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Overview

* Most effort focused on Deep Nets for
perceptual problems

— E.g. vision, speech, NLP.

* But what about other types of datar?
— Genome, 3D meshes, sets

* Or other aspects of intelligence?

— Reasoning, e.g. program induction
— Memory

— Multi-agent learning / “Theory of mind”



Themes

* 1. Memory in Deep Nets

* 2. Deep Nets for sets



Memory Introduction

* Many tasks require some kind of memory

* But traditional neural networks are not good at
remembering things, especially when input is
large but only part of it is relevant

* Recently, there has been lot of interest in
incorporating memory and attention to neural
networks

— Memory Networks, Neural Turing Machine,...



Memory Outline

Implicit Internal memory
— Recurrent Neural Nets (RNNs)
— Long-Short Term Memory (LSTMs)
Attention models
— MT, Speech, Images
Explicit External memory
— Memory Networks
— Neural Turing Machine
— Stack-RNN
Discrete Memory
— 1-D tape, 2-D grid



Implicit Internal Memory

* Internal state of the model can be used for memory
— Recurrent Neural Networks (RNNs)

—>@—# linear

tanh

* Computation and memory is mixed

—s(h —

— Complex computation requires many layers of non-linearity

— But some information is lost with each non-linearity

— Problems with vanishing/exploding gradients & catastrophic

forgetting
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Implicit Internal memory
— Recurrent Neural Nets (RNNs)
— Long-Short Term Memory (LSTMs)
Attention models
— MT, Speech, Images
Explicit External memory
— Memory Networks
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Recurrent Neural Networlks

e Selectively summarize an input sequence in a fixed-size state
vector via a recursive update

St = Fe(St—hCL’t)

St+1

unfold Fo {f Fg ? Fo

Lt+1

St — Gt(xta Lt—1y Lt—2y 4L, 331)

[Slide credit: Yoshua Bengio]



Recurrent Neural Networks

e Can produce an output at each time step: unfolding the graph
tells us how to back-prop through time.
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[Slide credit: Yoshua Bengio]
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Long-Term Dependencies SEMEEOR

The RNN gradient is a product of Jacobian matrices, each
associated with a step in the forward computation. To store
information robustly in a finite-dimensional state, the dynamics
must be contractive [Bengio et al 1994].

L — L(ST(ST—1(° . 8t—|—1(8t7 . ))))
aL 81/ 83T ast-l—l Storing bits

8_815 p— aST 8ST_1 R aSt robustly requires

sing. values<1

Problems:

Gradient
clipping
* orsing. values < 1 = gradients shrink & vanish  (yochreiter 1991)

* sing. values of Jacobians > 1 = gradients explode ==

* or random =2 variance grows exponentially Slide credit: Yoshua Bengiol



Ways to Prevent Forgetting in RINNs

* Split state into fast and slow changing parts: structurally
constrained recurrent nets (e.g. Mikolov et al., 2014)

— Fast changing part is good for computation
— Slow changing part is good for storing information

 (Gated units for internal state
— Control when to forget/write using gates

— Long-short term memory (LSTM) (see Graves, 2013)
— Simpler Gated Recurrent Unit (GRU) (Cho et al., 2014)

* Other problems

— Memory capacity is fixed and limited by the dimension of state
vector (computation is O(N?) where N is memory capacity)

— Vulnerable to distractions in inputs
— Restricted to sequential inputs



Grated Recurrent Uniks & LSTM

output

e Create a path where
gradients can flow for
longer with self-loop

self-loop

e Corresponds to an
eigenvalue of Jacobian
slightly less than 1

e LSTM is heavily used
(Hochreiter & Schmidhuber
1997)

 GRU light-weight version | output gate
(Cho et al 2014)

[Slide credit: Yoshua Bengio]



Memory Outline

Implicit Internal memory
— Recurrent Neural Nets (RNNs)
— Long-Short Term Memory (LSTMs)
Attention models
— MT, Speech, Images
Explicit External memory
— Memory Networks
— Neural Turing Machine
— Stack-RNN
Discrete Memory
— 1-D tape, 2-D grid



RNNsearch: Attention in Machine
Translation (Bahdanau et al., 2015)

Yer W

e RNN based encoder and decoder model

* Decoder can look at past encoder states using soft attention

* Attention mechanism is implement by a small neural network
— It takes the current decoder state and a past encoder state and

outputs a score. Then the all scores are fed to softmax to get

attention weights h, P h, ™ hyf™ —h;
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Image caption generation with attention

(Xu et al., 2015)

Encoder: lower convolutional layer of a deep ConvNet (because need spatial
information)
Decoder: LSTM RNN with soft spatial attention

— Decoder state and encoder state at single location are fed to small NN to get score
at that location

Network attends to the object when it is generating a word for it
Also hard attention 1s tried with reinforcement learning

A stop sign is on a road with a
mountain in the background.
,.lq

» ‘-1

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.



