Representing and comparing probabilities with kernels: Part 3

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

MLSS Madrid, 2018

Training GANs with MMD

What is a Generative Adversarial Network (GAN)?

- Generator (student)

- Task: critic must teach generator to draw images (here dogs)
- Critic (teacher)

What is a Generative Adversarial Network (GAN)?

What is a Generative Adversarial Network (GAN)?

What is a Generative Adversarial Network (GAN)?

Why is classification not enough?

Classification not enough! Need to compare sets

(otherwise student can just produce the same dog over and over)

MMD for GAN critic

Can you use MMD as a critic to train GANs?

From ICML 2015:

Generative Moment Matching Networks

Yujia Li ${ }^{1}$
Kevin Swersky ${ }^{1}$
Richard Zemel ${ }^{1,2}$
${ }^{1}$ Department of Computer Science, University of Toronto, Toronto, ON, CANADA
${ }^{2}$ Canadian Institute for Advanced Research, Toronto, ON, CANADA

YUJIALI@CS.TORONTO.EDU
KSWERSKY@CS.TORONTO.EDU
ZEMEL@CS.TORONTO.EDU

From UAI 2015:

Training generative neural networks via Maximum Mean Discrepancy optimization

University of Cambridge

Daniel M. Roy

University of Toronto

Zoubin Ghahramani

University of Cambridge

MMD for GAN critic

Can you use MMD as a critic to train GANs?

Need better image features.

How to improve the critic witness

■ Add convolutional features!

- The critic (teacher) also needs to be trained.

■ How to regularise?

MMD GAN Li et al., [NIPS 2017]
Coulomb GAN Unterthiner et al., [ICLR 2018]

WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017] WGAN-GP Gukrajani et al. [NIPS 2017]

WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017] WGAN-GP Gukrajani et al. [NIPS 2017]

Given a generator G_{θ} with parameters θ to be trained. Samples $Y \sim G_{\theta}(Z)$ where $Z \sim R$

Given critic features h_{ψ} with parameters ψ to be trained. f_{ψ} a linear function of h_{ψ}.

WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017]

WGAN-GP Gukrajani et al. [NIPS 2017]

- . 14 Given a generator G_{θ} with parameters θ to be trained. Samples $Y \sim G_{\theta}(Z)$ where $Z \sim R$

Given critic features h_{ψ} with parameters ψ to be trained. f_{ψ} a linear function of h_{ψ}.
WGAN-GP gradient penalty:

$$
\max _{\psi} \mathbf{E}_{X \sim P} f_{\psi}(X)-\mathbf{E}_{Z \sim R} f_{\psi}\left(G_{\theta}(Z)\right)+\lambda \mathbf{E}_{\tilde{X}}\left(\left\|\nabla_{\tilde{X}} f_{\theta}(\widetilde{X})\right\|-1\right)^{2}
$$

where

$$
\begin{aligned}
\widetilde{X} & =\gamma x_{i}+(1-\gamma) G_{\psi}\left(z_{j}\right) \\
\gamma & \sim \mathcal{U}([0,1]) \quad x_{i} \in\left\{x_{\ell}\right\}_{\ell=1}^{m} \quad z_{j} \in\left\{z_{\ell}\right\}_{\ell=1}^{n}
\end{aligned}
$$

The (W)MMD

Train MMD critic features with the witness function gradient penalty Binkowski, Sutherland, Arbel, G. [ICLR 2018], Bellemare et al. [2017] for energy distance:

$$
\max _{\psi} M M D^{2}\left(h_{\psi}(X), h_{\psi}\left(G_{\theta}(Z)\right)\right)+\lambda \mathbf{E}_{\widetilde{X}}\left(\left\|\nabla_{\widetilde{X}} f_{\psi}(\widetilde{X})\right\|-1\right)^{2}
$$

where

$$
\begin{aligned}
& \begin{array}{c}
f_{\psi}(\cdot)=\frac{1}{m} \sum_{i=1}^{m} k\left(h_{\psi}\left(x_{i}\right), \cdot\right)-\frac{1}{n} \sum_{j=1}^{n} k\left(h_{\psi}\left(G_{\theta}\left(z_{j}\right)\right), \cdot\right) \\
\text { New }
\end{array} \\
& \widetilde{X}=\gamma x_{i}+(1-\gamma) G_{\psi}\left(z_{j}\right) \\
& \gamma \sim \mathcal{U}([0,1]) \quad x_{i} \in\left\{x_{\ell}\right\}_{\ell=1}^{m} \quad z_{j} \in\left\{z_{\ell}\right\}_{\ell=1}^{n}
\end{aligned}
$$

Remark by Bottou et al. (2017): gradient penalty modifies the function class. So crit $8 /$ /\$ 1 not an MMD in RKHS \mathcal{F}.

