were given four handicap stones (that is, free moves at the start of 
every game) against all opponents. Programs were evaluated on an  
Elo scale37: a 230 point gap corresponds to a 79% probability of winning,  
which roughly corresponds to one amateur dan rank advantage on  
KGS38; an approximate correspondence to human ranks is also shown, 

horizontal lines show KGS ranks achieved online by that program. Games 
against the human European champion Fan Hui were also included;  
these games used longer time controls. 95% confidence intervals are 
shown. b, Performance of AlphaGo, on a single machine, for different 
combinations of components. The version solely using the policy network 
does not perform any search. c, Scalability study of MCTS in AlphaGo 
with search threads and GPUs, using asynchronous search (light blue) or 
distributed search (dark blue), for 2 s per move.
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Figure 5 | How AlphaGo (black, to play) selected its move in an 
informal game against Fan Hui. For each of the following statistics,  
the location of the maximum value is indicated by an orange circle.  
a, Evaluation of all successors s′ of the root position s, using the value 
network vθ(s′); estimated winning percentages are shown for the top 
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from 
root position s; averaged over value network evaluations only (λ =  0).  
c, Action values Q(s, a), averaged over rollout evaluations only (λ =  1).  

d, Move probabilities directly from the SL policy network, ( | )σp a s ; 
reported as a percentage (if above 0.1%). e, Percentage frequency with 
which actions were selected from the root during simulations. f, The 
principal variation (path with maximum visit count) from AlphaGo’s 
search tree. The moves are presented in a numbered sequence. AlphaGo 
selected the move indicated by the red circle; Fan Hui responded with the 
move indicated by the white square; in his post-game commentary he 
preferred the move (labelled 1) predicted by AlphaGo.
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Spatial structure

Sequential structure Recurrent NetworksA Alignment Examples

In this section, we give additional visualization examples of our model and the attention distribution.

Figure 6: The spelling variants of “aaa” vs “triple a” produces different attention distributions, both spelling
variants appear in our top beams. The ground truth is: “aaa emergency roadside service”.
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“Alexa, is it cold outside?”

• Translation invariance
• Locality in 2D

• Time shift invariance
• Locality 1D
• Variable size 

Very specific structure to data



Overview

• Most effort focused on Deep Nets for 
perceptual problems
– E.g. vision, speech, NLP.

• But what about other types of  data?
– Genome, 3D meshes, sets

• Or other aspects of  intelligence?
– Reasoning, e.g. program induction
–Memory
–Multi-agent learning / “Theory of  mind”



Themes

• 1. Memory in Deep Nets

• 2. Deep Nets for sets



Memory Introduction

• Many tasks require some kind of  memory
• But traditional neural networks are not good at 

remembering things, especially when input is 
large but only part of  it is relevant

• Recently, there has been lot of  interest in 
incorporating memory and attention to neural 
networks
–Memory Networks, Neural Turing Machine,…



Memory Outline

• Implicit Internal memory
– Recurrent Neural Nets (RNNs)
– Long-Short Term Memory (LSTMs)

• Attention models
– MT, Speech, Images

• Explicit External memory
– Memory Networks
– Neural Turing Machine 
– Stack-RNN 

• Discrete Memory
– 1-D tape, 2-D grid



Implicit Internal Memory

• Internal state of  the model can be used for memory
– Recurrent Neural Networks (RNNs)

• Computation and memory is mixed
– Complex computation requires many layers of  non-linearity
– But some information is lost with each non-linearity
– Problems with vanishing/exploding gradients & catastrophic 

forgetting

tanh+ht-1 ht

xt

linear



Memory Outline

• Implicit Internal memory
– Recurrent Neural Nets (RNNs)
– Long-Short Term Memory (LSTMs)

• Attention models
– MT, Speech, Images

• Explicit External memory
– Memory Networks
– Neural Turing Machine 
– Stack-RNN 

• Discrete Memory
– 1-D tape, 2-D grid



Recurrent Neural Networks 
•  Selec4vely	summarize	an	input	sequence	in	a	fixed-size	state	

vector	via	a	recursive	update	

38	
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[Slide credit: Yoshua Bengio]



Recurrent Neural Networks 
•  Can	produce	an	output	at	each	4me	step:	unfolding	the	graph	

tells	us	how	to	back-prop	through	4me.	
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Long-Term Dependencies   
•  The	RNN	gradient	is	a	product	of	Jacobian	matrices,	each	

associated	with	a	step	in	the	forward	computa4on.	To	store	
informa4on	robustly	in	a	finite-dimensional	state,	the	dynamics	
must	be	contrac4ve	[Bengio	et	al	1994].		

	
•  Problems:		

•  sing.	values	of	Jacobians	>	1	à	gradients	explode		
•  or	sing.	values	<	1	à	gradients	shrink	&	vanish	
•  or	random	à	variance	grows	exponen4ally	
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Storing	bits	
robustly	requires	
sing.	values<1	

(Hochreiter	1991)	

Gradient	
clipping	

[Slide credit: Yoshua Bengio]



Ways to Prevent Forgetting in RNNs
• Split state into fast and slow changing parts:  structurally 

constrained recurrent nets (e.g. Mikolov et al., 2014)
– Fast changing part is good for computation
– Slow changing part is good for storing information

• Gated units for internal state
– Control when to forget/write using gates
– Long-short term memory (LSTM) (see Graves, 2013)
– Simpler Gated Recurrent Unit (GRU) (Cho et al., 2014)

• Other problems
– Memory capacity is fixed and limited by the dimension of  state 

vector (computation is O(N2) where N is memory capacity) 
– Vulnerable to distractions in inputs
– Restricted to sequential inputs



×

input input gate forget gate output gate

output

state

self-loop

×

+ ×

Gated Recurrent Units & LSTM 
•  Create	a	path	where	

gradients	can	flow	for	
longer	with	self-loop	

•  Corresponds	to	an	
eigenvalue	of	Jacobian	
slightly	less	than	1	

•  LSTM	is	heavily	used	
(Hochreiter	&	Schmidhuber	
1997)	

•  GRU	light-weight	version	
(Cho	et	al	2014)	

46	
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Memory Outline

• Implicit Internal memory
– Recurrent Neural Nets (RNNs)
– Long-Short Term Memory (LSTMs)

• Attention models
– MT, Speech, Images

• Explicit External memory
– Memory Networks
– Neural Turing Machine 
– Stack-RNN 

• Discrete Memory
– 1-D tape, 2-D grid



RNNsearch: Attention in Machine 
Translation (Bahdanau et al., 2015) 

• RNN based encoder and decoder model
• Decoder can look at past encoder states using soft attention
• Attention mechanism is implement by a small neural network

– It takes the current decoder state and a past encoder state and 
outputs a score. Then the all scores are fed to softmax to get 
attention weights

• Applied to machine translation. Significant improvement in 
translation of  longer sentences

Significant improvement on long sentences

Attention 
weights 
during 
English to 
French 
machine 
translation

Published as a conference paper at ICLR 2015

The decoder is often trained to predict the next word yt0 given the context vector c and all the
previously predicted words {y1, · · · , yt0�1}. In other words, the decoder defines a probability over
the translation y by decomposing the joint probability into the ordered conditionals:

p(y) =
TY

t=1

p(yt | {y1, · · · , yt�1} , c), (2)

where y =
�
y1, · · · , yTy

�
. With an RNN, each conditional probability is modeled as

p(yt | {y1, · · · , yt�1} , c) = g(yt�1, st, c), (3)

where g is a nonlinear, potentially multi-layered, function that outputs the probability of yt, and st is
the hidden state of the RNN. It should be noted that other architectures such as a hybrid of an RNN
and a de-convolutional neural network can be used (Kalchbrenner and Blunsom, 2013).

3 LEARNING TO ALIGN AND TRANSLATE

In this section, we propose a novel architecture for neural machine translation. The new architecture
consists of a bidirectional RNN as an encoder (Sec. 3.2) and a decoder that emulates searching
through a source sentence during decoding a translation (Sec. 3.1).

3.1 DECODER: GENERAL DESCRIPTION

x1 x2 x3 xT

+
αt,1
αt,2 αt,3

αt,T

yt-1 yt

h1 h2 h3 hT

h1 h2 h3 hT

st-1 s t

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the t-th tar-
get word yt given a source
sentence (x1, x2, . . . , xT ).

In a new model architecture, we define each conditional probability
in Eq. (2) as:

p(yi|y1, . . . , yi�1,x) = g(yi�1, si, ci), (4)

where si is an RNN hidden state for time i, computed by

si = f(si�1, yi�1, ci).

It should be noted that unlike the existing encoder–decoder ap-
proach (see Eq. (2)), here the probability is conditioned on a distinct
context vector ci for each target word yi.

The context vector ci depends on a sequence of annotations
(h1, · · · , hTx) to which an encoder maps the input sentence. Each
annotation hi contains information about the whole input sequence
with a strong focus on the parts surrounding the i-th word of the
input sequence. We explain in detail how the annotations are com-
puted in the next section.

The context vector ci is, then, computed as a weighted sum of these
annotations hi:

ci =
TxX

j=1

↵ijhj . (5)

The weight ↵ij of each annotation hj is computed by

↵ij =
exp (eij)PTx

k=1 exp (eik)
, (6)

where
eij = a(si�1, hj)

is an alignment model which scores how well the inputs around position j and the output at position
i match. The score is based on the RNN hidden state si�1 (just before emitting yi, Eq. (4)) and the
j-th annotation hj of the input sentence.

We parametrize the alignment model a as a feedforward neural network which is jointly trained with
all the other components of the proposed system. Note that unlike in traditional machine translation,

3



Image caption generation with attention
(Xu et al., 2015)

• Encoder: lower convolutional layer of  a deep ConvNet (because need spatial 
information)

• Decoder: LSTM RNN with soft spatial attention
– Decoder state and encoder state at single location are fed to small NN to get score 

at that location  
• Network attends to the object when it is generating a word for it
• Also hard attention is tried with reinforcement learning



Video description generation
(Yao et al., 2015)

(bottom: ground truth)



Location-aware attention for speech 
(Chorowski et al., 2015)

• RNN based encoder-decoder model with attention 
(similar to RNNsearch)

• Location based addressing: previous attention weights are 
used as feature for the current attention (good when 
subsequent  attention locations are highly correlated)

• Improvement with sharpening and smoothing of  
memory addressing



Outline

• Implicit Internal memory
– Recurrent Neural Nets (RNNs)
– Long-Short Term Memory (LSTMs)

• Explicit External memory
– StackRNN
– Memory Networks
– Neural Turing Machine 

• Attention models
– MT, Speech, Image, Pointer Network

• Discrete Memory
– Learning algorithms using 1-D tape, 2-D grid



External Global Memory
• Separate memory from computation 
– Add separate memory module for storage
– Memory contains list/set of  items

• Main module can read and write to the memory
• Advantage: long-term, scalable, flexible

Memory 
module

Main 
module

read

write

input

output



Selective Addressing is Key for Memory

• Often, you only want to interact with few items in 
memory at once
– Memory needs some addressing mechanism

• Memory addressing types
– Soft or hard addressing

• Soft addressing can be trained by backpropagation
• Hard addressing is not differentiable (e.g. has to be trained with 

reinforcement learning or additional training signal for where to 
attend)

– Context and Location based addressing
• When input is ordered in some way, location based addressing is 

useful
• Location addressing is same as context if  location is embedded in the 

context (e.g. MemN2N)



Memory Outline

• Implicit Internal memory
– Recurrent Neural Nets (RNNs)
– Long-Short Term Memory (LSTMs)

• Attention models
– MT, Speech, Images

• Explicit External memory
– Memory Networks
– Neural Turing Machine 
– Stack-RNN 

• Discrete Memory
– 1-D tape, 2-D grid



Memory Networks

• “Hard” Memory Networks by 
[Weston, Chopra & Bordes ICLR 2015]
– Hard attention thus requires explicit supervision of  

attention during training

• End-to-end Memory Networks (MemN2N) 
has soft attention 
– Only need supervision on the final output
– [Sukhbaatar et al., NIPS 2015] 
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Memory Module

Dot Product

Softmax

Weighted Sum

To controller
(added to 
controller state)

Addressing signal
(controller 
state vector)

Memory vectors

Attention weights
/ Soft address



Ex) Question & Answering on story

Sam moved to the garden.
Mary left the milk.
John left the football.
Daniel moved to the garden.
Sam went to the kitchen.
Sandra moved to the hallway.
Mary moved to the hallway.
Mary left the milk.
Sam drops the apple there.