Video description generation

(Yao et al., 2015)

+Local+Global: A man and a woman are talking on the

Ref: A man and a woman ride a motorcycle
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+Local+Global: Someone is frying a fish in a

Ref: A woman is frying food

L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, and
(bOttom: ground tIUth) A. Courville, “Describing videos by exploiting temporal structure,”
arXiv: 1502.08029, 2015.



Location-aware attention for speech

(Chorowski et al., 2015)

e RNN based encoder-decoder model with attention
(similar to RNNsearch)

* Location based addressing: previous attention weights are
used as feature for the current attention (good when
subsequent attention locations are highly correlated)

* Improvement with sharpening and smoothing of
memory addressing

FDHCO SX209: Michael colored the bedroom wall with crayons.
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Outline

Implicit Internal memory

— Recurrent Neural Nets (RNNs)

— Long-Short Term Memory (LSTMs)
Explicit External memory

— StackRNN

— Memory Networks

— Neural Turing Machine
Attention models

— MT, Speech, Image, Pointer Network
Discrete Memory

— Learning algorithms using 1-D tape, 2-D grid



External Global Memory

* Separate memory from computation
— Add separate memory module for storage

— Memory contains list/set of items

output

|

\ read (
Memory > Main
module J( ~Te module
\_

* Main module can read and write to the memory

input

* Advantage: long-term, scalable, flexible



Selective Addressing 1s Key for Memory

* Often, you only want to interact with few items in
memory at once

— Memory needs some addressing mechanism

* Memory addressing types
— Soft or hard addressing

* Soft addressing can be trained by backpropagation

* Hard addressing 1s not differentiable (e.g. has to be trained with

reinforcement learning or additional training signal for where to
attend)

— Context and Location based addressing

* When input 1s ordered in some way, location based addressing is
useful

* Location addressing is same as context if location 1s embedded in the
context (e.g. MemN2N)



Memory Outline

Implicit Internal memory
— Recurrent Neural Nets (RNNs)
— Long-Short Term Memory (LSTMs)
Attention models
— MT, Speech, Images
Explicit External memory
— Memory Networks
— Neural Turing Machine
— Stack-RNN
Discrete Memory
— 1-D tape, 2-D grid



Memory Networks

* “Hard” Memory Networks by
[Weston, Chopra & Bordes ICLLR 2015]

— Hard attention thus requires explicit supervision of
attention during training

* End-to-end Memory Networks (MemN2N)
has soft attention

— Only need supervision on the final output

— [Sukhbaatar et al., NIPS 2015]



MemN2N architecture

supervision
Output<«—" P

Controller
module

_____________________

Internal state
vector

Memory vector
(unordered)




Memory Module
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Ex) Question & Answering on story

Qs D

out-of-order

A

& o>

CSam drops the apple thered

Q: Where was the apple after the garden?



Memory Vectors

E.g.) constructing memory vectors with Bag-of-Words (BoW)
1.  Embed each word

2. Sum embedding vectors

“Sam drops apple”



,_______________________________\

Question & Answering

I\/Iemory Module
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Related Work

RNNsearch [Bahdanau et al. 2015]
— Encoder-decoder RNN with attention
— Our model can be considered as an attention model with multiple
hops
Recent works on external memory
— Stack memory for RNNs [Joulin & Mikolov. 2015]
— Neural Turing Machine [Graves et al. 2014]

Early works on neural network and memory
— [Steinbuch & Piske. 1963]; [Taylor. 1959]
— [Das et al. 1992]; [Mozer et al. 1993]

Concurrent works
— Dynamic Memory Networks [Kumar et al. 2015]
— Attentive reader [Hermann et al. 2015]
— Stack, Queue [Grefenstette et al. 2015]



Experiment on bAbI Q&A data

* Data: 20 bADbI tasks [Weston et al. arXiv: 1502.05698, 2015]

* Answer questions after reading short story
* Small vocabulary, simple language
* Different tasks require different reasoning

* Training data size 1K or 10K for each task

Sam walks into the kitchen. Brian 1s a lion.