MMD for GAN critic: revisited

From ICLR 2018:

DEMYSTIFYING MMD GANS

Mikołaj Bińkowski*
Department of Mathematics
Imperial College London
mikbinkowski@gmail.com
Dougal J. Sutherland, Michael Arbel \& Arthur Gretton
Gatsby Computational Neuroscience Unit
University College London
\{dougal,michael.n.arbel, arthur.gretton\}@gmail.com

MMD for GAN critic: revisited

Samples are better!

MMD for GAN critic: revisited

Samples are better!
Can we do better still?

Convergence issues for WGAN-GP penalty

WGAN-GP style gradient penalty may not converge near solution
Nagarajan and Kolter [NIPS 2017], Mescheder et al. [ICML 2018], Balduzzi et al. [ICML 2018]
The Dirac-GAN

$$
P=\delta_{0} \quad Q=\delta_{\theta} \quad f_{\psi}(x)=\psi \cdot x
$$

Convergence issues for WGAN-GP penalty

WGAN-GP style gradient penalty may not converge near solution
Nagarajan and Kolter [NIPS 2017], Mescheder et al. [ICML 2018], Balduzzi et al. [ICML 2018]
The Dirac-GAN

$$
P=\delta_{0} \quad Q=\delta_{\theta} \quad f_{\psi}(x)=\psi \cdot x
$$

A better gradient penalty

■ New MMD GAN witness regulariser (just accepted, NIPS 2018) Arbel, Sutherland, Binkowski, G. [NIPS 2018]
■ Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]

- Related to Sobolev GAN Mroueh et al. [ICLR 2018]

```
arXiv.org > stat > arXiv.1805.11565
    Statistics > Machine Learning
    On gradient regularizers for MMD GANs
    Michael Arbel, Dougal J. Sutherland, Mikołaj Bińkowski, Arthur Gretton
    (Submitted on 29 May 2018)
```


A better gradient penalty

■ New MMD GAN witness regulariser (just accepted, NIPS 2018)
Arbel, Sutherland, Binkowski, G. [NIPS 2018]
■ Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
■ Related to Sobolev GAN Mroueh et al. [ICLR 2018]

A better gradient penalty

■ New MMD GAN witness regulariser (just accepted, NIPS 2018)

Arbel, Sutherland, Binkowski, G. [NIPS 2018]

■ Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
■ Related to Sobolev GAN Mroueh et al. [ICLR 2018]
Modified witness function:

$$
\widetilde{M M D}:=\sup _{\|f\|_{S} \leq 1}\left[\mathbb{E}_{P} f(X)-\mathbb{E}_{Q} f(Y)\right]
$$

where

$$
\begin{aligned}
\|f\|_{S}^{2} & =\|f\|_{L_{2}(P)}^{2}+\|\nabla f\|_{L_{2}(P)}^{2}+\lambda\|f\|_{k}^{2} \\
& \begin{array}{c}
L_{2} \text { norm } \\
\text { control }
\end{array} \\
\begin{array}{c}
\text { Gradient } \\
\text { control }
\end{array} & \begin{array}{c}
\text { RKHS } \\
\text { smoothness }
\end{array}
\end{aligned}
$$

A better gradient penalty

■ New MMD GAN witness regulariser (just accepted, NIPS 2018)

Arbel, Sutherland, Binkowski, G. [NIPS 2018]

■ Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
■ Related to Sobolev GAN Mroueh et al. [ICLR 2018]
Modified witness function:

$$
\widetilde{M M D}:=\sup _{\|f\|_{S} \leq 1}\left[\mathbb{E}_{P} f(X)-\mathbb{E}_{Q} f(Y)\right]
$$

where

$$
\begin{aligned}
\|f\|_{S}^{2}= & \|f\|_{L_{2}(P)}^{2}+\|\nabla f\|_{L_{2}(P)}^{2}+\lambda\|f\|_{k}^{2} \\
& \begin{array}{c}
\mathrm{L}_{2} \text { norm } \\
\text { control }
\end{array} \\
\begin{array}{c}
\text { Gradient } \\
\text { control }
\end{array} & \begin{array}{c}
\text { RKHS } \\
\text { smoothness }
\end{array}
\end{aligned}
$$

Problem: not computationally feasible: $O\left(n^{3}\right)$ per iteration.

