Representing and comparing probabilities with kernels: Part 3

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

MLSS Madrid, 2018

Training GANs with MMD

• Generator (student)

• Task: critic must teach generator to draw images (here dogs)

• Critic (teacher)

Why is classification not enough?

Classification **not** enough! Need to compare **sets**

(otherwise student can just produce the same dog over and over)

MMD for GAN critic

Can you use MMD as a critic to train GANs? From ICML 2015:

Generative Moment Matching Networks

Yujia Li¹ Kevin Swersky¹ KSWERSKY@CS.TORONTO.EDU Richard Zemel^{1,2} ¹Department of Computer Science, University of Toronto, Toronto, ON, CANADA ²Canadian Institute for Advanced Research, Toronto, ON, CANADA

From UAI 2015:

Training generative neural networks via Maximum Mean Discrepancy optimization

Gintare Karolina Dziugaite University of Cambridge

Daniel M. Roy University of Toronto

Zoubin Ghahramani University of Cambridge

YUJIALI@CS.TORONTO.EDU

ZEMEL @CS TORONTO EDU

MMD for GAN critic

Can you use MMD as a critic to train GANs?

Need better image features.

How to improve the critic witness

- Add convolutional features!
- The critic (teacher) also needs to be trained.
- How to regularise?

MMD GAN Li et al., [NIPS 2017] Coulomb GAN Unterthiner et al., [ICLR 2018]

Wasserstein GAN Arjovsky et al. [ICML 2017] WGAN-GP Gukrajani et al. [NIPS 2017]

Wasserstein GAN Arjovsky et al. [ICML 2017] WGAN-GP Gukrajani et al. [NIPS 2017]

Figure 4. Given a generator G_{θ} with parameters θ to be trained. Samples $Y \sim G_{\theta}(Z)$ where $Z \sim R$

Given critic features h_{ψ} with parameters ψ to be trained. f_{ψ} a linear function of h_{ψ} .

Wasserstein GAN Arjovsky et al. [ICML 2017] WGAN-GP Gukrajani et al. [NIPS 2017]

F \mathcal{A} Given a generator G_{θ} with parameters θ to be trained. Samples $Y \sim G_{\theta}(Z)$ where $Z \sim R$

WGAN-GP gradient penalty:

$$\max_{\psi} \mathrm{E}_{X \sim P} f_{\psi}(X) - \mathrm{E}_{Z \sim extsf{R}} f_{\psi}(G_{ heta}(extsf{Z})) + \lambda \mathrm{E}_{\widetilde{X}} \left(\left\|
abla_{\widetilde{X}} f_{ heta}(\widetilde{X})
ight\| - 1
ight)^2$$

where

$$egin{aligned} \widetilde{X} &= \gamma x_i + (1-\gamma) G_\psi(oldsymbol{z}_j) \ \gamma &\sim \mathcal{U}([0,1]) \quad x_i \in \{x_\ell\}_{\ell=1}^m \quad z_j \in \{z_\ell\}_{\ell=1}^n \end{aligned}$$

The (W)MMD

Train MMD critic features with the witness function gradient penalty Binkowski, Sutherland, Arbel, G. [ICLR 2018], Bellemare et al. [2017] for energy distance:

$$\max_{\psi} \frac{MMD^2(h_{\psi}(X),h_{\psi}(G_{ heta}(oldsymbol{Z}))) + \lambda \mathbf{E}_{\widetilde{X}}\left(\left\|
abla_{\widetilde{X}}f_{\psi}(\widetilde{X})
ight\| - 1
ight)^2$$

where

$$f_{\psi}(\cdot) = \frac{1}{m} \sum_{i=1}^{m} \frac{k(h_{\psi}(x_i), \cdot) - \frac{1}{n} \sum_{j=1}^{n} \frac{k(h_{\psi}(G_{\theta}(z_j)), \cdot)}{New}$$

$$\widetilde{X} = \gamma x_i + (1 - \gamma) G_{\psi}(z_j)$$

$$\gamma \sim \mathcal{U}([0, 1]) \quad x_i \in \{x_\ell\}_{\ell=1}^{m} \quad z_j \in \{z_\ell\}_{\ell=1}^{n}$$

Remark by Bottou et al. (2017): gradient penalty modifies the function class. So crit 1/51 not an MMD in RKHS \mathcal{F} .

MMD for GAN critic: revisited

From ICLR 2018:

DEMYSTIFYING MMD GANS

Mikołaj Bińkowski* Department of Mathematics Imperial College London mikbinkowski@gmail.com

Dougal J. Sutherland, Michael Arbel & Arthur Gretton

Gatsby Computational Neuroscience Unit University College London {dougal,michael.n.arbel,arthur.gretton}@gmail.com

MMD for GAN critic: revisited

Samples are better!

MMD for GAN critic: revisited

Samples are better!

Can we do better still?

Convergence issues for WGAN-GP penalty

WGAN-GP style gradient penalty may not converge near solution

Nagarajan and Kolter [NIPS 2017], Mescheder et al. [ICML 2018], Balduzzi et al. [ICML 2018]

The Dirac-GAN

$$P = \delta_0 \qquad Q = \delta_ heta \qquad f_\psi(x) = \psi \cdot x$$

Figure from Mescheder et al. [ICML 2018]

Convergence issues for WGAN-GP penalty

WGAN-GP style gradient penalty may not converge near solution

Nagarajan and Kolter [NIPS 2017], Mescheder et al. [ICML 2018], Balduzzi et al. [ICML 2018]

The Dirac-GAN

$$P=\delta_0 \qquad Q=\delta_ heta \qquad f_\psi(x)=\psi\cdot x,$$

Figure from Mescheder et al. [ICML 2018]

New MMD GAN witness regulariser (just accepted, NIPS 2018)

Arbel, Sutherland, Binkowski, G. [NIPS 2018]

Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]

Related to Sobolev GAN Mroueh et al. [ICLR 2018]

arXiv.org > stat > arXiv:1805.11565

Statistics > Machine Learning

On gradient regularizers for MMD GANs

Michael Arbel, Dougal J. Sutherland, <u>Mikołaj Bińkowski</u>, Arthur Gretton (Submitted on 29 May 2018)

■ New MMD GAN witness regulariser (just accepted, NIPS 2018)

Arbel, Sutherland, Binkowski, G. [NIPS 2018]

Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
 Related to Sobolev GAN Mroueh et al. [ICLR 2018]

■ New MMD GAN witness regulariser (just accepted, NIPS 2018)

Arbel, Sutherland, Binkowski, G. [NIPS 2018]

Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
 Related to Sobolev GAN Mroueh et al. [ICLR 2018]

Modified witness function:

$$\widetilde{MMD} := \sup_{\|f\|_{\mathcal{S}} \le 1} [\mathbb{E}_{P}f(X) - \mathbb{E}_{Q}f(Y)]$$

where

$$\|f\|_{S}^{2} = \|f\|_{L_{2}(P)}^{2} + \|\nabla f\|_{L_{2}(P)}^{2} + \lambda \|f\|_{k}^{2}$$

$$\downarrow$$

$$\mathsf{L}_{2} \operatorname{norm}$$

$$\mathsf{Gradient}$$

$$\mathsf{Control}$$

$$\mathsf{RKHS}$$

$$\mathsf{smoothness}$$

New MMD GAN witness regulariser (just accepted, NIPS 2018)

Arbel, Sutherland, Binkowski, G. [NIPS 2018]

Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
 Related to Sobolev GAN Mroueh et al. [ICLR 2018]

Modified witness function:

$$\widetilde{MMD} := \sup_{\|f\|_{S} \leq 1} [\mathbb{E}_{P}f(X) - \mathbb{E}_{Q}f(Y)]$$

where

Problem: not computationally feasible: $O(n^3)$ per iteration.