Sam picks up an apple. Julius 1is a lion.

Sam walks i1nto the bedroom. Julius 1s white.

Sam drops the apple. Bernhard is green.

Q: Where is the apple? Q: What color is Brian?
A. Bedroom A. White




Performance on bADbI test set

Weston et al. Strongly supervised

LSTM 20
m 1k training data

MemN2N BoW ® 10k training data

MemN2N Best 10

#Failed tasks out of 20 (smaller is better)




Examples of Attention Weights

e ) test cases:

Story (2: 2 supporting facts) Hop 1 Hop2 | Hop 3
John dropped the milk. 0.06 0.00 0.00
John took the milk there. 0.88 1.00 0.00
Sandra went back to the bathroom. 0.00 0.00 0.00
John moved to the hallway. 0.00 0.00 1.00
Mary went back to the bedroom. 0.00 0.00 0.00
Where is the milk? Answer: hallway Prediction: hallway

Story (16: basic induction) Hop1 | Hop 2 | Hop 3
Brian is a frog. 0.00 0.98 0.00
Lily is gray. 0.07 0.00 0.00
Brian is yellow. 0.07 0.00 1.00
Julius is green. 0.06 0.00 0.00
Greg is a frog. 0.76 0.02 0.00
What color is Greg? Answer: yellow Prediction: yellow




Experiment on Language modeling

e Data
— Penn Treebank: 1M words 10K vocab
— Text8 (Wikipedia): 16M words 40K vocab

e Model

— Controller module: linear + non-linearity

— Fach word as a memory vector next

Yann | says | your | model | must be

_____________________________________________________________________________________



Penn-Treebank Text8 (Wikipedia)
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Attention during memory hops

Oldest word Most recent word

/ Penn Treebank /

hops

20 40 60 80 100
memory position



Memory Outline

Implicit Internal memory
— Recurrent Neural Nets (RNNs)
— Long-Short Term Memory (LSTMs)
Attention models
— MT, Speech, Images
Explicit External memory
— Memory Networks
— Neural Turing Machine
— Stack-RNN
Discrete Memory
— 1-D tape, 2-D grid



Neural Turing Machine
(Graves et al., 2014)

* Learns how to write to the memory

* Soft addressing = backpropagation training

* Location addressing: small continuous shift of attention

* Complex addressing mechanism: need to sharpen after convolution

* Controller can be LSTM-RNN or feed-forward neural network

* Applied to learn algorithms such as sort, associative recall and copy.

* Also hard addressing with reinforcement learning [Zaremba et al.; 2015]
* Also Differentiable Neural Computer [Graves et al., 2010]

External Input External Output

Previous
. Y T —— State
b L |
e
Controller
M,
[l == =
[ Controller
Read Heads Write Heads Outputs ’ C
RS ontent
i Addressing ! Wf]
I l S, Wf Interpolation i
| ”g'; | = Convolutional [W¢
et Shift >
Memory | s — > Sharpening
Lol >

—»> Wy




Neural Turing Machine — Copy task

* NTM

Targets

Outputs

Inputs Outputs

Adds

Location ——»

Time —— Time ——

Write Weightings Read Weightings



Neural Turing Machine — Copy task

* NTM




Neural Turing Machine - Experiments

Task #Heads Controller Size Memory Size Learning Rate #Parameters
Copy 1 100 128 x 20 104 17,162
Repeat Copy 1 100 128 x 20 104 16,712
Associative 4 256 128 x 20 10—4 146, 845
N-Grams 1 100 128 x 20 3 x107° 14, 656
Priority Sort 8 512 128 x 20 3x107° 508, 305

Table 1: NTM with Feedforward Controller Experimental Settings



Memory Outline

Implicit Internal memory
— Recurrent Neural Nets (RNNs)
— Long-Short Term Memory (LSTMs)
Attention models
— MT, Speech, Images
Explicit External memory
— Memory Networks
— Neural Turing Machine
— Stack-RNN
Discrete Memory
— 1-D tape, 2-D grid



Stack RNNs (Joulin & Mikolov, 2015)

* Simple RNN extended with a stack that the
neural net learns to control

* The idea itself is very old (from 80’s — 90%)

* Very simple and learns complex toy patterns
with much less supervision & scales to more
complex tasks



Stack RNN

Add structured memory to RNN:

— Trainable [read/write]
— Unbounded

Continuous actions:

PUSH / POP / NO-OP
Multiple stacks

Examples of memory structures:

stacks, lists, queues, tapes, grids, ...