A better gradient penalty

■ New MMD GAN witness regulariser (just accepted, NIPS 2018)

Arbel, Sutherland, Binkowski, G. [NIPS 2018]

■ Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
■ Related to Sobolev GAN Mroueh et al. [ICLR 2018]
The scaled MMD:

$$
S M M D=\sigma_{k, P, \lambda} M M D
$$

where

$$
\sigma_{k, P, \lambda}=\left(\lambda+\int k(x, x) d P(x)+\sum_{i=1}^{d} \int \partial_{i} \partial_{i+d} k(x, x) d P(x)\right)^{-1 / 2}
$$

Replace expensive constraint with cheap upper bound:

$$
\|f\|_{S}^{2} \leq \sigma_{k, P, \lambda}^{-1}\|f\|_{k}^{2}
$$

A better gradient penalty

■ New MMD GAN witness regulariser (just accepted, NIPS 2018)

Arbel, Sutherland, Binkowski, G. [NIPS 2018]

■ Based on semi-supervised learning regulariser Bousquet et al. [NIPS 2004]
■ Related to Sobolev GAN Mroueh et al. [ICLR 2018]
The scaled MMD:

$$
S M M D=\sigma_{k, P, \lambda} M M D
$$

where

$$
\sigma_{k, P, \lambda}=\left(\lambda+\int k(x, x) d P(x)+\sum_{i=1}^{d} \int \partial_{i} \partial_{i+d} k(x, x) d P(x)\right)^{-1 / 2}
$$

Replace expensive constraint with cheap upper bound:

$$
\|f\|_{S}^{2} \leq \sigma_{k, P, \lambda}^{-1}\|f\|_{k}^{2}
$$

Idea: rather than regularise the critic or witness function, regularise features directly

Evaluation and experiments

Evaluation of GANs

The inception score? Salimans et al. [NIPS 2016]
Based on the classification output $p(y \mid x)$ of the inception model szegedy et al. [ICLR 2014],

$$
E_{X} \exp K L(P(y \mid X) \| P(y))
$$

High when:

- predictive label distribution $P(y \mid x)$ has low entropy (good quality images)
■ label entropy $P(y)$ is high (good variety).

Evaluation of GANs

The inception score? Salimans et al. [NIPS 2016]
Based on the classification output $p(y \mid x)$ of the inception model szegedy
et al. [ICLR 2014],

$$
E_{X} \exp K L(P(y \mid X) \| P(y))
$$

High when:

- predictive label distribution $P(y \mid x)$ has low entropy (good quality images)
■ label entropy $P(y)$ is high (good variety).

Problem: relies on a trained classifier! Can't be used on new categories (celeb, bedroom...)

Evaluation of GANs

The Frechet inception distance? Heusel et al. [NiPs 2017]
Fits Gaussians to features in the inception architecture (pool3 layer):

$$
F I D(P, Q)=\left\|\mu_{P}-\mu_{Q}\right\|^{2}+\operatorname{tr}\left(\Sigma_{P}\right)+\operatorname{tr}\left(\Sigma_{Q}\right)-2 \operatorname{tr}\left(\left(\Sigma_{P} \Sigma_{Q}\right)^{\frac{1}{2}}\right)
$$

where μ_{P} and Σ_{P} are the feature mean and covariance of P

Evaluation of GANs

The Frechet inception distance? Heusel et al. [NIPS 2017]
Fits Gaussians to features in the inception architecture (pool3 layer):

$$
F I D(P, Q)=\left\|\mu_{P}-\mu_{Q}\right\|^{2}+\operatorname{tr}\left(\Sigma_{P}\right)+\operatorname{tr}\left(\Sigma_{Q}\right)-2 \operatorname{tr}\left(\left(\Sigma_{P} \Sigma_{Q}\right)^{\frac{1}{2}}\right)
$$

where μ_{P} and Σ_{P} are the feature mean and covariance of P

Problem: bias. For finite samples can consistently give incorrect answer.