■ New MMD GAN witness regulariser (just accepted, NIPS 2018)

Arbel, Sutherland, Binkowski, G. [NIPS 2018]

Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
 Related to Sobolev GAN Mroueh et al. [ICLR 2018]

The scaled MMD:

$$SMMD = \sigma_{k,P,\lambda} MMD$$

where

$$\sigma_{k,P,\lambda} \;\; = \left(\;\; \lambda + \int k(x,x) dP(x) + \sum_{i=1}^d \int \partial_i \partial_{i+d} k(x,x) \;\, dP(x) \;
ight)^{-1/2}$$

Replace expensive constraint with cheap upper bound:

$$\|f\|_{S}^{2} \leq \sigma_{k,P,\lambda}^{-1} \|f\|_{k}^{2}$$

■ New MMD GAN witness regulariser (just accepted, NIPS 2018)

Arbel, Sutherland, Binkowski, G. [NIPS 2018]

Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
 Related to Sobolev GAN Mroueh et al. [ICLR 2018]

The scaled MMD:

$$SMMD = \sigma_{k,P,\lambda} MMD$$

where

$$egin{aligned} \sigma_{k,P,\lambda} &= \left(egin{aligned} \lambda + \int k(x,x) \, dP(x) + \sum_{i=1}^d \int \partial_i \partial_{i+d} k(x,x) \, \, dP(x) \end{array}
ight)^{-1/2} \end{aligned}$$

Replace expensive constraint with cheap upper bound:

 $\|f\|_{\mathcal{S}}^{2} \leq \sigma_{k,P,\lambda}^{-1} \|f\|_{k}^{2}$

Idea: rather than regularise the critic or witness function, regularise features directly

Evaluation and experiments

The inception score? Salimans et al. [NIPS 2016]

Based on the classification output p(y|x) of the inception model szegedy et al. [ICLR 2014],

```
E_X \exp KL(P(y|X) || P(y)).
```

High when:

- predictive label distribution P(y|x) has low entropy (good quality images)
- label entropy P(y) is high (good variety).

The inception score? Salimans et al. [NIPS 2016]

Based on the classification output p(y|x) of the inception model szegedy et al. [ICLR 2014],

```
E_X \exp KL(P(y|X) || P(y)).
```

High when:

- predictive label distribution P(y|x) has low entropy (good quality images)
- label entropy P(y) is high (good variety).

Problem: relies on a trained classifier! Can't be used on new categories (celeb, bedroom...)

The Frechet inception distance? Heusel et al. [NIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

$$FID(P, \boldsymbol{Q}) = \|\mu_P - \mu_{\boldsymbol{Q}}\|^2 + \operatorname{tr}(\Sigma_P) + \operatorname{tr}(\Sigma_{\boldsymbol{Q}}) - 2\operatorname{tr}\left((\Sigma_P \Sigma_{\boldsymbol{Q}})^{\frac{1}{2}}\right)$$

where μ_P and Σ_P are the feature mean and covariance of P

The Frechet inception distance? Heusel et al. [NIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

$$FID(P, Q) = \|\mu_P - \mu_Q\|^2 + \operatorname{tr}(\Sigma_P) + \operatorname{tr}(\Sigma_Q) - 2\operatorname{tr}\left((\Sigma_P \Sigma_Q)^{\frac{1}{2}}\right)$$

where μ_P and Σ_P are the feature mean and covariance of P

Problem: bias. For finite samples can consistently give incorrect answer.

 Bias demo, CIFAR-10 train vs test

The FID can give the wrong answer in theory.

Assume m samples from P and $n \to \infty$ samples from Q. Given two alternatives:

$$m{P}_1\sim\mathcal{N}(0,(1-m^{-1})^2) \qquad m{P}_2\sim\mathcal{N}(0,1) \qquad m{Q}\sim\mathcal{N}(0,1).$$

Clearly,

$$FID(P_1, Q) = \frac{1}{m^2} > FID(P_2, Q) = 0$$

Given m samples from P_1 and P_2 ,

 $FID(\widehat{P_1},Q) < FID(\widehat{P_2},Q).$

The FID can give the wrong answer in theory. Assume m samples from P and $n \to \infty$ samples from Q. Given two alternatives:

 $egin{aligned} P_1 \sim \mathcal{N}(0,(1-m^{-1})^2) & P_2 \sim \mathcal{N}(0,1) & Q \sim \mathcal{N}(0,1). \end{aligned}$

Clearly,

$$FID(P_1, Q) = rac{1}{m^2} > FID(P_2, Q) = 0$$

Given m samples from P_1 and P_2 ,

 $FID(\widehat{P_1}, \mathcal{Q}) < FID(\widehat{P_2}, \mathcal{Q}).$

The FID can give the wrong answer in theory. Assume m samples from P and $n \to \infty$ samples from Q. Given two alternatives:

 $egin{aligned} P_1 \sim \mathcal{N}(0,(1-m^{-1})^2) & P_2 \sim \mathcal{N}(0,1) & Q \sim \mathcal{N}(0,1). \end{aligned}$

Clearly,

$$FID(P_1, \boldsymbol{Q}) = \frac{1}{m^2} > FID(P_2, \boldsymbol{Q}) = 0$$

Given m samples from P_1 and P_2 ,

 $FID(\widehat{P_1},Q) < FID(\widehat{P_2},Q).$

The FID can give the wrong answer in theory. Assume m samples from P and $n \to \infty$ samples from Q. Given two alternatives:

 $egin{aligned} P_1 \sim \mathcal{N}(0,(1-m^{-1})^2) & P_2 \sim \mathcal{N}(0,1) & Q \sim \mathcal{N}(0,1). \end{aligned}$

Clearly,

$$FID(P_1, \boldsymbol{Q}) = \frac{1}{m^2} > FID(P_2, \boldsymbol{Q}) = 0$$

Given m samples from P_1 and P_2 ,

 $FID(\widehat{P}_1, Q) < FID(\widehat{P}_2, Q).$

The FID can give the wrong answer in practice.

Let d = 2048, and define

 $P_1 = \operatorname{relu}(\mathcal{N}(0, I_d))$ $P_2 = \operatorname{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \operatorname{relu}(\mathcal{N}(1, I_d))$ where $\Sigma = \frac{4}{d} CC^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

 $FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)$ With $m = 50\,000$ samples, $FID(\widehat{P_1}, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P_2}, Q)$

At $m = 100\,000$ samples, the ordering of the estimates is correct. This behavior is similar for other random draws of C.

The FID can give the wrong answer in practice. Let d = 2048, and define

 $P_1 = \operatorname{relu}(\mathcal{N}(0, I_d))$ $P_2 = \operatorname{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \operatorname{relu}(\mathcal{N}(1, I_d))$ where $\Sigma = \frac{4}{d} C C^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

 $FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)$ With $m = 50\,000$ samples, $FID(\widehat{P_1}, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P_2}, Q)$

At $m = 100\,000$ samples, the ordering of the estimates is correct. This behavior is similar for other random draws of C. 16/71

Evaluation of GANs

The FID can give the wrong answer in practice. Let d = 2048, and define

 $P_1 = \operatorname{relu}(\mathcal{N}(0, I_d))$ $P_2 = \operatorname{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \operatorname{relu}(\mathcal{N}(1, I_d))$ where $\Sigma = \frac{4}{d} CC^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

 $FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)$ With $m = 50\,000$ samples, $FID(\widehat{P_1}, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P_2}, Q)$

At $m = 100\,000$ samples, the ordering of the estimates is correct. This behavior is similar for other random draws of C. ^{16/71}

Evaluation of GANs

The FID can give the wrong answer in practice. Let d = 2048, and define

 $P_1 = \operatorname{relu}(\mathcal{N}(0, I_d))$ $P_2 = \operatorname{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \operatorname{relu}(\mathcal{N}(1, I_d))$ where $\Sigma = \frac{4}{d} C C^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

 $FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)$

With $m = 50\,000$ samples,

 $FID(\widehat{P}_1, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P}_2, Q)$

At $m = 100\,000$ samples, the ordering of the estimates is correct. This behavior is similar for other random draws of C.

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer) MMD with kernel

 $k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$

- Checks match for feature means, variances, skewness
- Unbiased : eg CIFAR-10 train/test

.

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer)

MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3$$

 Checks match for feature means, variances, skewness

Unbiased : eg CIFAR-10 train/test

..."but isn't KID is computationally costly?"

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer) MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$$

 Checks match for feature means, variances, skewness
 Unbiased : eg CIFAR-10 train/test

..."but isn't KID is computationally costly?"

"Block" KID implementation is cheaper than FID: see paper (or use Tensorflow implementation)!