Q: Where was the apple after the garden? 

out-of-order



Memory Vectors
E.g.) constructing memory vectors with Bag-of-Words (BoW)
1. Embed each word 
2. Sum embedding vectors

E.g.) temporal structure: special words for time and include them in BoW

Memory VectorEmbedding Vectors

Time embedding

\text{1: ``Sam drops apple''}\rightarrow v_\text{{\color{Red} Sam}} + v_\text{{\color{Red} drops}} + v_
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Related Work
• RNNsearch [Bahdanau et al. 2015] 

– Encoder-decoder RNN with attention
– Our model can be considered as an attention model with multiple 

hops
• Recent works on external memory

– Stack memory for RNNs [Joulin & Mikolov. 2015]
– Neural Turing Machine [Graves et al. 2014]

• Early works on neural network and memory
– [Steinbuch & Piske. 1963]; [Taylor. 1959]
– [Das et al. 1992]; [Mozer et al. 1993]

• Concurrent works
– Dynamic Memory Networks [Kumar et al. 2015]
– Attentive reader [Hermann et al. 2015]
– Stack, Queue [Grefenstette et al. 2015]



Experiment on bAbI Q&A data

• Data: 20 bAbI tasks [Weston et al. arXiv: 1502.05698, 2015]

• Answer questions after reading short story
• Small vocabulary, simple language
• Different tasks require different reasoning
• Training data size 1K or 10K for each task 

our model is somewhat simpler, not requiring operations like sharpening. Furthermore, we apply
our memory model to textual reasoning tasks, which qualitatively differ from the more abstract
operations of sorting and recall tackled by the NTM.

Our model is also related to Bahdanau et al. [2]. In that work, a bidirectional RNN based encoder
and gated RNN based decoder were used for machine translation. The decoder uses an attention
model that finds which hidden states from the encoding are most useful for outputting the next
translated word; the attention model uses a small neural network that takes as input a concatenation
of the current hidden state of the decoder and each of the encoders hidden states. A similar attention
model is also used in Xu et al. [23] for generating image captions. Our “memory” is analogous to
their attention mechanism, although [2] is only over a single sentence rather than many, as in our
case. Furthermore, our model makes several hops on the memory before making an output; we will
see below that this is important for good performance. There are also differences in the architecture
of the small network used to score the memories compared to our scoring approach; we use a simple
linear layer, whereas they use a more sophisticated gated architecture.

We also apply our model to language modeling, an extensively studied task. Goodman [6] showed
simple but effective approaches which combine n-grams with a cache. Bengio et al. [3] ignited
interest in using neural network based models for the task, with RNNs [14] and LSTMs [10, 19]
showing clear performance gains over traditional methods. Indeed, the current state-of-the-art is
held by variants of these models, for example very large LSTMs with Dropout [24] or RNNs with
diagonal constraints on the weight matrix [15]. With appropriate weight tying, our model can be
regarded as a modified form of RNN, where the recurrence is indexed by lookups to the word
sequence rather than indexed by the sequence itself.

4 Synthetic Question and Answering Experiments
We perform experiments on the synthetic QA tasks defined in [21]. A given QA task consists of
a set of statements, followed by a question whose answer is typically a single word (in a few tasks,
answers are a set of words). The answer is available to the model at training time, but must be
predicted at test time. There are a total of 20 different types of tasks that probe different forms of
reasoning and deduction. Here are samples of three of the tasks:
Sam walks into the kitchen. Brian is a lion. Mary journeyed to the den.

Sam picks up an apple. Julius is a lion. Mary went back to the kitchen.

Sam walks into the bedroom. Julius is white. John journeyed to the bedroom.

Sam drops the apple. Bernhard is green. Mary discarded the milk.

Q: Where is the apple? Q: What color is Brian? Q: Where was the milk before the den?

A. Bedroom A. White A. Hallway

Note that for each question, only some subset of the statements contain information needed for
the answer, and the others are essentially irrelevant distractors (e.g. the first sentence in the first
example). In the Memory Networks of Weston et al. [21], this supporting subset was explicitly
indicated to the model during training and the key difference between that work and this one is that
this information is no longer provided. Hence, the model must deduce for itself at training and test
time which sentences are relevant and which are not.

Formally, for one of the 20 QA tasks, we are given example problems, each having a set of I

sentences {xi} where I  320; a question sentence q and answer a. The examples are randomly
split into disjoint train and test sets each containing 1000 examples. Let the jth word of sentence
i be xij , represented by a one-hot vector of length V (where the vocabulary is of size V = 177,
reflecting the simplistic nature of the QA language). The same representation is used for the
question q and answer a. Two versions of the data are used, one that has 1000 training problems
per task and a second larger one with 10,000 per task.

4.1 Model Details
Unless otherwise stated, all experiments used a K = 3 hops model with the adjacent weight sharing
scheme. For all tasks that output lists (i.e. the answers are multiple words), we take each possible
combination of possible outputs and record them as a separate answer vocabulary word.

Sentence Representation: In our experiments we explore two different representations for
the sentences. The first is the bag-of-words (BoW) representation that takes the sentence
xi = {xi1, xi2, ..., xin}, embeds each word and sums the resulting vectors: e.g mi =

P
j Axij and
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Examples of  Attention Weights

• 2 test cases:

Story (1: 1 supporting fact) Support Hop 1 Hop 2 Hop 3 Story (2: 2 supporting facts) Support Hop 1 Hop 2 Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03 John dropped the milk. 0.06 0.00 0.00
Mary travelled to the hallway. 0.00 0.00 0.00 John took the milk there. yes 0.88 1.00 0.00
John went to the bedroom. 0.37 0.02 0.00 Sandra went back to the bathroom. 0.00 0.00 0.00
John travelled to the bathroom. yes 0.60 0.98 0.96 John moved to the hallway. yes 0.00 0.00 1.00
Mary went to the office. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 0.00 0.00

Story (16: basic induction) Support Hop 1 Hop 2 Hop 3 Story (18: size reasoning) Support Hop 1 Hop 2 Hop 3
Brian is a frog. yes 0.00 0.98 0.00 The suitcase is bigger than the chest. yes 0.00 0.88 0.00
Lily is gray. 0.07 0.00 0.00 The box is bigger than the chocolate. 0.04 0.05 0.10
Brian is yellow. yes 0.07 0.00 1.00 The chest is bigger than the chocolate. yes 0.17 0.07 0.90
Julius is green. 0.06 0.00 0.00 The chest fits inside the container. 0.00 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00 The chest fits inside the box. 0.00 0.00 0.00

Where is John?   Answer: bathroom    Prediction: bathroom Where is the milk?   Answer: hallway    Prediction: hallway

What color is Greg?  Answer: yellow    Prediction: yellow Does the suitcase fit in the chocolate?   Answer: no    Prediction: no

Figure 2: Example predictions on the QA tasks of [21]. We show the labeled supporting facts
(support) from the dataset which MemN2N does not use during training, and the probabilities p of
each hop used by the model during inference. MemN2N successfully learns to focus on the correct
supporting sentences.

Penn Treebank Text8
# of # of memory Valid. Test # of # of memory Valid. Test

Model hidden hops size perp. perp. hidden hops size perp. perp.
RNN [15] 300 - - 133 129 500 - - - 184
LSTM [15] 100 - - 120 115 500 - - 122 154
SCRN [15] 100 - - 120 115 500 - - - 161
MemN2N 150 2 100 128 121 500 2 100 152 187

150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the k

th hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple
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Experiment on Language modeling

• Data
– Penn Treebank: 1M words 10K vocab
– Text8 (Wikipedia): 16M words 40K vocab

• Model
– Controller module: linear + non-linearity
– Each word as a memory vector
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Attention during memory hops

Penn Treebank
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Memory Outline

• Implicit Internal memory
– Recurrent Neural Nets (RNNs)
– Long-Short Term Memory (LSTMs)

• Attention models
– MT, Speech, Images

• Explicit External memory
– Memory Networks
– Neural Turing Machine 
– Stack-RNN 

• Discrete Memory
– 1-D tape, 2-D grid



Neural Turing Machine
(Graves et al., 2014)

• Learns how to write to the memory
• Soft addressing à backpropagation training
• Location addressing: small continuous shift of  attention
• Complex addressing mechanism: need to sharpen after convolution
• Controller can be LSTM-RNN or feed-forward neural network
• Applied to learn algorithms such as sort, associative recall and copy.
• Also hard addressing with reinforcement learning [Zaremba et al., 2015]
• Also Differentiable Neural Computer [Graves et al., 2016]



Neural Turing Machine – Copy task

• NTM

Experiments'

•  1.'Copy'
– NTM'

Experiments'

•  1.'Copy'



Neural Turing Machine – Copy task

• NTM

LSTM

Experiments'

•  1.'Copy'
– LSTM'
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•  1.'Copy'
– NTM'
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– Neural Turing Machine 
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Stack RNNs (Joulin & Mikolov, 2015)

• Simple RNN extended with a stack that the 
neural net learns to control

• The idea itself  is very old (from 80’s – 90’s)

• Very simple and learns complex toy patterns 
with much less supervision & scales to more 
complex tasks

Tomas Mikolov, FAIR, 2016



• Add structured memory to RNN:
– Trainable [read/write]
– Unbounded

• Continuous actions: 
PUSH / POP / NO-OP

• Multiple stacks

• Examples of  memory structures: 
stacks, lists, queues, tapes, grids, … 

• Learns algorithms from examples

Stack RNN

Tomas Mikolov, FAIR, 2016



Stack RNN - Algorithmic Patterns

• Examples of  simple algorithmic patterns generated by 
short programs (grammars)

• The goal is to learn these patterns in an unsupervised 
manner just by observing the example sequences

Tomas Mikolov, FAIR, 2016



Stack RNN - Example

• Sequence: a6b12

current next prediction proba(next) action stack1[top] stack2[top]
b a a 0.99 POP POP -1 0.53
a a a 0.99 PUSH POP 0.01 0.97
a a a 0.95 PUSH PUSH 0.18 0.99
a a a 0.93 PUSH PUSH 0.32 0.98
a a a 0.91 PUSH PUSH 0.40 0.97
a a a 0.90 PUSH PUSH 0.46 0.97
a b a 0.10 PUSH PUSH 0.52 0.97
b b b 0.99 PUSH PUSH 0.57 0.97
b b b 1.00 POP PUSH 0.52 0.56
b b b 1.00 POP PUSH 0.46 0.01
b b b 1.00 POP PUSH 0.40 0.00
b b b 1.00 POP PUSH 0.32 0.00
b b b 1.00 POP PUSH 0.18 0.00
b b b 0.99 POP PUSH 0.01 0.00
b b b 0.99 POP POP -1 0.00
b b b 0.99 POP POP -1 0.00
b b b 0.99 POP POP -1 0.00
b b b 0.99 POP POP -1 0.01
b a a 0.99 POP POP -1 0.56

Table 3: Example of the Stack RNN with 20 hidden units and 2 stacks on a sequence anb2n with
n = 6. �1 means that the stack is empty. The depth k is set to 1 for clarity. We see that the first
stack pushes an element every time it sees a and pop when it sees b. The second stack pushes when
it sees a. When it sees b , it pushes if the first stack is not empty and pop otherwise. This shows how
the two stacks interact to correctly predict the deterministic part of the sequence (shown in bold).

Memorization Binary addition

Figure 2: Comparison of RNN, LSTM, List RNN and Stack RNN on memorization and the perfor-
mance of Stack RNN on binary addition. The accuracy is in the proportion of correctly predicted
sequences generated with a given n. We use 100 hidden units and 10 stacks.

the training and validation set are composed of sequences generated with n up to N < 20 while
the test set is composed of sequences generated with n up to 60. During training, we incrementally
increase the parameter n every few epochs until it reaches some N . At test time, we measure the
performance by counting the number of correctly predicted sequences. A sequence is considered as
correctly predicted if we correctly predict its deterministic part, shown in bold in Table 1. On these
toy examples, the recurrent matrix R defined in Eq. (1) is set to 0 to isolate the mechanisms that
Stack and list can capture.