- Bias demo, CIFAR-10 train vs test

Evaluation of GANs

The FID can give the wrong answer in theory.
Assume m samples from P and $n \rightarrow \infty$ samples from Q.
Given two alternatives:

$$
P_{1} \sim \mathcal{N}\left(0,\left(1-m^{-1}\right)^{2}\right) \quad P_{2} \sim \mathcal{N}(0,1) \quad Q \sim \mathcal{N}(0,1) .
$$

Clearly,

$$
\operatorname{FID}\left(P_{1}, Q\right)=\frac{1}{m^{2}}>\operatorname{FID}\left(P_{2}, Q\right)=0
$$

Given m samples from P_{1} and P_{2},

$$
F I D\left(\widehat{P_{1}}, Q\right)<F I D\left(\widehat{P_{2}}, Q\right)
$$

Evaluation of GANs

The FID can give the wrong answer in theory.
Assume m samples from P and $n \rightarrow \infty$ samples from Q.
Given two alternatives:

$$
P_{1} \sim \mathcal{N}\left(0,\left(1-m^{-1}\right)^{2}\right) \quad P_{2} \sim \mathcal{N}(0,1) \quad Q \sim \mathcal{N}(0,1) .
$$

Clearly,

Given m samples from P_{1} and P_{2},
$F I D\left(\widehat{P_{1}}, Q\right)<\operatorname{FID}\left(\widehat{P_{2}}, Q\right)$.

Evaluation of GANs

The FID can give the wrong answer in theory.
Assume m samples from P and $n \rightarrow \infty$ samples from Q.
Given two alternatives:

$$
P_{1} \sim \mathcal{N}\left(0,\left(1-m^{-1}\right)^{2}\right) \quad P_{2} \sim \mathcal{N}(0,1) \quad Q \sim \mathcal{N}(0,1) .
$$

Clearly,

$$
\operatorname{FID}\left(P_{1}, Q\right)=\frac{1}{m^{2}}>\operatorname{FID}\left(P_{2}, Q\right)=0
$$

Given m samples from P_{1} and P_{2},
$\operatorname{FID}\left(\widehat{P_{1}}, Q\right)<\operatorname{FID}\left(\widehat{P_{2}}, Q\right)$.

Evaluation of GANs

The FID can give the wrong answer in theory.
Assume m samples from P and $n \rightarrow \infty$ samples from Q.
Given two alternatives:

$$
P_{1} \sim \mathcal{N}\left(0,\left(1-m^{-1}\right)^{2}\right) \quad P_{2} \sim \mathcal{N}(0,1) \quad Q \sim \mathcal{N}(0,1) .
$$

Clearly,

$$
\operatorname{FID}\left(P_{1}, Q\right)=\frac{1}{m^{2}}>\operatorname{FID}\left(P_{2}, Q\right)=0
$$

Given m samples from P_{1} and P_{2},

$$
F I D\left(\widehat{P_{1}}, Q\right)<F I D\left(\widehat{P_{2}}, Q\right)
$$

Evaluation of GANs

The FID can give the wrong answer in practice.
Let $d=2048$, and define
$P_{1}=\operatorname{relu}\left(\mathcal{N}\left(0, I_{d}\right)\right) \quad P_{2}=\operatorname{relu}\left(\mathcal{N}\left(1, .8 \Sigma+.2 I_{d}\right)\right) \quad Q=\operatorname{relu}\left(\mathcal{N}\left(1, I_{d}\right)\right)$
where $\Sigma=\frac{4}{d} C C^{T}$, with C a $d \times d$ matrix with iid standard normal
entries.
For a random draw of C :

$$
F I D\left(P_{1}, Q\right) \approx 1123.0>1114.8 \approx F I D\left(P_{2}, Q\right)
$$

With $m=50000$ samples,

$$
F I D\left(\widehat{P_{1}}, Q\right) \approx 1133.7<1136.2 \approx F I D\left(\widehat{P_{2}}, Q\right)
$$

At $m=100000$ samples, the ordering of the estimates is correct.

Evaluation of GANs

The FID can give the wrong answer in practice.
Let $d=2048$, and define
$P_{1}=\operatorname{relu}\left(\mathcal{N}\left(0, I_{d}\right)\right) \quad P_{2}=\operatorname{relu}\left(\mathcal{N}\left(1, .8 \Sigma+.2 I_{d}\right)\right) \quad Q=\operatorname{relu}\left(\mathcal{N}\left(1, I_{d}\right)\right)$
where $\Sigma=\frac{4}{d} C C^{T}$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C :

With $m=50000$ samples,

Evaluation of GANs

The FID can give the wrong answer in practice.
Let $d=2048$, and define
$P_{1}=\operatorname{relu}\left(\mathcal{N}\left(0, I_{d}\right)\right) \quad P_{2}=\operatorname{relu}\left(\mathcal{N}\left(1, .8 \Sigma+.2 I_{d}\right)\right) \quad Q=\operatorname{relu}\left(\mathcal{N}\left(1, I_{d}\right)\right)$
where $\Sigma=\frac{4}{d} C C^{T}$, with C a $d \times d$ matrix with iid standard normal entries.
For a random draw of C :

$$
F I D\left(P_{1}, Q\right) \approx 1123.0>1114.8 \approx F I D\left(P_{2}, Q\right)
$$