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer) MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$$

 Checks match for feature means, variances, skewness
 Unbiased : eg CIFAR-10 train/test

Also used for automatic learning rate adjustment: if $KID(\hat{P}_{t+1}, Q)$ not significantly better than $KID(\hat{P}_t, Q)$ then reduce learning rate. [Bounliphone et al. ICLR 2016]

Related: "An empirical study on evaluation metrics of generative adversarial networks", Xu et al. $\begin{bmatrix} 17/71 \\ afxiv, \end{bmatrix}$ June 2018]

Benchmarks for comparison (all from ICLR 2018)

SPECTRAL NORMALIZATION FOR GENERATIVE ADVERSARIAL NETWORKS

Takeru Miyato¹, Toshiki Kataoka¹, Masanori Koyama², Yuichi Yoshida³

(miyato, kataoka)@preferred.jp cyanat masanori@gmail.com yoot i.ac.jp works, Inc. ²Ritsumeikan University ³National Institute of Informatics

DEMYSTIFYING MMD GANS

Mikołaj Bińkowski*

combine with scaled

> Department of Mathematics Imperial College London mikbinkowski@gmail.com

Dougal J. Sutherland, Michael Arbel & Arthur Gretton

Gatsby Computational Neuroscience Unit Univ College London , michael.n.arbel, arthur.gretton}@gmail.com

SOBOLEV GAN

Youssef Wrouch', Chun-Liang Li^{*}, Tom Sercu^{1,*}, Ananf Raj^{0,*} & Yu Cheng¹ 1 BM Research Ad o Cannegie Mellon University Ø Max Pianek Institute for Intellignet Systems «centes Equal Contribution (mrouch, chengyul@is.im.com, chunlial@cs.cmu.edu, tom.sercui@im.com,anant.raj@tuebingen.mpg.de

BOUNDARY-SEEKING GENERATIVE ADVERSARIAL NETWORKS

R Devon Hjelm* MILA, University of Montréal, IVADO erroneus@gmail.com

Tong Che MILA, University of Montréal tong.che@umontreal.ca

Kyunghyun Cho New York University, CIFAR Azrieli Global Scholar kyunghyun, cho@nyu, edu Athul Paul Jacob* MILA, MSR, University of Waterloo apjacob@edu.uwaterloo.ca

Adam Trischler MSR adam.trischler@microsoft.com

Yoshua Bengio MILA, University of Montréal, CIFAR, IVADO yoshua.bengio@umontreal.ca

Results: what does MMD buy you?

Critic features from DCGAN: an *f*-filter critic has *f*, 2*f*, 4*f* and 8*f* convolutional filters in layers 1-4. LSUN 64 × 64.

WGAN samples, f = 64, FID=41, KID=4 ^{19/71}

Results: what does MMD buy you?

Critic features from DCGAN: an *f*-filter critic has *f*, 2*f*, 4*f* and 8*f* convolutional filters in layers 1-4. LSUN 64 × 64.

WGAN samples, f = 16, f = 64, FID=293, KID= $\frac{19}{71}$

Faster training: performance scores vs generator iterations on MNIST

Results: celebrity faces 160×160

KID (FID) scores:

- Sobolev GAN: 14 (20)
- SN-GAN:
 18 (28)
- Old MMD GAN: 13 (21)
 SMMD GAN: 6 (12)

202 599 face images, resized and cropped to 160 \times 160 $\,$

Results: imagenet 64×64

KID (FID) scores:

- BGAN: 47 (44)
- SN-GAN:
 44 (48)
- SMMD GAN: 35 (37)

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64×64 . Around 20 000 classes.

Results: imagenet 64×64

KID (FID) scores:

- BGAN:
 47 (44)
- SN-GAN:
 44 (48)
- SMMD GAN:
 35 (37)

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64×64 . Around 20 000 classes.

Results: imagenet 64×64

KID (FID) scores:

■ BGAN: 47 (44)

SN-GAN:
 44 (48)

SMMD GAN:
 35 (37)

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64×64 . Around 20 000 classes.

Summary

- MMD critic gives state-of-the-art performance for GAN training (FID and KID)
 - use convolutional input features
 - train with new gradient regulariser
- Faster training, simpler critic network
- Reasons for good performance:
 - Unlike WGAN-GP, MMD loss still a valid critic when features not optimal
 - Kernel features do some of the "work", so simpler h_{ψ} features possible.
 - Better gradient/feature regulariser gives better critic

Code for "Demystifying MMD GANs," ICLR 2018, including KID score: https://github.com/mbinkowski/MMD-GAN Code for new SMMD: https://github.com/MichaelArbel/Scaled-MMD-GAN

Testing against a probabilistic model

$f^*(x)$ is the witness function

Can we compute MMD with samples from Q and a model P? **Problem:** usualy can't compute $E_p f$ in closed form.

Stein idea

To get rid of $E_p f$ in

$$\sup_{\|f\|_{\mathcal{F}}\leq 1}[E_qf-E_pf]$$

we define the **Stein operator**

$$[T_p f](x) = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))$$

Then

$$E_{\mathbf{P}} T_{\mathbf{P}} f = 0$$

subject to appropriate boundary conditions. (Oates, Girolami, Chopin, 2016)

$$E_{p}[T_{p}f] = \int \left[\frac{1}{p(x)}\frac{d}{dx}(f(x)p(x))\right]p(x)dx$$
$$\int \left[\frac{d}{dx}(f(x)p(x))\right]dx$$
$$= [f(x)p(x)]_{-\infty}^{\infty}$$
$$= 0$$

$$E_{p}[T_{p}f] = \int \left[\frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))\right] p(x) dx$$
$$\int \left[\frac{d}{dx} (f(x)p(x))\right] dx$$
$$= [f(x)p(x)]_{-\infty}^{\infty}$$
$$= 0$$

$$E_{p}[T_{p}f] = \int \left[\frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))\right] p(x) dx$$
$$\int \left[\frac{d}{dx} (f(x)p(x))\right] dx$$
$$= [f(x)p(x)]_{-\infty}^{\infty}$$
$$= 0$$

$$E_{p}[T_{p}f] = \int \left[\frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))\right] p(x) dx$$
$$\int \left[\frac{d}{dx} (f(x)p(x))\right] dx$$
$$= [f(x)p(x)]_{-\infty}^{\infty}$$
$$= 0$$

$$E_{p}[T_{p}f] = \int \left[\frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))\right] p(x) dx$$
$$\int \left[\frac{d}{dx} (f(x)p(x))\right] dx$$
$$= [f(x)p(x)]_{-\infty}^{\infty}$$
$$= 0$$

Kernel Stein Discrepancy Stein operator

$$T_p f = rac{1}{p(x)} \, rac{d}{dx} \left(f(x) p(x)
ight)$$

$$KSD(p, q, \mathcal{F}) = \sup_{\|g\|_{\mathcal{F}} \leq 1} E_q T_p g - E_p T_p g$$

Kernel Stein Discrepancy Stein operator

$$T_{p}f = rac{1}{p(x)} rac{d}{dx} (f(x)p(x))$$

$$KSD(p, q, \mathcal{F}) = \sup_{\|g\|_{\mathcal{F}} \leq 1} E_q T_p g - E_p T_p g = \sup_{\|g\|_{\mathcal{F}} \leq 1} E_q T_p g$$

Kernel Stein Discrepancy

Stein operator

$$T_{p}f = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))$$

$$KSD(p, q, \mathcal{F}) = \sup_{\|g\|_{\mathcal{F}} \leq 1} E_q T_p g - \underline{E_p} T_p \overline{g} = \sup_{\|g\|_{\mathcal{F}} \leq 1} E_q T_p g$$

Kernel Stein Discrepancy

Stein operator

$$T_p f = rac{1}{p(x)} rac{d}{dx} (f(x)p(x))$$

$$KSD(p, q, \mathcal{F}) = \sup_{\|g\|_{\mathcal{F}} \leq 1} E_q T_p g - E_p T_p g = \sup_{\|g\|_{\mathcal{F}} \leq 1} E_q T_p g$$

Kernel stein discrepancy

Closed-form expression for KSD: given $Z, Z' \sim q$, then (Chwialkowski, Strathmann, G., ICML 2016) (Liu, Lee, Jordan ICML 2016)

$$\mathrm{KSD}(p,q,\mathcal{F})=E_qh_p(Z,Z')$$

where

$$egin{aligned} h_p(x,y) &:= \partial_x \log p(x) \partial_x \log p(y) k(x,y) \ &+ \partial_y \log p(y) \partial_x k(x,y) \ &+ \partial_x \log p(x) \partial_y k(x,y) \ &+ \partial_x \partial_y k(x,y) \end{aligned}$$

and k is RKHS kernel for \mathcal{F}

Only depends on kernel and $\partial_x \log p(x)$. Do not need to normalize p, or sample from it.