Counting. Results on patterns generated by “counting” algorithms are shown in Table 2. We report
the percentage of sequence lengths for which a method is able to correctly predict sequences of
that length. List RNN and Stack RNN have 40 hidden units and either 5 lists or 10 stacks. For
these tasks, the NO-OP operation is not used. Table 2 shows that RNNs are unable to generalize to
longer sequences, and they only correctly predict sequences seen during training. LSTM is able to
generalize to longer sequences which shows that it is able to count since the hidden units in an LSTM
can be linear [17]. With a finer hyper-parameter search, the LSTM should be able to achieve 100%
on all of these tasks. Despite the absence of linear units, these models are also able to generalize.
For anbmcn+m, rounding is required to obtain the best performance.
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Algorithmic Patterns - Counting

• Performance on simple counting tasks
• RNN with sigmoidal activation function cannot 

count
• Stack-RNN and LSTM can count

Tomas Mikolov, FAIR, 2016



Algorithmic Patterns - Sequences 

• Sequence memorization and binary addition are 
out-of-scope of  LSTM

• Expandable memory of  stacks allows to learn the 
solution

Tomas Mikolov, FAIR, 2016



Stack RNN - Binary Addition

• No supervision in training, just prediction
• Learns to: store digits, when to produce output, carry 

Tomas Mikolov, FAIR, 2016



Stack RNNs: summary
The good:
• Turing-complete model of  computation (with >=2 stacks)
• Learns some algorithmic patterns
• Has long term memory
• Works for some problems that break RNNs and LSTMs
• Reproducible: https://github.com/facebook/Stack-RNN

The bad:
• The long term memory is used only to store partial computation (ie. 

learned skills are not stored there yet)
• Does not seem to be a good model for incremental learning due to 

computational inefficiency of  the model
• Stacks do not seem to be a very general choice for the topology of  the 

memory

Tomas Mikolov, FAIR, 2016

https://github.com/facebook/Stack-RNN


Memory Outline

• Implicit Internal memory
– Recurrent Neural Nets (RNNs)
– Long-Short Term Memory (LSTMs)

• Attention models
– MT, Speech, Images

• Explicit External memory
– Memory Networks
– Neural Turing Machine 
– Stack-RNN 

• Discrete Memory
– 1-D tape, 2-D grid



Learning Simple Algorithms from Examples

Under review as a conference paper at ICLR 2016

to carefully adjust the controller capacity to prevent it learning any dependencies on the length of
training sequences, yet ensuring it has enough state to implement the algorithm in question.

As illustrated in Fig. 1(c), the controller passes two signals to the output tape: a discrete action (move
left, move right, write something) and a symbol from the vocabulary. This symbol is produced by
taking the max from the softmax output on the top of the controller. In training, two different signals
are computed from this: (i) a cross-entropy loss is used to compare the softmax output to the target
symbol and (ii) a discrete 1/0 reward if the symbol is correct/incorrect. The first signal gives a
continuous gradient to update the controller parameters via backpropagation. Leveraging the reward
requires reinforcement learning, since many actions might occur before a symbol is written to the
output tape. Thus the action output of the controller is trained with reinforcement learning and the
symbol output is trained by backpropagation.

3 TASKS

We consider six different tasks: copy, reverse, walk, multi-digit addition, 3 number addition and
single digit multiplication. The input interface for copy and reverse is an input tape, but an input
grid for the others. All tasks use an output tape interface. Unless otherwise stated, all arithmetic
operations use base 10. Examples of the six tasks are shown in Fig. 2.

Copy: This task involves copying the symbols from the input tape to the output tape. Although
simple, the model still has to learn the correspondence between input and output symbols, as well
as executing the move right action on the input tape.

Reverse: Here the goal is to reverse a sequence of symbols on the input tape. We provide a special
character “r” to indicate the end of the sequence. The model must learn to move right multiple times
until it hits the “r” symbol, then move to the left, copying the symbols to the output tape.

Walk: The goal is to copy symbols, according to the directions given by an arrow symbol. The
controller starts by moving to the right (suppressing prediction) until reaching one of the symbols
", #, . Then it should change it’s direction accordingly, and copy all symbols encountered to the
output tape.

Addition: The goal is to add two multi-digit sequences, provided on an input grid. The sequences
are provided in two adjacent rows, with their right edges aligned. The initial position of the read
head is the last digit of the top number (i.e. upper-right corner). The model has to: (i) memorize
an addition table for pairs of digits; (ii) learn how to move over the input grid and (iii) discover the
concept of a carry.

3 Number Addition: As for the addition task, but now three numbers are to be added. This is more
challenging as the reward signal is less frequent (since more correct actions must be completed
before a correct output digit can be produced). Also the carry now can take on three states (0, 1 and
2), compared with two for the 2 number addition task.

Single Digit Multiplication: This involves multiplying a single digit with a long multi-digit number.
It is of similar complexity to the 2 number addition task, except that the carry can take on more values
2 [0, 8].

Copy Reverse Walk Addition
3 number
addition

Single digit
multiplication

Figure 2: Examples of the six tasks, presented in their initial state. The yellow box indicates the starting
position of the read head on the Input Interface. The gray characters on the Output Tape are target symbols
used in training.
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[Zaremba et al. ICML 2016]

• Given examples of simple addition, multiplication etc., 
can we learn the underlying algorithm?
–Must generalize to much longer examples



Model Setup
• Explore various controllers (1 layer, 200 units)

– Feed forward, LSTM, GRU
– Additional linear layer predicts symbol

• Choose interfaces appropriate for task
• Dual output from controller:

1. Discrete actions (“move output head left”, “do nothing”)
- Trained using reinforcement learning
- Don’t get label until output a digit 

2. Continuous prediction of symbol 
- Backpropagation through softmax output 



Solving the tasks with 
Reinforcement Learning 

• Sequence of discrete actions taken to produce 
symbol at output.

• Must learn both actions & symbol prediction
– 0/1 Reward only after prediction of each digit
– Abandon example as soon as mistake made

• Can’t use backpropagation
–We use Q-learning instead (with refinements)



Reinforcement Experiments
= Enhanced (all 3 terms)
= Regular Q-Learning



Related Work
• Neural Program Interpreters [Reed & deFreitas 2015]
– More tasks, but supervised

• Neural Random-Access Machines [Kurach et al. 2015]

• Neural Turing Machine [Graves et al. 2014]
– Continuous memory

• Reinforcement Learning NTM [Zaremba & Sutskever
2015]
– Tapes as interfaces

• Program Induction, e.g. [Schmidhuber 2004]



Adding Interfaces to Deep Nets
• Often discrete in nature. What are the options?

• Continuous à use backprop
• Discrete à Use reinforcement learning

• Gumbel-Softmax trick
– [The Concrete Distribution: a continuous relaxation of 

discrete random variables, Maddison et al., ICLR 2017]
– [Categorical reparameterization by Gumbel-Softmax, Jang et 

al. ICLR 2017]
– [GANs for sequences of discrete elements with the Gumbel-

Softmax distribution, Kusner & Hernandez-Lobato, NIPS 
2016 workshop]



Gumbel-Softmax Trick
• Reparameterization trick for discrete latent variables in 

stochastic nets
– Analogous to Gaussian reparameterization in VAEs

• Sample according to:

• Take sample from soft-max & b-prop as per usual
• Anneal temperature ! during training 

https://blog.evjang.com/2016/11/tutorial-categorical-variational.html

Gumbel noise

Add log-props of each discrete category & pass through softmax



Gumbel-Softmax Trick
• Samples from

https://blog.evjang.com/2016/11/tutorial-categorical-variational.html

Samples with 
temperature ! = 1.0

Samples with 
temperature ! = 0.4



Themes

• 1. Memory in Deep Nets

• 2. Deep Nets for sets



?

What about set inputs?
Set structure

• Permutation invariance
• Dynamic sizing 
• Single output 
• Output for each element

[PCMag]

[forbes.com]

{ “Sheep are afraid of wolves.”,
“Cats are afraid of dogs.”,
“Mice are afraid of cats.”,
“Gertrude is a sheep.”,
“What is Gertrude afraid of?”,
“Answer: wolves” }



Communication Neural Network 
(CommNet)

• Input and output is a set
• Each element has its own 

stream (weight shared)
• Distributed representation
• Continuous broadcast 

communication channel
• Streams must learn to 

communicate to solve task
St

re
am
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!"
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St
re

am
 3
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Communication 
channel  

[Sukhbaatar et al. NIPS 2016]



CommNet Model 
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• J data points / streams
• # communication hops fixed
• Share parameters across streams

• Trained by backprop
• Invariant to order / number of inputs [Sukhbaatar et al. NIPS 2016]



Module Structure
• Module f can be single/multi-layer NN or 

RNN/LSTM
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54

�✓ =
TX

t=1

2

4@ log p(a(t)|s(t), ✓)
@✓

 
TX

i=t

r(i) � b(s(t), ✓)

!
� ↵

@

@✓

 
TX

i=t

r(i) � b(s(t), ✓)

!2
3

5 .

Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(sJ)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f
i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f
i takes two input vectors for each agent j: the hidden state h
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j and the communication c

i
j ,76

and outputs a vector h
i+1
j . The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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2 Model6
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The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54

�✓ =
TX

t=1

2

4@ log p(a(t)|s(t), ✓)
@✓
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r(i) � b(s(t), ✓)
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!2
3

5 .

Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(sJ)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f
i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f
i takes two input vectors for each agent j: the hidden state h

i
j and the communication c

i
j ,76

and outputs a vector h
i+1
j . The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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The key idea is that T is dynamically sized. First, the number of agents may vary. This motivates83

the the normalizing factor J � 1 in equation (2), which resacles the communication vector by the84

number of communicating agents. Second, the blocks are applied based on category, rather than by85

coordinate. In this simple form of the model “category” refers to either “self” or “teammate”; but as86

we will see below, the communication architecture can be more complicated than “broadcast to all”,87

and so may require more categories. Note also that T
i is permutation invariant, thus the order of the88

agents does not matter.89

At the first layer of the model an encoder function h
0
j = p(sj) is used. This takes as input state-view90

sjand outputs feature vector h
0
j (in Rd0 for some d0). The form of the encoder is problem dependent,91

but for most of our tasks they consist of a lookup-table embedding (or bags of vectors thereof). Unless92

otherwise noted, c
0
j = 0 for all j.93

At the output of the model, a decoder function q(hK
j ) is used to output a distribution over the space of94

actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete95

action, we sample from the this distribution.96

Thus the entire model, which we call a Communication Neural Net (CommNN), (i) takes the state-97
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54

�✓ =
TX

t=1

2

4@ log p(a(t)|s(t), ✓)
@✓

 
TX

i=t

r(i) � b(s(t), ✓)

!
� ↵

@

@✓

 
TX

i=t

r(i) � b(s(t), ✓)

!2
3

5 .

Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(sJ)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f
i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f
i takes two input vectors for each agent j: the hidden state h

i
j and the communication c

i
j ,76

and outputs a vector h
i+1
j . The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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The key idea is that T is dynamically sized. First, the number of agents may vary. This motivates83

the the normalizing factor J � 1 in equation (2), which resacles the communication vector by the84

number of communicating agents. Second, the blocks are applied based on category, rather than by85

coordinate. In this simple form of the model “category” refers to either “self” or “teammate”; but as86

we will see below, the communication architecture can be more complicated than “broadcast to all”,87

and so may require more categories. Note also that T
i is permutation invariant, thus the order of the88

agents does not matter.89

At the first layer of the model an encoder function h
0
j = p(sj) is used. This takes as input state-view90

sjand outputs feature vector h
0
j (in Rd0 for some d0). The form of the encoder is problem dependent,91

but for most of our tasks they consist of a lookup-table embedding (or bags of vectors thereof). Unless92

otherwise noted, c
0
j = 0 for all j.93

At the output of the model, a decoder function q(hK
j ) is used to output a distribution over the space of94

actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete95

action, we sample from the this distribution.96

Thus the entire model, which we call a Communication Neural Net (CommNN), (i) takes the state-97

view of all agents s, passes it through the encoder h0 = p(s), (ii) iterates h and c in equations (1)98

and (2) to obain hK , (iii) samples actions a for all agents, according to q(hK).99

3.2 Model Extensions100

Local Connectivity: An alternative to the broadcast framework described above is to allow agents101

to communicate to others within a certain range. Let N(j) be the set of agents present within102

communication range of agent j. Then (2) becomes:103

c
i+1
j =

1

|N(j)|
X

j02N(j)

h
i+1
j0 . (3)
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If desired, we can take the final h
K
j and output them directly, so that the model outputs a vector12
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If each f
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The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19
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Figure 1: An overview of our communication model. Left: view of module f
i for a single agent j.

Note that the parameters are shared across all agents. Middle: a single communication step, where
each agents modules propagate their internal state h, as well as broadcasting a communication vector
c on a common channel (shown in red). Right: full model, showing input states s for each agent, two
communication steps and the output actions for each agent.

A key point is that T is dynamically sized since the number of agents may vary. This motivates the
the normalizing factor J � 1 in equation (3), which rescales the communication vector by the number
of communicating agents. Note also that T

i is permutation invariant, thus the order of the agents
does not matter.

At the first layer of the model an encoder function h
0
j = r(sj) is used. This takes as input state-view

sj and outputs feature vector h
0
j (in Rd0 for some d0). The form of the encoder is problem dependent,

but for most of our tasks it is a single layer neural network. Unless otherwise noted, c
0
j = 0 for all j.

At the output of the model, a decoder function q(hK
j ) is used to output a distribution over the space of

actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete
action, we sample from the this distribution: aj ⇠ q(hK

j ).

Thus the entire model (shown in Fig. 1), which we call a Communication Neural Net (CommNN), (i)
takes the state-view of all agents s, passes it through the encoder h0 = r(s), (ii) iterates h and c in
equations (2) and (3) to obtain hK , (iii) samples actions a for all agents, according to q(hK). We refer
to this type communication as continuous type because communication is based on continuous-valued
vectors.

3.2 Model Extensions

Local Connectivity: An alternative to the broadcast framework described above is to allow agents
to communicate to others within a certain range. Let N(j) be the set of agents present within
communication range of agent j. Then (3) becomes:

c
i+1
j =

1

|N(j)|
X

j02N(j)

h
i+1
j0 . (4)

As the agents move, enter and exit and the environment, N(j) will change over time. In this setting,
our model has a natural interpretation as a dynamic graph, with N(j) being the set of vertices
connected to vertex j at the current time. The edges within the graph represent the communication
channel between agents, with (4) being equivalent to belief propagation [22]. Furthermore, the use of
multi-layer nets at each vertex makes our model similar to an instantiation of the GGSNN work of Li
et al. [14].

Temporal Recurrence: We also explore having the network be a recurrent neural network (RNN).
This is achieved by simply replacing the communication step i in Eqn. (2) and (3) by a time step t,

3

Learnable parameters [Sukhbaatar et al. NIPS 2016]
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architecture of ??. Second, we show how this architecture can be used to control groups of cooperating4

agents.5

2 Model6

The simplest form of the model consists of multilayer neural networks f i that take as input vectors7
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We set c0j = 0 for all j, and i 2 {0, ..,K} (we will call K the number of hops in the network).11

If desired, we can take the final hK
j and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14
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i is a simple linear layer followed by a nonlinearity �:15
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The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19
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Dynamically sized: size of T can change depending on input set size
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DeepSets [Zaheer et al., 2017]

– Architecture specialized to set input
–Make weights in each layer permutation invariant
• Equal diagonal elements 
• Off-diagonal elements tied 

– Stream for each element, summed in the end
– Experiment: Image with sample of 10 MNIST 

digits. Need to predict sum

(a) Entropy estimation
for rotated of 2d
Gaussian

(b) Mutual information
estimation by varying
correlation

(c) Mutual information
estimation by varying
rank-1 strength

(d) Mutual information
on 32d random
covariance matrices

Figure 1: Population statistic estimation: Top set of figures, show prediction of DeepSets vs SDM for N = 210

case. Bottom set of figures, depict the mean squared error behavior as number of sets is increased. SDM has
lower error for small N and DeepSets requires more data to reach similar accuracy. But for high dimensional
problems DeepSets easily scales to large number of examples and produces much lower estimation error. Note
that the N ⇥N matrix inversion in SDM makes it prohibitively expensive for N > 214 = 16384.

4 Applications and Empirical Results
We present a diverse set of applications for DeepSets. For the supervised setting, we apply DeepSets
to estimation of population statistics, sum of digits and classification of point-clouds, and regression
with clustering side-information. The permutation-equivariant variation of DeepSets is applied to
the task of outlier detection. Finally, we investigate the application of DeepSets to unsupervised
set-expansion, in particular, concept-set retrieval and image tagging. In most cases we compare our
approach with the state-of-the art and report competitive results.

4.1 Set Input Scalar Response

4.1.1 Supervised Learning: Learning to Estimate Population Statistics

In the first experiment, we learn entropy and mutual information of Gaussian distributions, without
providing any information about Gaussianity to DeepSets. The Gaussians are generated as follows:
• Rotation: We randomly chose a 2⇥ 2 covariance matrix ⌃, and then generated N sample sets from

N (0, R(↵)⌃R(↵)T ) of size M = [300� 500] for N random values of ↵ 2 [0,⇡]. Our goal was
to learn the entropy of the marginal distribution of first dimension. R(↵) is the rotation matrix.

• Correlation: We randomly chose a d ⇥ d covariance matrix ⌃ for d = 16, and then generated
N sample sets from N (0, [⌃,↵⌃;↵⌃,⌃]) of size M = [300 � 500] for N random values of
↵ 2 (�1, 1). Goal was to learn the mutual information of among the first d and last d dimension.

• Rank 1: We randomly chose v 2 R32 and then generated a sample sets from N (0, I+�vvT ) of size
M = [300� 500] for N random values of � 2 (0, 1). Goal was to learn the mutual information.

• Random: We chose N random d⇥ d covariance matrices ⌃ for d = 32, and using each, generated
a sample set from N (0,⌃) of size M = [300� 500]. Goal was to learn the mutual information.

We train using L2 loss with a DeepSets architecture having 3 fully connected layers with ReLU
activation for both transformations � and ⇢. We compare against Support Distribution Machines
(SDM) using a RBF kernel [10], and analyze the results in Fig. 1.

4.1.2 Sum of Digits

Figure 2: Accuracy of digit summation with text (left)
and image (right) inputs. All approaches are trained on
tasks of length 10 at most, tested on examples of length
up to 100. We see that DeepSets generalizes better.

Next, we compare to what happens if our set
data is treated as a sequence. We consider the
task of finding sum of a given set of digits. We
consider two variants of this experiment:
Text. We randomly sample a subset of maxi-
mum M = 10 digits from this dataset to build
100k “sets” of training images, where the set-
label is sum of digits in that set. We test against
sums of M digits, for M starting from 5 all the
way up to 100 over another 100k examples.
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Graph NN view

• CommNet is a special case of Graph NN
• A set can be represented by a complete graph

• Is everything Graph NN?

Graph NN



Graph NN

• Nodes in a graph represent objects
• Edges represent their 

relationships. 
• State of xn each node n depends 

on neighborhood defined by 
graph 

• GNN for molecule [Duvenaud, 
2015]

• Gated Graph NN 
[Li 2016, Bresson 2017]

• GNN+attention [Hoshen2017, 
Veličković2018]
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Figure 1: (a) Example graph. Color denotes edge types. (b) Unrolled one timestep. (c) Parameter
tying and sparsity in recurrent matrix. Letters denote edge types with B0 corresponding to the reverse
edge of type B. B and B0 denote distinct parameters.

The matrix A 2 RD|V|⇥2D|V| determines how nodes in the graph communicate with each other. The
sparsity structure and parameter tying in A is illustrated in Fig. 1. The sparsity structure corresponds
to the edges of the graph, and the parameters in each submatrix are determined by the edge type
and direction. Av: 2 RD⇥2D|V| is the submatrix of A containing the rows corresponding to node
v. Eq. 1 is the initialization step, which copies node annotations into the first components of the
hidden state and pads the rest with zeros. Eq. 2 is the step that passes information between different
nodes of the graph via incoming and outgoing edges with parameters dependent on the edge type
and direction. a(t)

v 2 R2D contains activations from edges in both directions. The remaining are
GRU-like updates that incorporate information from the other nodes and from the previous timestep
to update each node’s hidden state. z and r are the update and reset gates, �(x) = 1/(1+ e�x) is the
logistic sigmoid function, and � is element-wise multiplication. We initially experimented with a
vanilla recurrent neural network-style update, but in preliminary experiments we found this GRU-like
propagation step to be more effective.

3.3 OUTPUT MODELS

There are several types of one-step outputs that we would like to produce in different situations. First,
GG-NNs support node selection tasks by making ov = g(h(T )

v ,xv) for each node v 2 V output node
scores and applying a softmax over node scores. Second, for graph-level outputs, we define a graph
level representation vector as

hG = tanh

 
X

v2V
�
⇣
i(h(T )

v ,xv)
⌘
� tanh

⇣
j(h(T )

v ,xv)
⌘!

, (7)

where �(i(h(T )
v ,xv)) acts as a soft attention mechanism that decides which nodes are relevant to the

current graph-level task. i and j are neural networks that take the concatenation of h(T )
v and xv as

input and outputs real-valued vectors. The tanh functions can also be replaced with the identity.

4 GATED GRAPH SEQUENCE NEURAL NETWORKS

Here we describe Gated Graph Sequence Neural Networks (GGS-NNs), in which several GG-NNs
operate in sequence to produce an output sequence o(1) . . .o(K).

For the kth output step, we denote the matrix of node annotations as X (k) = [x(k)
1 ; . . . ;x(k)

|V|]
> 2

R|V|⇥LV . We use two GG-NNs F (k)
o and F (k)

X : F (k)
o for predicting o(k) from X

(k), and F (k)
X for

predicting X
(k+1) from X

(k). X (k+1) can be seen as the states carried over from step k to k + 1.
Both F (k)

o and F (k)
X contain a propagation model and an output model. In the propagation models,

we denote the matrix of node vectors at the tth propagation step of the kth output step as H(k,t) =

[h(k,t)
1 ; . . . ;h(k,t)

|V| ]> 2 R|V|⇥D. As before, in step k, we setH(k,1) by 0-extending X
(k) per node. An

overview of the model is shown in Fig. 2. Alternatively, F (k)
o and F (k)

X can share a single propagation
model, and just have separate output models. This simpler variant is faster to train and evaluate, and
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Fig. 2. Graph and the neighborhood of a node. The state of the node 1
depends on the information contained in its neighborhood.

to each node that is based on the information con-
tained in the neighborhood of (see Fig. 2). The state con-
tains a representation of the concept denoted by and can be
used to produce an output , i.e., a decision about the concept.

Let be a parametric function, called local transition func-
tion, that expresses the dependence of a node on its neighbor-
hood and let be the local output function that describes how
the output is produced. Then, and are defined as follows:

(1)

where , , , and are the label of , the labels
of its edges, the states, and the labels of the nodes in the neigh-
borhood of , respectively.

Remark 1: Different notions of neighborhood can be adopted.
For example, one may wish to remove the labels , since
they include information that is implicitly contained in .
Moreover, the neighborhood could contain nodes that are two
or more links away from . In general, (1) could be simplified
in several different ways and several minimal models4 exist. In
the following, the discussion will mainly be based on the form
defined by (1), which is not minimal, but it is the one that more
closely represents our intuitive notion of neighborhood.