Learns algorithms from examples

input

hidden

Xt

st-1[0]

St-1

stack(t-1)

>yt

dat

action

output

st[0]

St

stack(t)



Stack RNN - Algorithmic Patterns

Sequence generator Example
[a"0" | n > 0) aabbaaabbbabaaaaabbbbb I
aovc |n>0; aaapbbcccabcaaaaa CCcccc

{a"b"c"d" | n > 0} aabbccddaaabbbeccecdddabed
{a™b®" | n > 0} aabbbbaaabbbbbbabb
{a™b™c™ ™™ | n,m > 0} aabceccaaabbcececcabee

ne|lLkl, X ->nXn, X -= | (k=2)12=212122=221211121=12111

* Examples of simple algorithmic patterns generated by
short programs (grammars)

* The goal is to learn these patterns in an unsupervised
manner just by observing the example sequences

Tomas Mikolov, FAIR, 2016



Stack RNN - Example

* Sequence: a°b!?

current next prediction | proba(next) action stack1[top] | stack2[top]
b a a 0.99 POP POP -1 0.53
a a a 0.99 PUSH | POP 0.01 0.97
a a a 0.95 PUSH | PUSH 0.18 0.99
a a a 0.93 PUSH | PUSH 0.32 0.98
a a a 0.91 PUSH | PUSH 0.40 0.97
a a a 0.90 PUSH | PUSH 0.46 0.97
a b a 0.10 PUSH | PUSH 0.52 0.97
b b b 0.99 PUSH | PUSH 0.57 0.97
b b b 1.00 POP | PUSH 0.52 0.56
b b b 1.00 POP | PUSH 0.46 0.01
b b b 1.00 POP | PUSH 0.40 0.00
b b b 1.00 POP | PUSH 0.32 0.00
b b b 1.00 POP | PUSH 0.18 0.00
b b b 0.99 POP | PUSH 0.01 0.00
b b b 0.99 POP POP -1 0.00
b b b 0.99 POP POP -1 0.00
b b b 0.99 POP POP -1 0.00
b b b 0.99 POP POP -1 0.01
b a a 0.99 POP POP -1 0.56

Table 3: Example of the Stack RNN with 20 hidden units and 2 stacks on a sequence a"b?" with
n = 6. —1 means that the stack is empty. The depth £ is set to 1 for clarity. We see that the first
stack pushes an element every time it sees a and pop when it sees b. The second stack pushes when
it sees a. When it sees b , it pushes if the first stack is not empty and pop otherwise. This shows how
the two stacks interact to correctly predict the deterministic part of the sequence (shown in bold).



Algorithmic Patterns - Counting

method a Tl-bn. a]'l brlcn. a""l b'l» C'”. d'l'l av'l'l b27l afl. b'l'”-cn.'*'fn
RNN 25% 23.3% 13.3% 23.3% 33.3%
LSTM 100% 100% 68.3% 75% 100%
List RNN 40+5 100%  33.3% 100% 100% 100%
Stack RNN 40+10 100%  100% 100% 100% 43.3%
Stack RNN 40+10 + rounding | 100%  100% 100% 100% 100%

* Performance on simple counting tasks

* RNN with sigmoidal activation function cannot
count

e Stack-RNN and LLSTM can count

Tomas Mikolov, FAIR, 2016



Algorithmic Patterns - Sequences

Memorization Blnary addition
100. 100;;
80 \ 80 1 ‘. |
. il
g 60 : g 601 |
3 ! 3 i)
1 ==Stack RNN \
20 \ ==|_ist RNN 20 % \ =Stack RNN
\  LANN 2\ --RNN
V. —LSTM ot —LSTM
10 20 30 40 50 10 20 30 40 50
n n