Chicago crime data

Chicago crime data

Model is Gaussian mixture with two components.

Chicago crime data Model is Gaussian mixture with two components Stein witness function

Chicago crime data

Model is Gaussian mixture with ten components.

Chicago crime data Model is Gaussian mixture with ten components Stein witness function Code: https://github.com/karlnapf/kernel_goodness_of_fit ^{30/71}

Kernel stein discrepancy

Further applications:

 Evaluation of approximate MCMC methods. (Chwialkowski, Strathmann, G., ICML 2016; Gorham, Mackey, ICML 2017)

What kernel to use?

■ The inverse multiquadric kernel,

$$k(x,y)=\left(c+\|x-y\|_2^2
ight)^{m eta}$$

for $\beta \in (-1, 0)$.

arXiv.org > stat > arXiv:1703.01717

Statistics > Machine Learning

Measuring Sample Quality with Kernels

Jackson Gorham, Lester Mackey ICML 2017

(Submitted on 6 Mar 2017 (v1), last revised 3 Aug 2017 (this version, v6))

Testing statistical dependence

Dependence testing

Given: Samples from a distribution P_{XY} **Goal:** Are X and Y independent?

Х	Υ
	A large animal who slings slobber, exudes a distinctive houndy odor, and wants nothing more than to follow his nose.
	Their noses guide them through life, and they're never happier than when following an interesting scent.
MAN AND AND AND AND AND AND AND AND AND A	A responsive, interactive pet, one that will blow in your ear and follow you everywhere.
Text from dogtime.com and petfinder.com	

Could we use MMD?

$$MMD(\underbrace{P_{XY}}_{P},\underbrace{P_{X}P_{Y}}_{Q},\mathcal{H}_{\kappa})$$

• We don't have samples from $Q := P_X P_Y$, only pairs $\{(x_i, y_i\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} P_{XY}$

• Solution: simulate Q with pairs (x_i, y_j) for $j \neq i$.

• What kernel κ to use for the RKHS \mathcal{H}_{κ} ?

Could we use MMD?

$$MMD(\underbrace{P_{XY}}_{P},\underbrace{P_{X}P_{Y}}_{Q},\mathcal{H}_{\kappa})$$

• We don't have samples from $Q := P_X P_Y$, only pairs $\{(x_i, y_i\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} P_{XY}$

• Solution: simulate Q with pairs (x_i, y_j) for $j \neq i$.

• What kernel κ to use for the RKHS \mathcal{H}_{κ} ?

Could we use MMD?

$$MMD(\underbrace{P_{XY}}_{P},\underbrace{P_{X}P_{Y}}_{Q},\mathcal{H}_{\kappa})$$

• We don't have samples from $Q := P_X P_Y$, only pairs $\{(x_i, y_i\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} P_{XY}$

• Solution: simulate Q with pairs (x_i, y_j) for $j \neq i$.

• What kernel κ to use for the RKHS \mathcal{H}_{κ} ?

Kernel k on images with feature space \mathcal{F} ,

Kernel l on captions with feature space \mathcal{G} ,

Kernel k on images with feature space \mathcal{F} ,

Kernel l on captions with feature space \mathcal{G} ,

Kernel κ on image-text pairs: are images and captions similar?

Given: Samples from a distribution P_{XY}
Goal: Are X and Y independent?

$$MMD^2(\widehat{P}_{XY}, \widehat{P}_X \widehat{P}_Y, \mathcal{H}_\kappa) := rac{1}{n^2} \mathrm{trace}(KL)$$

(K, L column centered)

Given: Samples from a distribution P_{XY}
Goal: Are X and Y independent?

$$MMD^2(\widehat{P}_{XY},\widehat{P}_X\widehat{P}_Y,\mathcal{H}_\kappa):=rac{1}{n^2} ext{trace}(oldsymbol{KL})$$

Two questions:

- Why the product kernel? Many ways to combine kernels why not eg a sum?
- Is there a more interpretable way of defining this dependence measure?

Illustration: dependence \neq correlation

- **Given:** Samples from a distribution P_{XY}
- Goal: Are X and Y dependent?

Illustration: dependence \neq correlation

- Given: Samples from a distribution P_{XY}
- Goal: Are X and Y dependent?

Illustration: dependence \neq correlation

- Given: Samples from a distribution P_{XY}
- Goal: Are X and Y dependent?

Illustration: two variables with no correlation but strong dependence.

Illustration: two variables with no correlation but strong dependence.

Illustration: two variables with no correlation but strong dependence.

Define two spaces, one for each witness

The constrained covariance is

The constrained covariance is

$$ext{COCO}(P_{XY}) = \sup_{\substack{\|f\|_{\mathcal{F}} \leq 1 \ \|g\|_{\mathcal{G}} \leq 1}} \operatorname{cov} \left[\left(\sum_{j=1}^{\infty} f_j \varphi_j(x)
ight) \left(\sum_{j=1}^{\infty} g_j \phi_j(y)
ight)
ight]$$

The constrained covariance is

$$ext{COCO}(P_{XY}) = \sup_{\substack{\|f\|_{\mathcal{F}} \leq 1 \ \|g\|_{\mathcal{G}} \leq 1}} E_{xy} \left[\left(\sum_{j=1}^{\infty} f_j \varphi_j(x)
ight) \left(\sum_{j=1}^{\infty} g_j \phi_j(y)
ight)
ight]$$

Fine print: feature mappings $\varphi(x)$ and $\phi(y)$ assumed to have zero mean.

The constrained covariance is

$$ext{COCO}(P_{XY}) = \sup_{\substack{\|f\|_{\mathcal{F}} \leq 1 \ \|g\|_{\mathcal{G}} \leq 1}} E_{xy} \left[\left(\sum_{j=1}^{\infty} f_j \varphi_j(x)
ight) \left(\sum_{j=1}^{\infty} g_j \phi_j(y)
ight)
ight]$$

Fine print: feature mappings $\varphi(x)$ and $\phi(y)$ assumed to have zero mean. Rewriting:

$$E_{xy}[f(x)g(y)] = egin{bmatrix} f_1 \ f_2 \ dots \end{bmatrix}^ op \underbrace{\mathbf{E}_{xy}\left(egin{bmatrix} arphi_1(x) \ arphi_2(x) \ dots \end{bmatrix}^ op \underbrace{\mathbf{E}_{xy}\left(egin{bmatrix} arphi_1(x) \ arphi_2(x) \ dots \end{bmatrix}^ op \underbrace{\mathbf{E}_{xy}\left(egin{bmatrix} arphi_1(x) \ arphi_2(x) \ dots \end{bmatrix}^ op \underbrace{\mathbf{E}_{xy}\left(egin{bmatrix} arphi_1(x) \ arphi_2(x) \ dots \end{bmatrix}^ op \underbrace{\mathbf{E}_{xy}\left(egin{bmatrix} arphi_1(x) \ arphi_2(x) \ dots \end{bmatrix}^ op \underbrace{\mathbf{E}_{xy}\left(egin{bmatrix} arphi_1(x) \ arphi_2(x) \ dots \end{bmatrix}^ op \underbrace{\mathbf{E}_{xy}\left(egin{bmatrix} arphi_1(x) \ arphi_2(x) \ dots \end{bmatrix}^ op \underbrace{\mathbf{E}_{xy}\left(egin{bmatrix} arphi_1(x) \ arphi_2(x) \ dots \end{bmatrix}^ op \underbrace{\mathbf{E}_{xy}\left(egin{bmatrix} arphi_1(x) \ arphi_2(x) \ dots \end{bmatrix}^ op \underbrace{\mathbf{E}_{xy}\left(egin{bmatrix} arphi_1(x) \ arphi_2(x) \ dots \end{bmatrix}^ op \underbrace{\mathbf{E}_{xy}\left(egin{bmatrix} arphi_1(x) \ arphi_2(x) \ dots \end{bmatrix}^ op \underbrace{\mathbf{E}_{xy}\left(egin{bmatrix} arphi_1(x) \ arphi_2(x) \ dots \end{bmatrix}^ op \underbrace{\mathbf{E}_{xy}\left(egin{bmatrix} arphi_1(x) \ arphi_2(x) \ dots \end{bmatrix}^ op \underbrace{\mathbf{E}_{xy}\left(egin{bmatrix} arphi_1(x) \ arphi_2(x) \ dots \end{bmatrix}^ op \underbrace{\mathbf{E}_{xy}\left(egin{bmatrix} arphi_1(x) \ arphi_2(x) \ dots \end{bmatrix}^ op \underbrace{\mathbf{E}_{xy}\left(egin{bmatrix} arphi_1(x) \ arphi_2(x) \ arphi_2(x)$$