Remark 2: Equation (1) is customized for undirected graphs.
When dealing with directed graphs, the function can also ac-
cept as input a representation of the direction of the arcs. For ex-
ample, may take as input a variable for each arc
such that , if is directed towards and , if
comes from . In the following, in order to keep the notations
compact, we maintain the customization of (1). However, un-
less explicitly stated, all the results proposed in this paper hold

4A model is said to be minimal if it has the smallest number of variables while
retaining the same computational power.

also for directed graphs and for graphs with mixed directed and
undirected links.

Remark 3: In general, the transition and the output functions
and their parameters may depend on the node . In fact, it is
plausible that different mechanisms (implementations) are used
to represent different kinds of objects. In this case, each kind of
nodes has its own transition function , output function

, and a set of parameters . Thus, (1) becomes
and .

However, for the sake of simplicity, our analysis will consider
(1) that describes a particular model where all the nodes share
the same implementation.

Let , , , and be the vectors constructed by stacking all
the states, all the outputs, all the labels, and all the node labels,
respectively. Then, (1) can be rewritten in a compact form as

(2)

where , the global transition function and , the global
output function are stacked versions of instances of and

, respectively.
We are interested in the case when are uniquely defined

and (2) defines a map , which takes a graph
as input and returns an output for each node. The Banach
fixed point theorem [53] provides a sufficient condition for the
existence and uniqueness of the solution of a system of equa-
tions. According to Banach’s theorem [53], (2) has a unique so-
lution provided that is a contraction map with respect to the
state, i.e., there exists , , such that

holds for any , where denotes
a vectorial norm. Thus, for the moment, let us assume that
is a contraction map. Later, we will show that, in GNNs, this
property is enforced by an appropriate implementation of the
transition function.

Note that (1) makes it possible to process both positional and
nonpositional graphs. For positional graphs, must receive the
positions of the neighbors as additional inputs. In practice, this
can be easily achieved provided that information contained in

, , and is sorted according to neighbors’ po-
sitions and is properly padded with special null values in po-
sitions corresponding to nonexisting neighbors. For example,

, where is the max-
imal number of neighbors of a node; holds, if is the
th neighbor of ; and , for some prede-

fined null state , if there is no th neighbor.
However, for nonpositional graphs, it is useful to replace

function of (1) with

(3)

where is a parametric function. This transition function,
which has been successfully used in recursive neural networks
[54], is not affected by the positions and the number of the chil-
dren. In the following, (3) is referred to as the nonpositional
form, while (1) is called the positional form. In order to imple-
ment the GNN model, the following items must be provided:

1) a method to solve (1);

[Gori 2005, Scarselli 2009, Hamilton 2017]



Toy task

• Input = set of 5 numbers between 1 and 500
• Task: map the input to set of {1, 2, 3, 4, 5}

[Sukhbaatar et al. NIPS 2016]



Experiment: bag to sequence

• Problem: given a set of words, arrange them in 
right order.

• Separate streams for each words
• After 2 hops, each stream output its location
• Data: Gigaword, 5 words, 2 layer MLP as f

{is, mouse, cat, chasing} à “cat is chasing mouse”

5-gram by KenLM Our model

Error per word 40% 26%

[Sukhbaatar et al. NIPS 2016]



Another approach: Memory network

• Input is set, but single output
• Independently encode them à memory vectors
• Soft attention over memory vectors

Memory module

Controller 
module

Output

!" !# !$
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MemNet VS CommNet

• Central controller
• Serial processing

Memory module

Controller 
module

Output

MemNet
• Distributed controller
• Parallel processing

CommNet

+

+

Stream 1 2 3 4
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Outputs
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Experiment on bAbI Q&A data

• Data: 20 bAbI tasks [Weston et al. arXiv: 1502.05698, 2015]

• Answer questions after reading short story
• Small vocabulary, simple language
• Different tasks require different reasoning
• Training data size 1K or 10K for each task 

our model is somewhat simpler, not requiring operations like sharpening. Furthermore, we apply
our memory model to textual reasoning tasks, which qualitatively differ from the more abstract
operations of sorting and recall tackled by the NTM.

Our model is also related to Bahdanau et al. [2]. In that work, a bidirectional RNN based encoder
and gated RNN based decoder were used for machine translation. The decoder uses an attention
model that finds which hidden states from the encoding are most useful for outputting the next
translated word; the attention model uses a small neural network that takes as input a concatenation
of the current hidden state of the decoder and each of the encoders hidden states. A similar attention
model is also used in Xu et al. [23] for generating image captions. Our “memory” is analogous to
their attention mechanism, although [2] is only over a single sentence rather than many, as in our
case. Furthermore, our model makes several hops on the memory before making an output; we will
see below that this is important for good performance. There are also differences in the architecture
of the small network used to score the memories compared to our scoring approach; we use a simple
linear layer, whereas they use a more sophisticated gated architecture.

We also apply our model to language modeling, an extensively studied task. Goodman [6] showed
simple but effective approaches which combine n-grams with a cache. Bengio et al. [3] ignited
interest in using neural network based models for the task, with RNNs [14] and LSTMs [10, 19]
showing clear performance gains over traditional methods. Indeed, the current state-of-the-art is
held by variants of these models, for example very large LSTMs with Dropout [24] or RNNs with
diagonal constraints on the weight matrix [15]. With appropriate weight tying, our model can be
regarded as a modified form of RNN, where the recurrence is indexed by lookups to the word
sequence rather than indexed by the sequence itself.

4 Synthetic Question and Answering Experiments
We perform experiments on the synthetic QA tasks defined in [21]. A given QA task consists of
a set of statements, followed by a question whose answer is typically a single word (in a few tasks,
answers are a set of words). The answer is available to the model at training time, but must be
predicted at test time. There are a total of 20 different types of tasks that probe different forms of
reasoning and deduction. Here are samples of three of the tasks:
Sam walks into the kitchen. Brian is a lion. Mary journeyed to the den.

Sam picks up an apple. Julius is a lion. Mary went back to the kitchen.

Sam walks into the bedroom. Julius is white. John journeyed to the bedroom.

Sam drops the apple. Bernhard is green. Mary discarded the milk.

Q: Where is the apple? Q: What color is Brian? Q: Where was the milk before the den?

A. Bedroom A. White A. Hallway

Note that for each question, only some subset of the statements contain information needed for
the answer, and the others are essentially irrelevant distractors (e.g. the first sentence in the first
example). In the Memory Networks of Weston et al. [21], this supporting subset was explicitly
indicated to the model during training and the key difference between that work and this one is that
this information is no longer provided. Hence, the model must deduce for itself at training and test
time which sentences are relevant and which are not.

Formally, for one of the 20 QA tasks, we are given example problems, each having a set of I

sentences {xi} where I  320; a question sentence q and answer a. The examples are randomly
split into disjoint train and test sets each containing 1000 examples. Let the jth word of sentence
i be xij , represented by a one-hot vector of length V (where the vocabulary is of size V = 177,
reflecting the simplistic nature of the QA language). The same representation is used for the
question q and answer a. Two versions of the data are used, one that has 1000 training problems
per task and a second larger one with 10,000 per task.

4.1 Model Details
Unless otherwise stated, all experiments used a K = 3 hops model with the adjacent weight sharing
scheme. For all tasks that output lists (i.e. the answers are multiple words), we take each possible
combination of possible outputs and record them as a separate answer vocabulary word.

Sentence Representation: In our experiments we explore two different representations for
the sentences. The first is the bag-of-words (BoW) representation that takes the sentence
xi = {xi1, xi2, ..., xin}, embeds each word and sums the resulting vectors: e.g mi =

P
j Axij and

4
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Examples of Attention Weights

• 2 test cases:

Story (1: 1 supporting fact) Support Hop 1 Hop 2 Hop 3 Story (2: 2 supporting facts) Support Hop 1 Hop 2 Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03 John dropped the milk. 0.06 0.00 0.00
Mary travelled to the hallway. 0.00 0.00 0.00 John took the milk there. yes 0.88 1.00 0.00
John went to the bedroom. 0.37 0.02 0.00 Sandra went back to the bathroom. 0.00 0.00 0.00
John travelled to the bathroom. yes 0.60 0.98 0.96 John moved to the hallway. yes 0.00 0.00 1.00
Mary went to the office. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 0.00 0.00

Story (16: basic induction) Support Hop 1 Hop 2 Hop 3 Story (18: size reasoning) Support Hop 1 Hop 2 Hop 3
Brian is a frog. yes 0.00 0.98 0.00 The suitcase is bigger than the chest. yes 0.00 0.88 0.00
Lily is gray. 0.07 0.00 0.00 The box is bigger than the chocolate. 0.04 0.05 0.10
Brian is yellow. yes 0.07 0.00 1.00 The chest is bigger than the chocolate. yes 0.17 0.07 0.90
Julius is green. 0.06 0.00 0.00 The chest fits inside the container. 0.00 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00 The chest fits inside the box. 0.00 0.00 0.00

Where is John?   Answer: bathroom    Prediction: bathroom Where is the milk?   Answer: hallway    Prediction: hallway

What color is Greg?  Answer: yellow    Prediction: yellow Does the suitcase fit in the chocolate?   Answer: no    Prediction: no

Figure 2: Example predictions on the QA tasks of [21]. We show the labeled supporting facts
(support) from the dataset which MemN2N does not use during training, and the probabilities p of
each hop used by the model during inference. MemN2N successfully learns to focus on the correct
supporting sentences.

Penn Treebank Text8
# of # of memory Valid. Test # of # of memory Valid. Test

Model hidden hops size perp. perp. hidden hops size perp. perp.
RNN [15] 300 - - 133 129 500 - - - 184
LSTM [15] 100 - - 120 115 500 - - 122 154
SCRN [15] 100 - - 120 115 500 - - - 161
MemN2N 150 2 100 128 121 500 2 100 152 187

150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the k

th hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple
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We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple
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Experiment: 20 bAbI tasks
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Table 3 shows the win rate of different module choices with various types of model. Among
different modules, the LSTM achieved the best performance. Continuous communication with
CommNet improved all module types. Relative to the independent controller, the fully-connected
model degraded performance, but the discrete communication improved LSTM module type. We
also explored several variations of the task: varying the number of agents in each team by setting
m = 3, 10, and increasing visual range of agents to 5 ⇥ 5 area. The result on those tasks are shown
on the right side of Table 3. Using CommNet model consistently improves the win rate, even with
the greater environment observability of the 5⇥5 vision case.
4.4 bAbI Tasks
We apply our model to the bAbI [36] toy Q & A dataset, which consists of 20 tasks each requiring
different kind of reasoning. The goal is to answer a question after reading a short story. We can
formulate this as a multi-agent task by giving each sentence of the story its own agent. Communication
among agents allows them to exchange useful information necessary to answer the question.

The input is {s1, s2, ..., sJ , q}, where sj is j’th sentence of the story, and q is the question sentence.
We use the same encoder representation as [29] to convert them to vectors. The f(.) module consists
of a two-layer MLP with ReLU non-linearities. After K = 2 communication steps, we add the
final hidden states together and pass it through a softmax decoder layer to sample an output word y.
The model is trained in a supervised fashion using a cross-entropy loss between y and the correct
answer y

⇤. The hidden layer size is set to 100 and weights are initialized from N(0, 0.2). We train
the model for 100 epochs with learning rate 0.003 and mini-batch size 32 with Adam optimizer [12]
(�1 = 0.9, �2 = 0.99, ✏ = 10�6). We used 10% of training data as validation set to find optimal
hyper-parameters for the model.

Results on the 10K version of the bAbI task are shown in Table 4, along with other baselines (see
Appendix E for a detailed breakdown). Our model outperforms the LSTM baseline, but is worse
than the MemN2N model [29], which is specifically designed to solve reasoning over long stories.
However, it successfully solves most of the tasks, including ones that require information sharing
between two or more agents through communication.

Mean error (%) Failed tasks (err. > 5%)
LSTM [29] 36.4 16
MemN2N [29] 4.2 3
DMN+ [38] 2.8 1
Independent (MLP module) 15.2 9
CommNet (MLP module) 7.1 3

Table 4: Experimental results on bAbI tasks.