Sequence memorization and binary addition are

out-of-scope ot LSTM

* Expandable memory of stacks allows to learn the
solution

Tomas Mikolov, FAIR, 2016



Stack RNN - Binary Addition

Inputs:.IlOOOl1|+1110=100011
Predictons. 0 0 . 0 1 0 1 0 1 1 1 1f12 0 0 0 1 1 . O

Stack 1: . . . Counter

Stack 2: . End of number 2
Stack 3: . Number 2

Stack 4: Length of number 2
Stack 5: ....... . Carry

Stack 6:

EEEEEEE o
Stack 7: .. | .. Junk

Stack 8: | Junk

Stack 9: Junk

— SRR -

* No supervision in training, just prediction
* Learns to: store digits, when to produce output, carry

Tomas Mikolov, FAIR, 2016



Stack RNNs: summary

The good:

* Turing-complete model of computation (with >=2 stacks)
* Learns some algorithmic patterns

* Has long term memory

* Works for some problems that break RNNs and LSTMs

* Reproducible: https://github.com/facebook/Stack-RNN

The bad:

* The long term memory is used only to store partial computation (ie.
learned skills are not stored there yet)

* Does not seem to be a good model for incremental learning due to
computational inefficiency of the model

* Stacks do not seem to be a very general choice for the topology of the
memory


https://github.com/facebook/Stack-RNN

Memory Outline

* Implicit Internal memory
— Recurrent Neural Nets (RNNs)
— Long-Short Term Memory (LSTMs)
* Attention models
— MT, Speech, Images
* Explicit External memory
— Memory Networks
— Neural Turing Machine
— Stack-RNN
* Discrete Memory
— 1-D tape, 2-D grid



Learning Simple Algorithms from Examples
[Zaremba et al. ICML 2016]

* Given examples of simple addition, multiplication etc
can we learn the underlying algorithm?

— Must generalize to much longer examples

O*gg:t 3782 Output4052 Output31842

Tape Tape
Input 2820 84f || Input B
6rid 958 || grig 468 || 6rid 10617
3 number Single digit

Addition

addition multiplication




1.

2.

Model Setup

Explore various controllers (1 layer, 200 units)
— Feed forward, LSTM, GRU

— Additional linear layer predicts symbol
Choose interfaces appropriate for task
Dual output from controller:

Discrete actions (“move output head left”, “do nothing”)
- Trained using reinforcement learning
- Don’t get label until output a digit

Continuous prediction of symbol
- Backpropagation through softmax output



Solving the tasks with
Reinforcement Learning

* Sequence of discrete actions taken to produce
symbol at output.

* Must learn both actions & symbol prediction
— 0/1 Reward only after prediction of each digit

— Abandon example as soon as mistake made

* Can’t use backpropagation

— We use Q-learning instead (with refinements)



Reinforcement Experiments

Enhanced (all 3 terms)

Regular Q-Learning
Coping Task Reverse Task (FF) Walk (FF)
i1
0.8
>
% 0.6
5
&)
204
0.2 \
0.0 T 7 3 8 1 2 3 4
10 10 10 10 10 10 10 10" 10! 10° 103 10*
Complexity Complexity Complexity
Addition Task 3 rows Addition Single Digit Multiplication
— 7—\
10° 10° 10° 10% 10' 10° 10° 10* 10’ 10° 10° 10"
Complexity Complexity Complexity




Related Work

Neural Program Interpreters [Reed & deFreitas 2015]

— More tasks, but supervised

Neural Random-Access Machines [Kurach et al. 2015]

Neural Turing Machine [Graves et al. 2014]

— Continuous memory

Reinforcement Learning NTM [Zaremba & Sutskever
2015]

— Tapes as interfaces

Program Induction, e.g. [Schmidhuber 2004]



Adding Interfaces to Deep Nets

Often discrete in nature. What are the options?