The constrained covariance is

$$ext{COCO}(P_{XY}) = \sup_{\substack{\|f\|_{\mathcal{F}} \leq 1 \ \|g\|_{\mathcal{G}} \leq 1}} E_{xy} \left[\left(\sum_{j=1}^{\infty} f_j \varphi_j(x)
ight) \left(\sum_{j=1}^{\infty} g_j \phi_j(y)
ight)
ight]$$

Fine print: feature mappings $\varphi(x)$ and $\phi(y)$ assumed to have zero mean. Rewriting:

$$E_{xy}[f(x)oldsymbol{g}(y)] = egin{bmatrix} f_1 \ f_2 \ dots \end{bmatrix}^{ op} \underbrace{ \mathbf{E}_{xy}\left(egin{bmatrix} arphi_1(x) \ arphi_2(x) \ dots \end{bmatrix}^{ op} egin{bmatrix} arphi_1(y) & arphi_2(y) & \dots \end{bmatrix}
ight)}_{C_{arphi(x)}\phi(y)} egin{bmatrix} arphi_1 \ arphi_2(y) & \dots \end{bmatrix} egin{bmatrix} arphi_1 \ arphi_2 \ dots \end{bmatrix}$$

COCO: max singular value of feature covariance $C_{\varphi(x)\phi(y)}$

Computing COCO in practice

Given sample $\{(x_i, y_i)\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} P_{XY}$, what is empirical \widehat{COCO} ?

Computing COCO in practice

Given sample $\{(x_i, y_i)\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} P_{XY}$, what is empirical \widehat{COCO} ? \widehat{COCO} is largest eigenvalue γ_{\max} of

$$\begin{bmatrix} 0 & \frac{1}{n}KL\\ \frac{1}{n}LK & 0 \end{bmatrix} \begin{bmatrix} \alpha\\ \beta \end{bmatrix} = \gamma \begin{bmatrix} K & 0\\ 0 & L \end{bmatrix} \begin{bmatrix} \alpha\\ \beta \end{bmatrix}$$

 $K_{ij} = k(x_i, x_j)$ and $L_{ij} = l(y_i, y_j)$.

Fine print: kernels are computed with empirically centered features $\varphi(x) - \frac{1}{n} \sum_{i=1}^{n} \varphi(x_i)$ and $\phi(y) - \frac{1}{n} \sum_{i=1}^{n} \phi(y_i)$. G., Smola., Bousquet, Herbrich, Belitski, Augath, Murayama, Pauls, Schoelkopf, and Logothetis, ALSTATS'05

Computing COCO in practice

Given sample $\{(x_i, y_i)\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} P_{XY}$, what is empirical \widehat{COCO} ? \widehat{COCO} is largest eigenvalue γ_{\max} of $\begin{bmatrix} 0 & \frac{1}{n}KL \\ \frac{1}{n}LK & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \gamma \begin{bmatrix} K & 0 \\ 0 & L \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$. $K_{ij} = k(x_i, x_j)$ and $L_{ij} = l(y_i, y_j)$.

Witness functions (singular vectors):

$$f(x) \propto \sum_{i=1}^n lpha_i k(x_i, x)$$
 $g(y) \propto \sum_{i=1}^n eta_i l(y_i, y)$

Fine print: kernels are computed with empirically centered features $\varphi(x) - \frac{1}{n} \sum_{i=1}^{n} \varphi(x_i)$ and $\phi(y) - \frac{1}{n} \sum_{i=1}^{n} \phi(y_i)$.

G., Smola., Bousquet, Herbrich, Belitski, Augath, Murayama, Pauls, Schoelkopf, and Logothetis, AISTATS'05

The Lagrangian is

$$\mathcal{L}(f, g, \lambda, \gamma) = \underbrace{rac{1}{n} \sum_{i=1}^{n} [f(x_i)g(y_i)]}_{ ext{covariance}} - \underbrace{rac{\lambda}{2} \left(\|f\|_{\mathcal{F}}^2 - 1
ight) - rac{\gamma}{2} \left(\|g\|_{\mathcal{G}}^2 - 1
ight)}_{ ext{smoothness constraints}}.$$

Fine print: $f(x_i)g(y_i)$ centered to have zero empirical mean.

The Lagrangian is

$$\mathcal{L}(f,g,\lambda,\gamma) = \underbrace{rac{1}{n}\sum\limits_{i=1}^{n}[f(x_i)g(y_i)]}_{ ext{covariance}} - \underbrace{rac{\lambda}{2}\left(\|f\|_{\mathcal{F}}^2-1
ight) - rac{\gamma}{2}\left(\|g\|_{\mathcal{G}}^2-1
ight)}_{ ext{smoothness constraints}}.$$

Fine print: $f(x_i)g(y_i)$ centered to have zero empirical mean.

Assume (cf representer theorem):

$$f = \sum_{i=1}^n lpha_i arphi(x_i)$$
 $g = \sum_{i=1}^n eta_i \psi(y_i)$

for centered $\varphi(x_i)$, $\phi(y_i)$.

The Lagrangian is

$$\mathcal{L}(f,g,\lambda,\gamma) = \underbrace{rac{1}{n}\sum\limits_{i=1}^{n}[f(x_i)g(y_i)]}_{ ext{covariance}} - \underbrace{rac{\lambda}{2}\left(\|f\|_{\mathcal{F}}^2-1
ight) - rac{\gamma}{2}\left(\|g\|_{\mathcal{G}}^2-1
ight)}_{ ext{smoothness constraints}}.$$

Fine print: $f(x_i)g(y_i)$ centered to have zero empirical mean.

Assume (cf representer theorem):

$$f = \sum_{i=1}^{n} lpha_i arphi(x_i)$$
 $g = \sum_{i=1}^{n} eta_i \psi(y_i)$

for centered $\varphi(x_i)$, $\phi(y_i)$.

First step is smoothness constraint:

$$\|f\|_{\mathcal{F}}^2-1=\langle f,f
angle_{\mathcal{F}}-1$$

The Lagrangian is

$$\mathcal{L}(f,g,\lambda,\gamma) = \underbrace{rac{1}{n}\sum\limits_{i=1}^{n}[f(x_i)g(y_i)]}_{ ext{covariance}} - \underbrace{rac{\lambda}{2}\left(\|f\|_{\mathcal{F}}^2-1
ight) - rac{\gamma}{2}\left(\|g\|_{\mathcal{G}}^2-1
ight)}_{ ext{smoothness constraints}}.$$

Fine print: $f(x_i)g(y_i)$ centered to have zero empirical mean.

Assume (cf representer theorem):

$$f = \sum_{i=1}^{n} lpha_i arphi(x_i)$$
 $g = \sum_{i=1}^{n} eta_i \psi(y_i)$

for centered $\varphi(x_i)$, $\phi(y_i)$.

First step is smoothness constraint:

$$egin{aligned} \|f\|_{\mathcal{F}}^2 - 1 &= \langle f, f
angle_{\mathcal{F}} - 1 \ &= \left\langle \sum_{i=1}^n lpha_i arphi(x_i), \sum_{i=1}^n lpha_i arphi(x_i)
ight
angle_{\mathcal{F}} - 1 \end{aligned}$$

43/71

The Lagrangian is

$$\mathcal{L}(f,g,\lambda,\gamma) = \underbrace{rac{1}{n}\sum\limits_{i=1}^{n}[f(x_i)g(y_i)]}_{ ext{covariance}} - \underbrace{rac{\lambda}{2}\left(\|f\|_{\mathcal{F}}^2-1
ight) - rac{\gamma}{2}\left(\|g\|_{\mathcal{G}}^2-1
ight)}_{ ext{smoothness constraints}}.$$

Fine print: $f(x_i)g(y_i)$ centered to have zero empirical mean.

Assume (cf representer theorem):

$$f = \sum_{i=1}^n lpha_i arphi(x_i)$$
 $g = \sum_{i=1}^n eta_i \psi(y_i)$

for centered $\varphi(x_i)$, $\phi(y_i)$.