5 Discussion and Future Work
We have introduced CommNet, a simple controller for MARL that is able to learn continuous
communication between a dynamically changing set of agents. Evaluations on four diverse tasks
clearly show the model outperforms models without communication, fully-connected models, and
models using discrete communication. Despite the simplicity of the broadcast channel, examination
of the traffic task reveals the model to have learned a sparse communication protocol that conveys
meaningful information between agents. Code for our model (and baselines) can be found at
http://cims.nyu.edu/~sainbar/commnet/.

One aspect of our model that we did not fully exploit is its ability to handle heterogenous agent types
and we hope to explore this in future work. Furthermore, we believe the model will scale gracefully
to large numbers of agents, perhaps requiring more sophisticated connectivity structures; we also
leave this to future work.
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Figure 4: Switch: (a-b) Performance of DIAL and RIAL, with and without ( -NS) parameter sharing,
and NoComm-baseline, for n = 3 and n = 4 agents. (c) The decision tree extracted for n = 3 to
interpret the communication protocol discovered by DIAL.

Complexity. The switch riddle poses significant protocol learning challenges. At any time-step t,
there are |o|t possible observation histories for a given agent, with |o| = 3: the agent either is not
in the interrogation room or receives one of two messages when he is. For each of these histories,
an agent can chose between 4 = |U ||M | different options, so at time-step t, the single-agent policy
space is (|U ||M |)|o|

t

= 43
t

. The product of all policies for all time-steps defines the total policy
space for an agent:

Q
43

t

= 4(3
T+1�3)/2, where T is the final time-step. The size of the multi-agent

policy space grows exponentially in n, the number of agents: 4n(3
T+1�3)/2. We consider a setting

where T is proportional to the number of agents, so the total policy space is 4n3
O(n)

. For n = 4, the
size is 488572. Our approach using DIAL is to model the switch as a continuous message, which is
binarised during decentralised execution.

Experimental results. Figure 4(a) shows our results for n = 3 agents. All four methods learn an
optimal policy in 5k episodes, substantially outperforming the NoComm baseline. DIAL with param-
eter sharing reaches optimal performance substantially faster than RIAL. Furthermore, parameter
sharing speeds both methods. Figure 4(b) shows results for n = 4 agents. DIAL with parameter
sharing again outperforms all other methods. In this setting, RIAL without parameter sharing was
unable to beat the NoComm baseline. These results illustrate how difficult it is for agents to learn the
same protocol independently. Hence, parameter sharing can be crucial for learning to communicate.
DIAL-NS performs similarly to RIAL, indicating that the gradient provides a richer and more robust
source of information.

We also analysed the communication protocol discovered by DIAL for n = 3 by sampling 1K
episodes, for which Figure 4(c) shows a decision tree corresponding to an optimal strategy. When a
prisoner visits the interrogation room after day two, there are only two options: either one or two
prisoners may have visited the room before. If three prisoners had been, the third prisoner would have
finished the game. The other options can be encoded via the “On” and “Off” position respectively.

6.3 MNIST Games

In this section, we consider two tasks based on the well known MNIST digit classification dataset [26].
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Colour-Digit MNIST is a two-player
game in which each agent observes the
pixel values of a random MNIST digit in
red or green of size 2 ⇥ 28 ⇥ 28, while
the colour label, ca 2 0, 1, and digit value,
d
a 2 0..9, are hidden. For each agent, re-

ward consists of two components that are
antisymmetric in the action, colour, and
parity (odd, even) of the digits. Only one
bit of information can be sent, so agents
must agree to encode/decode either colour
or parity, with parity yielding greater rewards. The game has two steps; in the first step, both
agents send a 1-bit message, in the second step they select a binary action u

a
2 . The reward
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1 Introduction2

In this work we make two contributions. First, we simplify and extend the graph neural network3

architecture of ??. Second, we show how this architecture can be used to control groups of cooperating4

agents.5

2 Model6

The simplest form of the model consists of multilayer neural networks f
i that take as input vectors7

h
i and c

i and output a vector h
i+1. The model takes as input a set of vectors {h

0
1, h

0
2, ..., h

0
m}, and8

computes9

h
i+1
j = f

i(hi
j , c

i
j)

10

c
i+1
j =

X

j0 6=j

h
i+1
j0 ;

We set c
0
j = 0 for all j, and i 2 {0, .., K} (we will call K the number of hops in the network).11

If desired, we can take the final h
K
j and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14

If each f
i is a simple linear layer followed by a nonlinearity �:15

h
i+1
j = �(Ai

h
i
j + B

i
c
i
j),

then the model can be viewed as a feedforward network with layers16

H
i+1 = �(T i

H
i),

where T is written in block form17
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The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54
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Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(sJ)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f
i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f
i takes two input vectors for each agent j: the hidden state h

i
j and the communication c

i
j ,76

and outputs a vector h
i+1
j . The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54

�✓ =
TX

t=1

2

4@ log p(a(t)|s(t), ✓)
@✓

 
TX

i=t

r(i) � b(s(t), ✓)

!
� ↵

@

@✓

 
TX

i=t

r(i) � b(s(t), ✓)

!2
3

5 .

Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(sJ)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f
i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f
i takes two input vectors for each agent j: the hidden state h

i
j and the communication c

i
j ,76

and outputs a vector h
i+1
j . The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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The key idea is that T is dynamically sized. First, the number of agents may vary. This motivates83
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action, we sample from the this distribution.96
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Local Connectivity: An alternative to the broadcast framework described above is to allow agents101

to communicate to others within a certain range. Let N(j) be the set of agents present within102

communication range of agent j. Then (2) becomes:103
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|N(j)|
X

j02N(j)

h
i+1
j0 . (3)

3

h0 = [h0
1, h

0
2, ..., h

0
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i+1
j = f

i(hi
j , c

i
j) (1)

79

c
i+1
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X

j0 6=j

h
i+1
j0 . (2)

In the case that f
i is a single linear layer followed by a nonlinearity �, we have: h

i+1
j = �(Hi

h
i
j +80

C
i
c
i
j) and the model can be viewed as a feedforward network with layers hi+1 = �(T ihi) where hi81

is the concatenation of all h
i
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The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19
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viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54
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Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(sJ)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f
i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f
i takes two input vectors for each agent j: the hidden state h

i
j and the communication c

i
j ,76

and outputs a vector h
i+1
j . The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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The key idea is that T is dynamically sized. First, the number of agents may vary. This motivates83

the the normalizing factor J � 1 in equation (2), which resacles the communication vector by the84

number of communicating agents. Second, the blocks are applied based on category, rather than by85

coordinate. In this simple form of the model “category” refers to either “self” or “teammate”; but as86

we will see below, the communication architecture can be more complicated than “broadcast to all”,87

and so may require more categories. Note also that T
i is permutation invariant, thus the order of the88

agents does not matter.89

At the first layer of the model an encoder function h
0
j = p(sj) is used. This takes as input state-view90

sjand outputs feature vector h
0
j (in Rd0 for some d0). The form of the encoder is problem dependent,91

but for most of our tasks they consist of a lookup-table embedding (or bags of vectors thereof). Unless92

otherwise noted, c
0
j = 0 for all j.93

At the output of the model, a decoder function q(hK
j ) is used to output a distribution over the space of94

actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete95

action, we sample from the this distribution.96

Thus the entire model, which we call a Communication Neural Net (CommNN), (i) takes the state-97

view of all agents s, passes it through the encoder h0 = p(s), (ii) iterates h and c in equations (1)98

and (2) to obain hK , (iii) samples actions a for all agents, according to q(hK).99

3.2 Model Extensions100

Local Connectivity: An alternative to the broadcast framework described above is to allow agents101

to communicate to others within a certain range. Let N(j) be the set of agents present within102

communication range of agent j. Then (2) becomes:103

c
i+1
j =

1

|N(j)|
X

j02N(j)

h
i+1
j0 . (3)
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Figure 1: An overview of our communication model. Left: view of module f
i for a single agent j.

Note that the parameters are shared across all agents. Middle: a single communication step, where
each agents modules propagate their internal state h, as well as broadcasting a communication vector
c on a common channel (shown in red). Right: full model, showing input states s for each agent, two
communication steps and the output actions for each agent.

A key point is that T is dynamically sized since the number of agents may vary. This motivates the
the normalizing factor J � 1 in equation (3), which rescales the communication vector by the number
of communicating agents. Note also that T

i is permutation invariant, thus the order of the agents
does not matter.

At the first layer of the model an encoder function h
0
j = r(sj) is used. This takes as input state-view

sj and outputs feature vector h
0
j (in Rd0 for some d0). The form of the encoder is problem dependent,

but for most of our tasks it is a single layer neural network. Unless otherwise noted, c
0
j = 0 for all j.

At the output of the model, a decoder function q(hK
j ) is used to output a distribution over the space of

actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete
action, we sample from the this distribution: aj ⇠ q(hK

j ).

Thus the entire model (shown in Fig. 1), which we call a Communication Neural Net (CommNN), (i)
takes the state-view of all agents s, passes it through the encoder h0 = r(s), (ii) iterates h and c in
equations (2) and (3) to obtain hK , (iii) samples actions a for all agents, according to q(hK). We refer
to this type communication as continuous type because communication is based on continuous-valued
vectors.

3.2 Model Extensions

Local Connectivity: An alternative to the broadcast framework described above is to allow agents
to communicate to others within a certain range. Let N(j) be the set of agents present within
communication range of agent j. Then (3) becomes:

c
i+1
j =

1

|N(j)|
X

j02N(j)

h
i+1
j0 . (4)

As the agents move, enter and exit and the environment, N(j) will change over time. In this setting,
our model has a natural interpretation as a dynamic graph, with N(j) being the set of vertices
connected to vertex j at the current time. The edges within the graph represent the communication
channel between agents, with (4) being equivalent to belief propagation [22]. Furthermore, the use of
multi-layer nets at each vertex makes our model similar to an instantiation of the GGSNN work of Li
et al. [14].

Temporal Recurrence: We also explore having the network be a recurrent neural network (RNN).
This is achieved by simply replacing the communication step i in Eqn. (2) and (3) by a time step t,

3

Input state of each agent

Action of each agent
• Each stream is an agent
• Equal reward for all 

agents
• Agents collaborate to 
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Traffic Junction game

• Cars on fixed routes
• Two actions: gas/brake
• Limited visibility
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• Variable # cars (max 20)
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Figure 2: Left: Traffic junction task where agent-controlled cars (colored circles) have to pass the
through the junction without colliding. Middle: A harder version with four connected junctions.
Right: The combat task, where model controlled agents (red circles) fight against enemy bots (blue
circles). In both tasks each agent has limited visibility (orange region), thus is not able to see the
location of all other agents.

Communication Modules
type MLP RNN LSTM
None 20.6± 14.1 19.5± 4.5 9.4± 5.6
Continuous 2.2± 0.6 7.6± 1.4 1.6± 1.0
Dense 12.5± 4.4 - -
Discrete 20.2± 11.2 - -

Communication Other game versions
type Easy (MLP) Hard (RNN)
None 15.8± 12.5 26.9± 6.0
Continuous 0.3± 0.1 22.5± 6.1
Cont. local - 21.1± 3.4
Discrete 1.1± 2.4 - 1%	
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Table 2: Traffic junction task. Left: failure rates (%) for different types of communication and module func-
tion f(.). Continuous consistently improves performance, over the dense baseline and no communication.
Middle: Game variants. In the easy case, discrete communication does help, but still less than continuous.
On the hard version, local communication (see Section 3.2) does at least as well as broadcasting to all
agents. Right: As visibility in the environment descreases, the importance of communication grows.

where C
t is the number of collisions occurring at time t, and N

t is number of cars present. The
simulation is terminated after 40 steps and is classified as a failure if one or more more collisions
have occurred. Details of the input representation, training and other game variations can be found in
Appendix A.

In Table 2, we show the probability of failure of a variety of different module/communication
method pairs. Continuous communication between cars significantly reduces the failure rate for
all module types. Discrete communication did not give any benefit, except for the easy game. We
also tried a dense communication baseline by allowing the matrix T to be arbitrary, resulting in a
single large fully-connected network controlling all agents. However, this did not work as well as
continuous communication (a video showing this model before and after training can be found at
https://youtu.be/onK98y-UNHQ). We also explores how partial visibility within the environment
effects the advantage given by communication. As the vision range of each agent decreases, the
advantage of communication increases. Impressively, with zero visibility (the cars are driving blind)
the continuous communication model is still able to succeed 90% of the time.