Continuous =2 use backprop
Discrete 2 Use reinforcement learning

Gumbel-Softmax trick

'The Concrete Distribution: a continuous relaxation of

discrete random variables, Maddison et al., ICLR 2017]

(Categorical reparameterization by Gumbel-Softmax, Jang et

al. ICLR 2017

(GANs for sequences of discrete elements with the Gumbel-
Softmax distribution, Kusner & Hernandez-Lobato, NIPS
2016 workshop]




Gumbel-Softmax Trick

* Reparameterization trick for discrete latent variables in
stochastic nets

— Analogous to Gaussian reparameterization in VAEs

* Sample according to:
gi = _ZOQ(—ZOQ(Uz‘)) U; ~ Unif[O, 1] Gumbel noise

oxp((log(m) + 9:)/7) for i =1,..., k.
Sk exp((log(m;) + g;)/7) o

Add log-props of each discrete category & pass through softmax

Yi =

* Take sample from soft-max & b-prop as per usual
* Anneal temperature T during training

https://blog.evjang.com/2016/11/tutorial-categorical-variational.html



Gumbel-Softmax Trick

* Samples from
y; = :’Xp((log(“) +9)/7) fori=1,..,k
Zj:l exp((log(m;) + g;)/7)

Probability

Samples with
temperature T = 1.0

eeeeeeeeeeeeeeeeeee

\\\\\\\\\\\

Samples with
temperature T =0.4

eeeeeeeee

https://blog.evjang.com/2016/11/tutoriaI—categoricaI—variational.html



Themes

* 1. Memory in Deep Nets

* 2. Deep Nets for sets



What about set inputs?

/ Set structure—\
— [PCMag]
L A *

e Permutation invariance
* Dynamic sizing
[forbes.com] .
* Single output
[ }

Output for each element

{ “Sheep are afraid of wolves.”,
“Cats are afraid of dogs.”,
“Mice are afraid of cats.”,
“Gertrude is a sheep.”,

“What is Gertrude afraid of?”,
KAnswer: wolves” } /




Communication Neural Network
(CommNet) [Sukhbaatar et al. NIPS 2016]

Input and output is a set

Each element has its own ! f f
stream (weight shared)

channel

Distributed representation
Continuous broadcast

Communication ]

communication channel

Streams must learn to I 1 1
communicate to solve task X, Xy  Xg



CommNet Model

» J data points / streams
e #communication hops fixed Outputs

* Share parameters across streams I I I I

a1 I I s

C; = J—1 hj’ Stream 1 2 3 4
J'#J

* Trained by backprop

* |nvariant to order / number of inputs

Inputs

[Sukhbaatar et al. NIPS 2016]



Module Structure

* Module f can be single/multi-layer NN or
RNN/LSTM

Module for agent 9
* At step i, two inputs: pit
J

1. Hidden state vector h! e
. i ( N
2. Communication vector c tanh

A
1.
;

* QOutput is new hidden state:
+1 11,1 ()
i = o'+ C') p

Learnable parameters [Sukhbaatar et al. NIPS 2016]

\_ T_)




Big Model Interpretation

* Set of streams = one big model

* Let be single NN layer:

% Y 7YYy Y +1 711 )
| | | |

* N.B. Streams share parameter

@ (ZIZ ct Ccv .. Ci\

[ ] H C* .. ("
( | ) A

Dynamically sized: size of T can change depending on input set size



DeepSets [Zaheer et al., 2017]

— Architecture specialized to set input

— Make weights in each layer permutation invariant
* Equal diagonal elements

* Off-diagonal elements tied
— Stream for each element, summed in the end

— Experiment: Image with sample of 10 MNIST
digits. Need to predict sum

1.0 e—e Deepsets |4 1.0} e—e Deepsets (4
e—e |STM e—e |STM
e—e GRU e—e GRU
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©
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N
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N
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Graph NN view

* CommNet is a special case of Graph NN
* A set can be represented by a complete graph

(el o [

* s everything Graph NNz




®
Graph NN o o

[Gori 2005, Scarselli 2009, Hamilton 2017] (:)

* Nodes in a graph represent objects

* Edges represent their
relationships.

* State of x_ each node n depends
on neighborhood defined %y
graph

* GNN for molecule [Duvenaud,

2015] ,
* Gated Graph NN
1 6 P X = fo (L Ly la - La gy Leny %2, %3, X4, X6, b, I3, 1y 1)
[Li 2016, Bresson 2017] Jaarfenfus Ten, T BT 2 s e
 GNN-+attention [Hoshen2017, Leof1] Xnet]  Lnefns

Velickovié2018]



Toy task

* Input = set of 5 numbers between 1 and 500

* Task: map the input to set of {1, 2, 3, 4, 5}

Training method

Model ® Supervised | Reinforcement
Independent 0.59 0.59
CommNet 0.99 0.94

[Sukhbaatar et al. NIPS 2016]



Experiment: bag to sequence

Problem: given a set of words, arrange them in

right order.