First step is smoothness constraint:

$$egin{aligned} \|f\|_{\mathcal{F}}^2 - 1 &= \langle f, f
angle_{\mathcal{F}} - 1 \ &= \left\langle \sum_{i=1}^n lpha_i arphi(x_i), \sum_{i=1}^n lpha_i arphi(x_i)
ight
angle_{\mathcal{F}} - 1 \ &= lpha^{ op} K lpha - 1 \end{aligned}$$

Second step is covariance:

$$egin{aligned} &rac{1}{n}\sum_{i=1}^n [f(x_i)g(y_i)] = rac{1}{n}\sum_{i=1}^n \langle f,arphi(x_i)
angle_{\mathcal{F}} \langle g,arphi(y_i)
angle_{g} \ &= rac{1}{n}\sum_{i=1}^n \left\langle \sum_{\ell=1}^n lpha_\ell arphi(x_\ell), arphi(x_i)
ight
angle_{\mathcal{F}} \langle g,arphi(y_i)
angle_{g} \ &= rac{1}{n}lpha^ op KLeta \end{aligned}$$

Second step is covariance:

$$egin{aligned} &rac{1}{n}\sum_{i=1}^n [f(x_i)g(y_i)] = rac{1}{n}\sum_{i=1}^n \langle f,arphi(x_i)
angle_{\mathcal{F}} \langle g,arphi(y_i)
angle_{\mathcal{G}} \ &= rac{1}{n}\sum_{i=1}^n \left\langle \sum_{\ell=1}^n lpha_\ell arphi(x_\ell),arphi(x_i)
ight
angle_{\mathcal{F}} \langle g,arphi(y_i)
angle_{\mathcal{G}} \ &= rac{1}{n}lpha^ op KLeta \end{aligned}$$

Second step is covariance:

$$egin{aligned} &rac{1}{n}\sum_{i=1}^n [f(x_i)g(y_i)] = rac{1}{n}\sum_{i=1}^n \langle f,arphi(x_i)
angle_{\mathcal{F}} \langle g,arphi(y_i)
angle_{\mathcal{G}} \ &= rac{1}{n}\sum_{i=1}^n \left\langle \sum_{\ell=1}^n lpha_\ell arphi(x_\ell),arphi(x_i)
ight
angle_{\mathcal{F}} \langle g,arphi(y_i)
angle_{\mathcal{G}} \ &= rac{1}{n} lpha^ op KLeta \end{aligned}$$

where $K_{ij} = k(x_i, x_j) = \langle \varphi(x_i), \varphi(x_j) \rangle_{\mathcal{F}}$ $L_{ij} = l(y_i, y_j).$

Second step is covariance:

$$egin{aligned} &rac{1}{n}\sum_{i=1}^n [f(x_i)oldsymbol{g}(y_i)] = rac{1}{n}\sum_{i=1}^n ig\langle f,arphi(x_i)
angle_{\mathcal{F}} ig\langle oldsymbol{g},arphi(y_i)
angle_{oldsymbol{g}} \ &= rac{1}{n}\sum_{i=1}^n ig\langle \sum_{\ell=1}^n lpha_\ell arphi(x_\ell), arphi(x_i) ig
angle_{\mathcal{F}} ig\langle oldsymbol{g}, arphi(y_i)
angle_{oldsymbol{g}} \ &= rac{1}{n} lpha^ op KLoldsymbol{eta} \ & ext{where} \ K_{ij} = k(x_i, x_j) {=} ig\langle arphi(x_i), arphi(x_j)
angle_{\mathcal{F}} \ & extsf{L}_{ij} = l(y_i, y_j). \end{aligned}$$

The Lagranian is now:

$$\mathcal{L}(f,g,\lambda,\gamma) = rac{1}{n} oldsymbollpha^ op K L oldsymboleta - rac{\lambda}{2} \left(oldsymbollpha^ op K oldsymbollpha - 1
ight) - rac{\gamma}{2} \left(oldsymboleta^ op L oldsymboleta - 1
ight)$$

What is a large dependence with COCO?

Which of these is the more "dependent"?

Density takes the form:

$$P_{XY} \propto 1 + \sin(\omega x) \sin(\omega y)$$

Case of $\omega = 3$: f(X) witness 0.5 Correlation: 0.44 Correlation: 0.03 COCO: 0.04 4 0.5 -0.5 2 -1 -2 2 0 0 Ω x g(Y) witness -2 0.5 -0.5 -4 -2 2 -0.5 0 0.5 0 -4 X f(X)-0.5 -1 -2 2 0 V

Finding covariance with smooth transformations

Finding covariance with smooth transformations

Case of $\omega = ??$:

Finding covariance with smooth transformations

- As dependence is encoded at higher frequencies, the smooth mappings f, g achieve lower linear dependence.
- Even for independent variables, COCO will not be zero at finite sample sizes, since some mild linear dependence will be found by f,g (bias)
- This bias will decrease with increasing sample size.

Can we do better than COCO?

A second example with zero correlation.

First singular value of feature covariance $C_{\varphi(x)\phi(y)}$:

Can we do better than COCO?

A second example with zero correlation.

Second singular value of feature covariance $C_{\varphi(x)\phi(y)}$:

Can we do better than COCO?

A second example with zero correlation.

Second singular value of feature covariance $C_{\varphi(x)\phi(y)}$:

The Hilbert-Schmidt Independence Criterion

Writing the *i*th singular value of the feature covariance $C_{\varphi(x)\phi(y)}$ as

$$\gamma_i := COCO_i(P_{XY}; \mathcal{F}, \mathcal{G}),$$

define Hilbert-Schmidt Independence Criterion (HSIC)

$$\mathit{HSIC}^2(\mathit{P}_{XY};\mathcal{F},\mathcal{G}) = \sum_{i=1}^\infty \gamma_i^2.$$

G, Bousquet , Smola., and Schoelkopf, ALT05; G,., Fukumizu, Teo., Song., Schoelkopf., and Smola, NIPS 2007,.

The Hilbert-Schmidt Independence Criterion

Writing the *i*th singular value of the feature covariance $C_{\varphi(x)\phi(y)}$ as

$$\gamma_i := COCO_i(P_{XY}; \mathcal{F}, \mathcal{G}),$$

define Hilbert-Schmidt Independence Criterion (HSIC)

$$HSIC^2(P_{XY};\mathcal{F},\mathcal{G}) = \sum_{i=1}^\infty \gamma_i^2.$$

G, Bousquet , Smola., and Schoelkopf, ALT05; G,., Fukumizu, Teo., Song., Schoelkopf., and Smola, NIPS 2007,.

HSIC is MMD with product kernel!

$$HSIC^2(P_{XY};\mathcal{F},\mathcal{G})=MMD^2(P_{XY},P_XP_Y;\mathcal{H}_\kappa)$$

where $\kappa((x,y),(x',y'))=k(x,x')l(y,y').$

■ Given sample {(x_i, y_i}ⁿ_{i=1} ^{i.i.d.} P_{XY}, what is empirical HSIC?
 ■ Empirical HSIC (biased)

$$\widehat{HSIC} = rac{1}{n^2} ext{trace}(\textit{KL})$$

 $K_{ij} = k(x_i, x_j)$ and $L_{ij} = l(y_i y_j)$ (K and L computed with empirically centered features)

Statistical testing: given P_{XY} = P_XP_Y, what is the threshold c_α such that P(HSIC > c_α) < α for small α?
 Asymptotics of HSIC when P_{XY} = P_XP_Y:

$$n\widehat{HSIC} \stackrel{D}{
ightarrow} \sum_{l=1}^{\infty} \lambda_l z_l^2, \qquad z_l \sim \mathcal{N}(0,1) ext{i.i.d.}$$

where $\lambda_l \psi_l(z_j) = \int h_{ijqr} \psi_l(z_i) dF_{i,q,r}, \quad h_{ijqr} = \frac{1}{4!} \sum_{\substack{(i,j,q,r) \\ (t,u,v,w)}}^{(i,j,q,r)} k_{tu} l_{tu} + k_{tu} l_{vw} - 2k_{tu} l_{tv}$

■ Given sample {(x_i, y_i}ⁿ_{i=1} ^{i.i.d.} P_{XY}, what is empirical HSIC?
 ■ Empirical HSIC (biased)

$$\widehat{HSIC} = rac{1}{n^2} ext{trace}(KL)$$

 $K_{ij} = k(x_i, x_j)$ and $L_{ij} = l(y_i y_j)$ (K and L computed with empirically centered features)