5.2.2 Analysis of Communication
We now attempt to understand what the agents communicate when performing the junction task.
We start by recording the hidden state h

i
j of each agent and the corresponding communication

vectors c̃
i+1
j = C

i+1
h

i
j (the contribution agent j at step i + 1 makes to the hidden state of other

agents). Fig. 3(left) and Fig. 3(right) show the 2D PCA projections of the communication and hidden
state vectors respectively. These plots show a diverse range of hidden states but far more clustered
communication vectors, many of which are close to zero. This suggests that while the hidden state
carries information, the agent often prefers not to communicate it to the others unless necessary. This
is a possible consequence of the broadcast channel: if everyone talks at the same time, no-one can
understand. See Appendix B for norm of communication vectors and brake locations.

To better understand the meaning behind the communication vectors, we ran the simulation with
only two cars and recorded their communication vectors and locations whenever one of them braked.

6
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Traffic Junction Results
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Figure 2: Left: Traffic junction task where agent-controlled cars (colored circles) have to pass the
through the junction without colliding. Middle: The combat task, where model controlled agents (red
circles) fight against enemy bots (blue circles). In both tasks each agent has limited visibility (orange
region), thus is not able to see the location of all other agents. Right: As visibility in the environment
decreases, the importance of communication grows in the traffic junction task.

The state vector sj for each agent is thus a concatenation of all these vectors, having dimension
32 ⇥ |n| ⇥ |l| ⇥ |r|.
In Table 2(left), we show the probability of failure of a variety of different model � and module
f pairs. Compared to the baseline models, CommNet significantly reduces the failure rate for all
module types, achieving the best performance with LSTM module (a video showing this model
before and after training can be found at http://cims.nyu.edu/~sainbar/commnet).

We also explored how partial visibility within the environment effects the advantage given by
communication. As the vision range of each agent decreases, the advantage of communication
increases as shown in Fig. 2(right). Impressively, with zero visibility (the cars are driving blind) the
CommNet model is still able to succeed 90% of the time.

Table 2(right) shows the results on easy and hard versions of the game. The easy version is a junction
of two one-way roads, while the harder version consists from four connected junctions of two-way
roads. Details of the other game variations can be found in Appendix C. Discrete communication
works well on the easy version, but the CommNet with local connectivity gives the best performance
on the hard case.

4.3.2 Analysis of Communication
We now attempt to understand what the agents communicate when performing the junction task.
We start by recording the hidden state h

i
j of each agent and the corresponding communication

vectors c̃
i+1
j = C

i+1
h

i
j (the contribution agent j at step i + 1 makes to the hidden state of other

agents). Fig. 3(left) and Fig. 3(right) show the 2D PCA projections of the communication and hidden
state vectors respectively. These plots show a diverse range of hidden states but far more clustered
communication vectors, many of which are close to zero. This suggests that while the hidden state
carries information, the agent often prefers not to communicate it to the others unless necessary. This
is a possible consequence of the broadcast channel: if everyone talks at the same time, no-one can
understand. See Appendix D for norm of communication vectors and brake locations.

Module f() type
Model � MLP RNN LSTM
Independent 20.6± 14.1 19.5± 4.5 9.4± 5.6
Fully-connected 12.5± 4.4 34.8± 19.7 4.8± 2.4
Discrete comm. 15.8± 9.3 15.2± 2.1 8.4± 3.4

CommNet 2.2± 0.6 7.6± 1.4 1.6± 1.0

Other game versions
Model � Easy (MLP) Hard (RNN)
Independent 15.8± 12.5 26.9± 6.0
Discrete comm. 1.1± 2.4 28.2± 5.7

CommNet 0.3± 0.1 22.5± 6.1
CommNet local - 21.1± 3.4

Table 2: Traffic junction task. Left: failure rates (%) for different types of model and module function
f(.). CommNet consistently improves performance, over the baseline models. Right: Game variants.
In the easy case, discrete communication does help, but still less than CommNet. On the hard version,
local communication (see Section 2.2) does at least as well as broadcasting to all agents.

6
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Traffic Junction (Hard version)
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Figure 2: Left: Traffic junction task where agent-controlled cars (colored circles) have to pass the
through the junction without colliding. Middle: A harder version with four connected junctions.
Right: The combat task, where model controlled agents (red circles) fight against enemy bots (blue
circles). In both tasks each agent has limited visibility (orange region), thus is not able to see the
location of all other agents.

Communication Modules
type MLP RNN LSTM
None 20.6± 14.1 19.5± 4.5 9.4± 5.6
Continuous 2.2± 0.6 7.6± 1.4 1.6± 1.0
Dense 12.5± 4.4 - -
Discrete 20.2± 11.2 - -

Communication Other game versions
type Easy (MLP) Hard (RNN)
None 15.8± 12.5 26.9± 6.0
Continuous 0.3± 0.1 22.5± 6.1
Cont. local - 21.1± 3.4
Discrete 1.1± 2.4 - 1%	
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Table 2: Traffic junction task. Left: failure rates (%) for different types of communication and module func-
tion f(.). Continuous consistently improves performance, over the dense baseline and no communication.
Middle: Game variants. In the easy case, discrete communication does help, but still less than continuous.
On the hard version, local communication (see Section 3.2) does at least as well as broadcasting to all
agents. Right: As visibility in the environment descreases, the importance of communication grows.

where C
t is the number of collisions occurring at time t, and N

t is number of cars present. The
simulation is terminated after 40 steps and is classified as a failure if one or more more collisions
have occurred. Details of the input representation, training and other game variations can be found in
Appendix A.

In Table 2, we show the probability of failure of a variety of different module/communication
method pairs. Continuous communication between cars significantly reduces the failure rate for
all module types. Discrete communication did not give any benefit, except for the easy game. We
also tried a dense communication baseline by allowing the matrix T to be arbitrary, resulting in a
single large fully-connected network controlling all agents. However, this did not work as well as
continuous communication (a video showing this model before and after training can be found at
https://youtu.be/onK98y-UNHQ). We also explores how partial visibility within the environment
effects the advantage given by communication. As the vision range of each agent decreases, the
advantage of communication increases. Impressively, with zero visibility (the cars are driving blind)
the continuous communication model is still able to succeed 90% of the time.

5.2.2 Analysis of Communication
We now attempt to understand what the agents communicate when performing the junction task.
We start by recording the hidden state h

i
j of each agent and the corresponding communication

vectors c̃
i+1
j = C

i+1
h

i
j (the contribution agent j at step i + 1 makes to the hidden state of other

agents). Fig. 3(left) and Fig. 3(right) show the 2D PCA projections of the communication and hidden
state vectors respectively. These plots show a diverse range of hidden states but far more clustered
communication vectors, many of which are close to zero. This suggests that while the hidden state
carries information, the agent often prefers not to communicate it to the others unless necessary. This
is a possible consequence of the broadcast channel: if everyone talks at the same time, no-one can
understand. See Appendix B for norm of communication vectors and brake locations.

To better understand the meaning behind the communication vectors, we ran the simulation with
only two cars and recorded their communication vectors and locations whenever one of them braked.
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Figure 2: Left: Traffic junction task where agent-controlled cars (colored circles) have to pass the
through the junction without colliding. Middle: A harder version with four connected junctions.
Right: The combat task, where model controlled agents (red circles) fight against enemy bots (blue
circles). In both tasks each agent has limited visibility (orange region), thus is not able to see the
location of all other agents.

Communication Modules
type MLP RNN LSTM
None 20.6± 14.1 19.5± 4.5 9.4± 5.6
Dense 12.5± 4.4 34.8± 19.7 4.8± 2.4
Discrete 15.8± 9.3 15.2± 2.1 8.4± 3.4
Continuous 2.2± 0.6 7.6± 1.4 1.6± 1.0

Communication Other game versions
type Easy (MLP) Hard (RNN)
None 15.8± 12.5 26.9± 6.0
Discrete 1.1± 2.4 28.2± 5.7
Continuous 0.3± 0.1 22.5± 6.1
Cont. local - 21.1± 3.4 1%	
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Table 2: Traffic junction task. Left: failure rates (%) for different types of communication and module func-
tion f(.). Continuous consistently improves performance, over the dense baseline and no communication.
Middle: Game variants. In the easy case, discrete communication does help, but still less than continuous.
On the hard version, local communication (see Section 3.2) does at least as well as broadcasting to all
agents. Right: As visibility in the environment descreases, the importance of communication grows.

where C
t is the number of collisions occurring at time t, and N

t is number of cars present. The
simulation is terminated after 40 steps and is classified as a failure if one or more more collisions
have occurred. Details of the input representation, training and other game variations can be found in
Appendix A.

In Table 2, we show the probability of failure of a variety of different module/communication
method pairs. Continuous communication between cars significantly reduces the failure rate for
all module types. Discrete communication did not give any benefit, except for the easy game. We
also tried a dense communication baseline by allowing the matrix T to be arbitrary, resulting in a
single large fully-connected network controlling all agents. However, this did not work as well as
continuous communication (a video showing this model before and after training can be found at
https://youtu.be/onK98y-UNHQ). We also explores how partial visibility within the environment
effects the advantage given by communication. As the vision range of each agent decreases, the
advantage of communication increases. Impressively, with zero visibility (the cars are driving blind)
the continuous communication model is still able to succeed 90% of the time.

5.2.2 Analysis of Communication
We now attempt to understand what the agents communicate when performing the junction task.
We start by recording the hidden state h

i
j of each agent and the corresponding communication

vectors c̃
i+1
j = C

i+1
h

i
j (the contribution agent j at step i + 1 makes to the hidden state of other

agents). Fig. 3(left) and Fig. 3(right) show the 2D PCA projections of the communication and hidden
state vectors respectively. These plots show a diverse range of hidden states but far more clustered
communication vectors, many of which are close to zero. This suggests that while the hidden state
carries information, the agent often prefers not to communicate it to the others unless necessary. This
is a possible consequence of the broadcast channel: if everyone talks at the same time, no-one can
understand. See Appendix B for norm of communication vectors and brake locations.

To better understand the meaning behind the communication vectors, we ran the simulation with
only two cars and recorded their communication vectors and locations whenever one of them braked.
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Run time dynamic sizing

• The graph is changing with every layer
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How are the agents communicating?

PCA’d communication vectors
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Figure 3: Left: First two principal components of communication vectors c̃ from multiple runs on
the traffic junction task Fig. 2(left). While the majority are “silent” (i.e. have a small norm), distinct
clusters are also present. Middle: for three of these clusters, we probe the model to understand
their meaning (see text for details). Right: First two principal components of hidden state vectors h

from the same runs as on the left, with corresponding color coding. Note how many of the “silent”
communication vectors accompany non-zero hidden state vectors. This shows that the two pathways
carry different information.

Vectors belonging to the clusters A, B & C in Fig. 3(left) were consistently emitted when one of the
cars was in a specific location, shown by the colored circles in Fig. 3(middle) (or pair of locations for
cluster C). They also strongly correlated with the other car braking at the locations indicated in red,
which happen to be relevant to avoiding collision.

5.2.3 Combat Task

We simulate a simple battle involving two opposing teams in a 15 ⇥ 15 grid as shown in Fig. 2(right).
Each team consists of m = 5 agents and their initial positions are sampled uniformly in a 5 ⇥ 5
square around the team center, which is picked uniformly in the grid. At each time step, an agent can
perform one of the following actions: move one cell in one of four directions; attack another agent
by specifying its ID j (there are m attack actions, each corresponding to one enemy agent); or do
nothing. If agent A attacks agent B, then B’s health point will be reduced by 1, but only if B is inside
the firing range of A (its surrounding 3 ⇥ 3 area). Agents need one time step of cooling down after
an attack, during which they cannot attack. All agents start with 3 health points, and die when their
health reaches 0. A team will win if all agents in the other team die. The simulation ends when one
team wins, or neither of teams win within 40 time steps (a draw).