{is, mouse, cat, chasing} = “cat is chasing mouse”

Separate streams for each words

After 2 hops, each stream output its location

Data: Gigaword, 5 words, 2 layer MLP as f

5-gram by KenLM

Our model

Error per word

40%

26%

[Sukhbaatar et al. NIPS 2016]



Another approach: Memory network

* Input is set, but single output
* Independently encode them = memory vectors

* Soft attention over memory vectors

Memory module 1

______________________________________________________

Controller
module




MemNet VS CommNet

MemNet CommNet
* Central controller e Distributed controller
* Serial processing * Parallel processing
Outputs
I 1 1 1
Memory module Ou}‘pUt
""""""""""""" - '
Controller§ ' ' : :
i . | module | (S e -
| - : S — i £

Stream 1 I ZI 31 41

Inputs



Experiment on bAbI Q&A data

* Data: 20 bAbI tasks [Weston et al. arXiv: 1502.05698, 2015]
* Answer questions after reading short story

* Small vocabulary, simple language

* Ditterent tasks require different reasoning

* Training data size 1K or 10K for each task

Sam walks into the kitchen. Brian 1s a lion.

Sam picks up an apple. Julius 1is a lion.

Sam walks i1nto the bedroom. Julius 1s white.

Sam drops the apple. Bernhard is green.

Q: Where is the apple? Q: What color is Brian?
A. Bedroom A. White




MemNet CommNet

Kitchen
Answer kltcheﬂ Sofmax
Memory Modvle T T
o= srerwirre |0 “: +
Weighted Sum — de, +90 M2 —,}_ ,' ms /(/_[:2 i p I N
T 5 o
{0.1,0.7,0.2) B 3 ‘ ‘
: 5 S | 1
[ Dot product + softmax ] i i ﬁl 2 i
| i \ J
{ml) ms, m3} ! 1
emmed! sl BSmden]  poookes

togarden ! | tokitchen ! i applethere | ool

___________________________________________________

Input story




Examples of Attention Weights

e ) test cases:

Story (2: 2 supporting facts) Hop 1 Hop2 | Hop 3
John dropped the milk. 0.06 0.00 0.00
John took the milk there. 0.88 1.00 0.00
Sandra went back to the bathroom. 0.00 0.00 0.00
John moved to the hallway. 0.00 0.00 1.00
Mary went back to the bedroom. 0.00 0.00 0.00
Where is the milk? Answer: hallway Prediction: hallway

Story (16: basic induction) Hop1 | Hop 2 | Hop 3
Brian is a frog. 0.00 0.98 0.00
Lily is gray. 0.07 0.00 0.00
Brian is yellow. 0.07 0.00 1.00
Julius is green. 0.06 0.00 0.00
Greg is a frog. 0.76 0.02 0.00
What color is Greg? Answer: yellow Prediction: yellow




Experiment: 20 bAbI tasks

_ Mean error (%) | Failed tasks (err. > 5%)
Kitchen LSTM [29] 364 16
t MemN2N [29] 12 3
Sofmax DMN+ [38] 2.8 1
T Independent (MLP module) 15.2 9
+ | CommNet (MLP module) | 7.1 | 3

—l | |—p

( * 100
1 T T S 50
L e
& 5N \-
2 e N \
Q \ \
(\§ X & & & A 0
W AP S0 <&
5 > R
N xO e((\\ . X ' \&\\
& - o

© MemN2N @ CommNet



Multi-agent communication for
cooperative tasks

* Fach agent can be view as an element of a set

e Communication doesn’t have to be discrete

symbols!