Statistical testing: given P_{XY} = P_XP_Y, what is the threshold c_α such that P(HSIC > c_α) < α for small α?
 Asymptotics of HSIC when P_{XY} = P_XP_Y:

$$n\widehat{HSIC} \stackrel{D}{
ightarrow} \sum_{l=1}^{\infty} \lambda_l z_l^2, \qquad z_l \sim \mathcal{N}(0,1) ext{i.i.d.}$$

where $\lambda_l \psi_l(z_j) = \int h_{ijqr} \psi_l(z_i) dF_{i,q,r}$, $h_{ijqr} = \frac{1}{4!} \sum_{\substack{(i,j,q,r) \\ (t,u,v,w)}}^{(i,j,q,r)} k_{tu} l_{tu} + k_{tu} l_{vw} - 2k_{tu} l_{tv}$

■ Given sample {(x_i, y_i}ⁿ_{i=1} ^{i.i.d.} P_{XY}, what is empirical HSIC?
 ■ Empirical HSIC (biased)

$$\widehat{HSIC} = rac{1}{n^2} ext{trace}(\textit{KL})$$

 $K_{ij} = k(x_i, x_j)$ and $L_{ij} = l(y_i y_j)$ (K and L computed with empirically centered features)

Statistical testing: given $P_{XY} = P_X P_Y$, what is the threshold c_{α} such that $P(\widehat{HSIC} > c_{\alpha}) < \alpha$ for small α ?

• Asymptotics of HSIC when $P_{XY} = P_X P_Y$:

$$n\widehat{HSIC} \stackrel{D}{
ightarrow} \sum_{l=1}^{\infty} \lambda_l z_l^2, \qquad z_l \sim \mathcal{N}(0,1) ext{i.i.d.}$$

where $\lambda_l \psi_l(z_j) = \int h_{ijqr} \psi_l(z_i) dF_{i,q,r}$, $h_{ijqr} = \frac{1}{4!} \sum_{\substack{(i,j,q,r) \\ (t,u,v,w)}}^{(i,j,q,r)} k_{tu} l_{tu} + k_{tu} l_{vw} - 2k_{tu} l_{tv}$

■ Given sample {(x_i, y_i}ⁿ_{i=1} ^{i.i.d.} P_{XY}, what is empirical HSIC?
 ■ Empirical HSIC (biased)

$$\widehat{HSIC} = rac{1}{n^2} ext{trace}(\textit{KL})$$

 $K_{ij} = k(x_i, x_j)$ and $L_{ij} = l(y_i y_j)$ (K and L computed with empirically centered features)

Statistical testing: given P_{XY} = P_XP_Y, what is the threshold c_α such that P(HSIC > c_α) < α for small α?
 Asymptotics of HSIC when P_{XY} = P_XP_Y:

$$n\widehat{HSIC} \stackrel{D}{
ightarrow} \sum_{l=1}^{\infty} \lambda_l z_l^2, \qquad z_l \sim \mathcal{N}(0,1) ext{i.i.d.}$$

where $\lambda_l \psi_l(z_j) = \int h_{ijqr} \psi_l(z_i) dF_{i,q,r}, \quad h_{ijqr} = \frac{1}{4!} \sum_{\substack{(i,j,q,r) \ (t,u,v,w)}}^{(i,j,q,r)} k_{tu} l_{tu} + k_{tu} l_{vw} - 2k_{tu} l_{tv}$

A statistical test

Given $P_{XY} = P_X P_Y$, what is the threshold c_{α} such that $P(\widehat{HSIC} > c_{\alpha}) < \alpha$ for small α (prob. of false positive)?

• Original time series:

 $X_1 \ X_2 \ X_3 \ X_4 \ X_5 \ X_6 \ X_7 \ X_8 \ X_9 \ X_{10}$ $Y_1 \ Y_2 \ Y_3 \ Y_4 \ Y_5 \ Y_6 \ Y_7 \ Y_8 \ Y_9 \ Y_{10}$

Permutation:

 $\begin{array}{c} X_1 \ X_2 \ X_3 \ X_4 \ X_5 \ X_6 \ X_7 \ X_8 \ X_9 \ X_{10} \\ Y_7 \ Y_3 \ Y_9 \ Y_2 \ Y_4 \ Y_8 \ Y_5 \ Y_1 \ Y_6 \ Y_{10} \end{array}$

Null distribution via permutation

- Compute HSIC for $\{x_i, y_{\pi(i)}\}_{i=1}^n$ for random permutation π of indices $\{1, \ldots, n\}$. This gives HSIC for independent variables.
- Repeat for many different permutations, get empirical CDF
- Threshold c_{α} is 1α quantile of empirical CDF

A statistical test

- Given $P_{XY} = P_X P_Y$, what is the threshold c_{α} such that $P(\widehat{HSIC} > c_{\alpha}) < \alpha$ for small α (prob. of false positive)?
- Original time series:

 $X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10}$ $Y_1 Y_2 Y_3 Y_4 Y_5 Y_6 Y_7 Y_8 Y_9 Y_{10}$

Permutation:

Null distribution via permutation

- Compute HSIC for $\{x_i, y_{\pi(i)}\}_{i=1}^n$ for random permutation π of indices $\{1, \ldots, n\}$. This gives HSIC for independent variables.
- Repeat for many different permutations, get empirical CDF
- Threshold c_{α} is 1α quantile of empirical CDF

A statistical test

Given $P_{XY} = P_X P_Y$, what is the threshold c_{α} such that $P(\widehat{HSIC} > c_{\alpha}) < \alpha$ for small α (prob. of false positive)?

• Original time series:

 $X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10}$ $Y_1 Y_2 Y_3 Y_4 Y_5 Y_6 Y_7 Y_8 Y_9 Y_{10}$

Permutation:

Null distribution via permutation

- Compute HSIC for $\{x_i, y_{\pi(i)}\}_{i=1}^n$ for random permutation π of indices $\{1, \ldots, n\}$. This gives HSIC for independent variables.
- Repeat for many different permutations, get empirical CDF
- Threshold c_{α} is 1α quantile of empirical CDF

Application: dependence detection across languages

Testing task: detect dependence between English and French text

Х	Υ		
Honourable senators, I have a question for the Leader of the Government in the Senate	Honorables sénateurs, ma question s'adresse au leader du gouvernement au Sénat		
No doubt there is great pressure on provincial and municipal governments	Les ordres de gouvernements provinciaux et municipaux subissent de fortes pressions		
In fact, we have increased federal investments for early childhood development.	Au contraire, nous avons augmenté le financement fédéral pour le développement des jeunes		
•	•		

Application: dependence detection across languages

Testing task: detect dependence between English and French text k-spectrum kernel, k = 10, sample size n = 10

Results (for $\alpha = 0.05$)

- k-spectrum kernel: average Type II error 0
- Bag of words kernel: average Type II error 0.18

Settings: Five line extracts, averaged over 300 repetitions, for "Agriculture" transcripts. Similar results for Fisheries and Immigration transcripts.

Testing higher order interactions

How to detect V-structures with pairwise weak individual dependence?

How to detect V-structures with pairwise weak individual dependence?

How to detect V-structures with pairwise weak individual dependence?

$X \perp\!\!\!\perp Y, Y \perp\!\!\!\perp Z, X \perp\!\!\!\perp Z$

X1 vs Z1

X1*Y1 vs Z1

V-structure discovery

Assume $X \perp \!\!\!\perp Y$ has been established.

V-structure can then be detected by:

Consistent CI test: H₀: X ⊥⊥ Y |Z [Fukumizu et al. 2008, Zhang et al. 2011]
 Factorisation test: H₀: (X, Y) ⊥⊥ Z ∨ (X, Z) ⊥⊥ Y ∨ (Y, Z) ⊥⊥ X (multiple standard two-variable tests)

How well do these work?