The model controls one team during training, and the other team consist of bots that follow a hard-
coded policy. The bot policy is to attack the nearest enemy agent if it is within its firing range. If not,
it approaches the nearest visible enemy agent within visual range. An agent is visible to all bots, if it
is inside the visual range of any individual bot. This shared vision gives an advantage to the bot team.
When input to a model, each agent is represented by a set of one-hot binary vectors {i, t, l, h, c}
encoding its unique ID, team ID, location, health points and cooldown. A model controlling an agent
also sees other agents in its visual range (3 ⇥ 3 surrounding area). The model gets reward of -1 if the
team loses or draws at the end of the game. In addition, it also get reward of �0.1 times the total
health points of the enemy team, which encourages it to attack enemy bots.

Table 3 shows the win rate of different module choices with various types of communication. Among
different modules, the LSTM achieved the best performance. Continuous communication improved
all module types. With the MLP module, we tried dense and discrete communication types but they
degraded performance relative to no communication. We also explored several variations of the
task: varying the number of agents in each team by setting m = 3, 10, and increasing visual range
of agents to 5 ⇥ 5 area. The result on those tasks are shown on the right side of Table 3. Using
continuous communication (CommNN model) consistently improves the win rate, even with the
greater environment observability of the 5⇥5 vision case.
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Figure 3: Left: First two principal components of communication vectors c̃ from multiple runs on
the traffic junction task Fig. 2(left). While the majority are “silent” (i.e. have a small norm), distinct
clusters are also present. Middle: for three of these clusters, we probe the model to understand
their meaning (see text for details). Right: First two principal components of hidden state vectors h

from the same runs as on the left, with corresponding color coding. Note how many of the “silent”
communication vectors accompany non-zero hidden state vectors. This shows that the two pathways
carry different information.

Vectors belonging to the clusters A, B & C in Fig. 3(left) were consistently emitted when one of the
cars was in a specific location, shown by the colored circles in Fig. 3(middle) (or pair of locations for
cluster C). They also strongly correlated with the other car braking at the locations indicated in red,
which happen to be relevant to avoiding collision.

5.2.3 Combat Task

We simulate a simple battle involving two opposing teams in a 15 ⇥ 15 grid as shown in Fig. 2(right).
Each team consists of m = 5 agents and their initial positions are sampled uniformly in a 5 ⇥ 5
square around the team center, which is picked uniformly in the grid. At each time step, an agent can
perform one of the following actions: move one cell in one of four directions; attack another agent
by specifying its ID j (there are m attack actions, each corresponding to one enemy agent); or do
nothing. If agent A attacks agent B, then B’s health point will be reduced by 1, but only if B is inside
the firing range of A (its surrounding 3 ⇥ 3 area). Agents need one time step of cooling down after
an attack, during which they cannot attack. All agents start with 3 health points, and die when their
health reaches 0. A team will win if all agents in the other team die. The simulation ends when one
team wins, or neither of teams win within 40 time steps (a draw).

The model controls one team during training, and the other team consist of bots that follow a hard-
coded policy. The bot policy is to attack the nearest enemy agent if it is within its firing range. If not,
it approaches the nearest visible enemy agent within visual range. An agent is visible to all bots, if it
is inside the visual range of any individual bot. This shared vision gives an advantage to the bot team.
When input to a model, each agent is represented by a set of one-hot binary vectors {i, t, l, h, c}
encoding its unique ID, team ID, location, health points and cooldown. A model controlling an agent
also sees other agents in its visual range (3 ⇥ 3 surrounding area). The model gets reward of -1 if the
team loses or draws at the end of the game. In addition, it also get reward of �0.1 times the total
health points of the enemy team, which encourages it to attack enemy bots.

Table 3 shows the win rate of different module choices with various types of communication. Among
different modules, the LSTM achieved the best performance. Continuous communication improved
all module types. With the MLP module, we tried dense and discrete communication types but they
degraded performance relative to no communication. We also explored several variations of the
task: varying the number of agents in each team by setting m = 3, 10, and increasing visual range
of agents to 5 ⇥ 5 area. The result on those tasks are shown on the right side of Table 3. Using
continuous communication (CommNN model) consistently improves the win rate, even with the
greater environment observability of the 5⇥5 vision case.
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How are the agents communicating?

• Vectors from clusters correspond to distinct 
patterns of behavior:
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Figure 3: Left: First two principal components of communication vectors c̃ from multiple runs on
the traffic junction task Fig. 2(left). While the majority are “silent” (i.e. have a small norm), distinct
clusters are also present. Middle: for three of these clusters, we probe the model to understand
their meaning (see text for details). Right: First two principal components of hidden state vectors h

from the same runs as on the left, with corresponding color coding. Note how many of the “silent”
communication vectors accompany non-zero hidden state vectors. This shows that the two pathways
carry different information.

Vectors belonging to the clusters A, B & C in Fig. 3(left) were consistently emitted when one of the
cars was in a specific location, shown by the colored circles in Fig. 3(middle) (or pair of locations for
cluster C). They also strongly correlated with the other car braking at the locations indicated in red,
which happen to be relevant to avoiding collision.

5.2.3 Combat Task

We simulate a simple battle involving two opposing teams in a 15 ⇥ 15 grid as shown in Fig. 2(right).
Each team consists of m = 5 agents and their initial positions are sampled uniformly in a 5 ⇥ 5
square around the team center, which is picked uniformly in the grid. At each time step, an agent can
perform one of the following actions: move one cell in one of four directions; attack another agent
by specifying its ID j (there are m attack actions, each corresponding to one enemy agent); or do
nothing. If agent A attacks agent B, then B’s health point will be reduced by 1, but only if B is inside
the firing range of A (its surrounding 3 ⇥ 3 area). Agents need one time step of cooling down after
an attack, during which they cannot attack. All agents start with 3 health points, and die when their
health reaches 0. A team will win if all agents in the other team die. The simulation ends when one
team wins, or neither of teams win within 40 time steps (a draw).

The model controls one team during training, and the other team consist of bots that follow a hard-
coded policy. The bot policy is to attack the nearest enemy agent if it is within its firing range. If not,
it approaches the nearest visible enemy agent within visual range. An agent is visible to all bots, if it
is inside the visual range of any individual bot. This shared vision gives an advantage to the bot team.
When input to a model, each agent is represented by a set of one-hot binary vectors {i, t, l, h, c}
encoding its unique ID, team ID, location, health points and cooldown. A model controlling an agent
also sees other agents in its visual range (3 ⇥ 3 surrounding area). The model gets reward of -1 if the
team loses or draws at the end of the game. In addition, it also get reward of �0.1 times the total
health points of the enemy team, which encourages it to attack enemy bots.

Table 3 shows the win rate of different module choices with various types of communication. Among
different modules, the LSTM achieved the best performance. Continuous communication improved
all module types. With the MLP module, we tried dense and discrete communication types but they
degraded performance relative to no communication. We also explored several variations of the
task: varying the number of agents in each team by setting m = 3, 10, and increasing visual range
of agents to 5 ⇥ 5 area. The result on those tasks are shown on the right side of Table 3. Using
continuous communication (CommNN model) consistently improves the win rate, even with the
greater environment observability of the 5⇥5 vision case.
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How are agents communicating?

• Average norm of the communication vectors and 
brake locations 
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A Traffic Junction

Each car is represented by one-hot binary vector set {n, l, r}, that encode its unique ID, current location and
assigned route number respectively. Each agent controlling a car can only observe other cars in the surrounding
3 ⇥ 3 neighborhood (however it can communicate to all cars). The state vector for each agent is thus a
concatenation of all these vectors, having dimension 32 ⇥ |n| ⇥ |l| ⇥ |r|. We use curriculum learning [1] to
make the training easier. In first 100 epochs of training, we set parrive = 0.05, but linearly increased it to 0.2
during next 100 epochs. Finally, training continues for another 100 epochs. The learning rate is fixed at 0.003
throughout. We also implemented additional easy and hard versions of the game, the latter being shown in
Fig.2(middle).

The easy version is a junction of two one-way roads on a 7⇥ 7 grid. There are two arrival points, each with two
possible routes. During curriculum, we increase Ntotal from 3 to 5, and parrive from 0.1 to 0.3.

The harder version consists from four connected junctions of two-way roads in 18⇥18 as shown in Fig.2(center).
There are 8 arrival points and 7 different routes for each arrival point. We set Ntotal = 20, and increased parrive
from 0.02 to 0.05 during curriculum.

B Traffic Junction Analysis

Here we visualize the average norm of the communication vectors and brake locations over the 14⇥ 14 spatial
grid.
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Figure 4: (left) Average norm of communication vectors (right) Brake locations

C bAbI tasks

Here we give further details of the model setup and training, as well as a breakdown of results in Table 4.
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Figure 2: Left: Traffic junction task where agent-controlled cars (colored circles) have to pass the
through the junction without colliding. Middle: A harder version with four connected junctions.
Right: The combat task, where model controlled agents (red circles) fight against enemy bots (blue
circles). In both tasks each agent has limited visibility (orange region), thus is not able to see the
location of all other agents.

Communication Modules
type MLP RNN LSTM
None 20.6± 14.1 19.5± 4.5 9.4± 5.6
Continuous 2.2± 0.6 7.6± 1.4 1.6± 1.0
Dense 12.5± 4.4 - -
Discrete 20.2± 11.2 - -

Communication Other game versions
type Easy (MLP) Hard (RNN)
None 15.8± 12.5 26.9± 6.0
Continuous 0.3± 0.1 22.5± 6.1
Cont. local - 21.1± 3.4
Discrete 1.1± 2.4 - 1%	
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None	
Discrete	
Con:nuous	

Table 2: Traffic junction task. Left: failure rates (%) for different types of communication and module func-
tion f(.). Continuous consistently improves performance, over the dense baseline and no communication.
Middle: Game variants. In the easy case, discrete communication does help, but still less than continuous.
On the hard version, local communication (see Section 3.2) does at least as well as broadcasting to all
agents. Right: As visibility in the environment descreases, the importance of communication grows.

where C
t is the number of collisions occurring at time t, and N

t is number of cars present. The
simulation is terminated after 40 steps and is classified as a failure if one or more more collisions
have occurred. Details of the input representation, training and other game variations can be found in
Appendix A.

In Table 2, we show the probability of failure of a variety of different module/communication
method pairs. Continuous communication between cars significantly reduces the failure rate for
all module types. Discrete communication did not give any benefit, except for the easy game. We
also tried a dense communication baseline by allowing the matrix T to be arbitrary, resulting in a
single large fully-connected network controlling all agents. However, this did not work as well as
continuous communication (a video showing this model before and after training can be found at
https://youtu.be/onK98y-UNHQ). We also explores how partial visibility within the environment
effects the advantage given by communication. As the vision range of each agent decreases, the
advantage of communication increases. Impressively, with zero visibility (the cars are driving blind)
the continuous communication model is still able to succeed 90% of the time.

5.2.2 Analysis of Communication
We now attempt to understand what the agents communicate when performing the junction task.
We start by recording the hidden state h

i
j of each agent and the corresponding communication

vectors c̃
i+1
j = C

i+1
h

i
j (the contribution agent j at step i + 1 makes to the hidden state of other

agents). Fig. 3(left) and Fig. 3(right) show the 2D PCA projections of the communication and hidden
state vectors respectively. These plots show a diverse range of hidden states but far more clustered
communication vectors, many of which are close to zero. This suggests that while the hidden state
carries information, the agent often prefers not to communicate it to the others unless necessary. This
is a possible consequence of the broadcast channel: if everyone talks at the same time, no-one can
understand. See Appendix B for norm of communication vectors and brake locations.

To better understand the meaning behind the communication vectors, we ran the simulation with
only two cars and recorded their communication vectors and locations whenever one of them braked.
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Experiment: Combat Game
• 5 agents vs 5 enemies in 15x15 map
• Health=3, Shot range=1, power=1, vision=1
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CommNN Summary

• Distributed NN model
– Appropriate for tasks where input (and output) is set

• Models learn sparse communication protocol
• Can combine with RL for MARL problems
• Future directions
– Generalize to non fully-cooperative setting
–Which approach better? centralized or distributed
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