S W4 AN
!
[starcraft.com]




Related Work

Multi-agent Reinforcement Learning
— Lots of papers on collaborative task solving
— But usually communication protocol fixed

Recent/concurrent work:

Learning to Communicate with Deep

Multi-Agent Reinforcement Learning, o E E a
Jakob N. Foerster, Yannis M. Assael, Nando j% “““ y D """ ’D """ "
de Freitas, Shimon Whiteson, NIPS 2016 T Ty TNy T my

Emergence of Grounded Compositional

Language in Multi-Agent Populations, EH EB E EE

Igor Mordatch, Pieter Abbeel, arXiv
1703.04908

— Uses Gumbel-Softmax trick

Agent 1



https://arxiv.org/find/cs/1/au:+Mordatch_I/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Abbeel_P/0/1/0/all/0/1

CommNet for Multiagent
Reinforcement Learning (MARL)

Each stream is an agent

Action of each agent

Equal reward for all {ai,...,a;5}
agents 4 t R
Agents collaborate to f1° J
solve task A Ve

Use Policy Gradient: S 3 Y

REINFORCE [Williams et al. 1992] {31 SJ}

Inpht state of each agent

[Sukhbaatar et al. NIPS 2016]



T'raftic Junction game

Cars on fixed routes /’

New car

arrivals

T'wo actions: gas/brake

i
1
|
v Car exiting

Limited visibility

Text representation

Variable # cars (max 20)  3possble

routes ‘
Rewards: collision = -10,
delay = -0.01¢

Visual range

[Sukhbaatar et al. NIPS 2016]



Failure rate

Traffic Junction Results

-¢-Independent

-4k Discrete comm.

100% | & & CommNet Failure rate
\.
N
\\‘; Module f() type

< Model @ MLP RNN LSTM

10% ' Independent 20.6+ 14.1 | 19.5+45 [9.4+56
Fully-connected || 12.54+44 |34.84+19.7 | 4.8424

Discrete comm. || 15.8+£93 | 15.242.1 | 8.4+34

CommNet 2.2+ 0.6 7.6£14 |1.6+1.0

1%
1x1 3x3 5x5 7x7

Visionrange

[Sukhbaatar et al. NIPS 2016]



Traffic Junction (Hard version)

Communication Other game versions
type Easy (MLP) | Hard (RNN)
None 1584+ 12.5 | 26.94+ 6.0
Discrete 1.1&=2.4 | 2824+ 5.7
Continuous 0.3+ 0.1 | 2254+ 6.1
Cont. local - 21.1+ 3.4

H t
—————— | |
:} ------ ¢__l.,._:..__..
‘\ /
4 junctions
¢ / \
; +
4—--—’| ------ {'
:} ______ -t
' |
O

[Sukhbaatar et al. NIPS 2016]



Traffic Junction Movie

P »l o) 000/1:13

[Sukhbaatar et al. NIPS 2016]



Run time dynamic sizing

* The graph is changing with every layer

' \
7/ * / > /
7 > s 7
7\ 7\ 7 \
Car4 > :g I—’—:ﬁ )—(—g 5—’—3)
P AA / SN /
’ N N A S » ¥ /
s n ! >/ >/ ’7.> .20 ;.7
7 > » s N A SR

[Sukhbaatar et al. NIPS 2016]



How are the agents communicating?

PCA’d communication vectors  Corresponding hidden vector:

40

30

20

10

0,

o-l:.

J 1 1 1 1 1 1 J
70 -4 -3 -2 -1 0 1 2 3

[Sukhbaatar et al. NIPS 2016]



How are the agents communicating?

* Vectors from clusters correspond to distinct
patterns of behavior:

ef | &
GRS Lo
®-: om m JV
A B
| L
e
C1 502

[Sukhbaatar et al. NIPS 2016]



How are agents communicating?

* Average norm of the communication vectors and
brake locations

0.35
0.3
0.25
0.2

0.15

0.1

0.05

[Sukhbaatar et al. NIPS 2016]



Combat game

~ Attack actions

Enemy bot

(e.g. attack _4)

-~ F

iring ra

nge

— Visual range

movement actions

[Sukhbaatar et al. NIPS 2016]



Experiment: Combat Game

* 5 agents vs 5 enemies in 15x15 map
* Health=3, Shot range=1, power=1, vision=1

100 - “MLP ®mRNN  LSTM
90 -
80 -

70 -

Failure (%)

60 -
50 -

40 -
Independent  Fully-connected Discrete CommNet

[Sukhbaatar et al. NIPS 2016]



CommNN Summary

Distributed NN model

— Appropriate for tasks where input (and output) is set

Models learn sparse communication protocol
Can combine with RL for MARL problems

Future directions

— Generalize to non fully-cooperative setting

— Which approach better? centralized or distributed



Thanks!
Facebook Al Research colleagues & NYU PhD students:

Arthur Szlam

ason Weston
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