Generalise earlier example to p dimensions

$X \perp\!\!\!\perp Y, Y \perp\!\!\!\perp Z, X \perp\!\!\!\perp Z$

V-structure discovery

CI test for $X \perp | Y | Z$ from _{Zhang et al. (2011)}, and a factorisation test_{84/71} n = 500

Lancaster interaction measure of $(X_1, \ldots, X_D) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised non-trivially.

$$D=2:$$
 $\Delta_L P=P_{XY}-P_XP_Y$

Lancaster interaction measure of $(X_1, \ldots, X_D) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised non-trivially.

$$D=2: \qquad \Delta_L P = P_{XY} - P_X P_Y$$

D = 3: $\Delta_L P = P_{XYZ} - P_X P_{YZ} - P_Y P_{XZ} - P_Z P_{XY} + 2P_X P_Y P_Z$

Lancaster interaction measure of $(X_1, \ldots, X_D) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised non-trivially.

$$D = 2: \qquad \Delta_L P = P_{XY} - P_X P_Y$$

$$D = 3: \qquad \Delta_L P = P_{XYZ} - P_X P_{YZ} - P_Y P_{XZ} - P_Z P_{XY} + 2P_X P_Y P_Z$$

Lancaster interaction measure of $(X_1, \ldots, X_D) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised non-trivially.

$$D=2:$$
 $\Delta_L P=P_{XY}-P_XP_Y$

 $D = 3: \qquad \Delta_L P = P_{XYZ} - P_X P_{YZ} - P_Y P_{XZ} - P_Z P_{XY} + 2P_X P_Y P_Z$

Case of $P_X \perp \!\!\!\perp P_{YZ}$

Lancaster interaction measure of $(X_1, \ldots, X_D) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised non-trivially.

$$D = 2: \qquad \Delta_L P = P_{XY} - P_X P_Y$$

$$D = 3: \qquad \Delta_L P = P_{XYZ} - P_X P_{YZ} - P_Y P_{XZ} - P_Z P_{XY} + 2P_X P_Y P_Z$$

$$(X, Y) \perp Z \vee (X, Z) \perp Y \vee (Y, Z) \perp X \Rightarrow \Delta_L P = 0.$$

...so what might be missed?

Lancaster interaction measure of $(X_1, \ldots, X_D) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised non-trivially.

$$D = 2: \qquad \Delta_L P = P_{XY} - P_X P_Y$$

$$D = 3: \qquad \Delta_L P = P_{XYZ} - P_X P_{YZ} - P_Y P_{XZ} - P_Z P_{XY} + 2P_X P_Y P_Z$$

 $\Delta_L P = \mathbf{0} \not\Rightarrow (X, Y) \perp\!\!\!\perp Z \lor (X, Z) \perp\!\!\!\perp Y \lor (Y, Z) \perp\!\!\!\perp X$

Example:

P(0,0,0) = 0.2	P(0,0,1) = 0.1	P(1,0,0) = 0.1	P(1,0,1) = 0.1
P(0,1,0) = 0.1	P(0,1,1) = 0.1	P(1, 1, 0) = 0.1	P(1,1,1) = 0.2

Construct a test by estimating $\|\mu_{\kappa}(\Delta_L P)\|_{\mathcal{H}_{\kappa}}^2$, where $\kappa = \mathbf{k} \otimes \mathbf{l} \otimes \mathbf{m}$:

$$\|\mu_{\kappa}(P_{XYZ} - P_{XY}P_{Z} - \cdots)\|_{\mathcal{H}_{\kappa}}^{2} = \langle \mu_{\kappa}P_{XYZ}, \mu_{\kappa}P_{XYZ} \rangle_{\mathcal{H}_{\kappa}} - 2 \langle \mu_{\kappa}P_{XYZ}, \mu_{\kappa}P_{XY}P_{Z} \rangle_{\mathcal{H}_{\kappa}} \cdots$$

$\nu ackslash u'$	P _{XYZ}	PXYPz	P _{XZ} P _Y	P _{YZ} P _X	Ρ _Χ Ρ _Υ Ρ _Ζ
PXYZ	$(K \circ L \circ M)_{++}$	$\left(\left(K\circL ight)M ight)_{++}$	$((K \circ M)L)_{++}$	$\left(\left(M\circL ight)K ight)_{++}$	$\textit{tr}(K_{+} \circ L_{+} \circ M_{+})$
PXYPZ		$(K \circ L)_{++} M_{++}$	(MKL) ₊₊	(KLM) ₊₊	(KL)++M++
P _{XZ} P _Y			$(\mathbf{K} \circ \mathbf{M})_{++} \mathbf{L}_{++}$	(KML) ₊₊	(KM)++L++
P _{YZ} P _X				$(L \circ M)_{++} K_{++}$	(LM) ₊₊ K ₊₊
PxPyPz					$\kappa_{++} L_{++} M_{++}$

Table: V-statistic estimators of $\langle \mu_{\kappa}\nu, \mu_{\kappa}\nu' \rangle_{\mathcal{H}_{\kappa}}$ (without terms $P_X P_Y P_Z$). H is centering matrix $I - n^{-1}$

Lancaster interaction statistic: Sejdinovic, G, Bergsma, NIPS13

$$\left\|\mu_{\kappa}\left(\Delta_{L}P
ight)
ight\|_{\mathcal{H}_{\kappa}}^{2}=rac{1}{n^{2}}igg[\left(H\mathbf{K}H\circ H\mathbf{L}H\circ H\mathbf{M}H
ight)_{++}igg]$$

Empirical joint central moment in the feature space

$\nu ackslash u'$	P _{XYZ}	PXYPz	P _{XZ} P _Y	P _{YZ} P _X	P _X P _Y P _Z
PXYZ	$(K \circ L \circ M)_{++}$	$\left(\left(K\circL ight)M ight)_{++}$	$((K \circ M)L)_{++}$	$((M \circ L) K)_{++}$	$tr(K_+ \circ L_+ \circ M_+)$
PXYPZ		$(K \circ L)_{++} M_{++}$	(MKL) ₊₊	(KLM) ₊₊	(KL)++M++
P _{XZ} P _Y			$(\mathbf{K} \circ \mathbf{M})_{++} \mathbf{L}_{++}$	(KML) ₊₊	(KM)++L++
P _{YZ} P _X				$(L \circ M)_{++} K_{++}$	(LM) ₊₊ K ₊₊
PXPYPZ					$\kappa_{++} L_{++} M_{++}$

Table: V-statistic estimators of $\langle \mu_{\kappa}\nu, \mu_{\kappa}\nu' \rangle_{\mathcal{H}_{\kappa}}$ (without terms $P_X P_Y P_Z$). H is centering matrix $I - n^{-1}$

Lancaster interaction statistic: Sejdinovic, G, Bergsma, NIPS13

$$\left\|\mu_{\kappa}\left(\Delta_{L}P
ight)
ight\|_{\mathcal{H}_{\kappa}}^{2}=rac{1}{n^{2}}\overline{\left(H\mathbf{K}H\circ H\mathbf{L}H\circ H\mathbf{M}H
ight)_{++}}$$

Empirical joint central moment in the feature space

V-structure discovery

Lancaster test, CI test for $X \perp |Y|Z$ from $_{\text{Zhang et al. (2011)}}$, and a factorisation test, n = 500

68/71

Interaction for $D \ge 4$

■ Interaction measure valid for all *D*:

(Streitberg, 1990)

$$\Delta_S P = \sum_{\pi} (-1)^{|\pi|-1} \, (|\pi|-1)! \, J_{\pi} P$$

For a partition π, J_π associates to the joint the corresponding factorisation,
 e.g., J_{13|2|4}P = P_{X1X3}P_{X2}P_{X4}.

Interaction for $D \ge 4$

Interaction measure valid for all D:

(Streitberg, 1990)

$$\Delta_S P = \sum_{\pi} (-1)^{|\pi|-1} \, (|\pi|-1)! \, J_{\pi} P$$

For a partition π, J_π associates to the joint the corresponding factorisation,
 e.g., J_{13|2|4}P = P_{X1X3}P_{X2}P_{X4}.

Interaction for $D \ge 4$

Interaction measure valid for all D:

(Streitberg, 1990)

$$\Delta_S P = \sum_{\pi} (-1)^{|\pi|-1} \, (|\pi|-1)! J_{\pi} P$$

For a partition π, J_π associates to the joint the corresponding factorisation, e.g., J_{13|2|4}P = P_{X1X3}P_{X2}P_{X4}.

Co-authors

From Gatsby:

- Mikolaj Binkowski
- Kacper Chwialkowski
- Wittawat Jitkrittum
- Heiko Strathmann
- Dougal Sutherland
- 🛛 Wenkai Xu

External collaborators:

- Kenji Fukumizu
- Bernhard Schoelkopf
- Dino Sejdinovic
- Bharath Sriperumbudur
- Alex Smola
- Zoltan Szabo

Questions?