With $m=50000$ samples,

$$
F I D\left(\widehat{P_{1}}, Q\right) \approx 1133.7<1136.2 \approx F I D\left(\widehat{P_{2}}, Q\right)
$$

Evaluation of GANs

The FID can give the wrong answer in practice.
Let $d=2048$, and define
$P_{1}=\operatorname{relu}\left(\mathcal{N}\left(0, I_{d}\right)\right) \quad P_{2}=\operatorname{relu}\left(\mathcal{N}\left(1, .8 \Sigma+.2 I_{d}\right)\right) \quad Q=\operatorname{relu}\left(\mathcal{N}\left(1, I_{d}\right)\right)$ where $\Sigma=\frac{4}{d} C C^{T}$, with C a $d \times d$ matrix with iid standard normal entries.
For a random draw of C :

$$
F I D\left(P_{1}, Q\right) \approx 1123.0>1114.8 \approx F I D\left(P_{2}, Q\right)
$$

With $m=50000$ samples,

$$
F I D\left(\widehat{P_{1}}, Q\right) \approx 1133.7<1136.2 \approx F I D\left(\widehat{P_{2}}, Q\right)
$$

At $m=100000$ samples, the ordering of the estimates is correct. This behavior is similar for other random draws of C.

The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer) MMD with kernel

$$
k(x, y)=\left(\frac{1}{d} x^{\top} y+1\right)^{3}
$$

- Checks match for feature means, variances, skewness
■ Unbiased: eg CIFAR-10 train/test

The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]
Measures similarity of the samples' representations in the inception architecture (pool3 layer)
MMD with kernel

$$
k(x, y)=\left(\frac{1}{d} x^{\top} y+1\right)^{3}
$$

- Checks match for feature means, variances, skewness
■ Unbiased : eg CIFAR-10 train/test

..."but isn't KID is computationally costly?"

The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer)
MMD with kernel

$$
k(x, y)=\left(\frac{1}{d} x^{\top} y+1\right)^{3} .
$$

- Checks match for feature means, variances, skewness

■ Unbiased : eg CIFAR-10 train/test

..."but isn't KID is computationally costly?"
"Block" KID implementation is cheaper than FID: see paper (or use Tensorflow implementation)!

The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]
Measures similarity of the samples' representations in the inception architecture (pool3 layer)
MMD with kernel

$$
k(x, y)=\left(\frac{1}{d} x^{\top} y+1\right)^{3} .
$$

- Checks match for feature means, variances, skewness

■ Unbiased : eg CIFAR-10 train/test

Also used for automatic learning rate adjustment: if $K I D\left(\widehat{P}_{t+1}, Q\right)$ not significantly better than $K I D\left(\widehat{P}_{t}, Q\right)$ then reduce learning rate.
[Bounliphone et al. ICLR 2016]

Related: "An empirical study on evaluation metrics of generative adversarial networks", Xu et al. $\mathbf{1 7} / \mathbf{7} \mathbf{7 1}$, June 2018]

Benchmarks for comparison (all from ICLR 2018)

Spectral Normalization
 for Generative Adversarial Networks

BOUNDARY-SEEKING
Generative Adversarial Networks

R Devon Hjelm*
MILA, University of Montréal, IVADO erroneus?gmail.com

Tong Che

MILA, University of Montróal
tong, che?umontreal.ca

Kyunghyun Cho
New York University,
CIFAR Azrieli Global Scholar
kyunghyun.chognyu.edu

Athul Paul Jacob ${ }^{-}$
MILA, MSR, University of Waterloo
apjacob?edu. uxaterloo.ca

Adam Trischler

MSR
adam.trischleramicrosoft.com

Yoshua Bengio
MILA, University of Montréal, CIFAR, IVADO
yoshua.bengioßumont real.ca

Results: what does MMD buy you?

- Critic features from DCGAN: an f-filter critic has $f, 2 f, 4 f$ and $8 f$ convolutional filters in layers $1-4$. LSUN 64×64.

MMD GAN samples, $f=64$, $\mathrm{FID}=32, \mathrm{KID}=3$

WGAN samples, $f=64$, $\mathrm{FID}=41, \mathrm{KID}=4$

Results: what does MMD buy you?

- Critic features from DCGAN: an f-filter critic has $f, 2 f, 4 f$ and $8 f$ convolutional filters in layers $1-4$. LSUN 64×64.

MMD GAN samples, $f=16$, FID $=86, \mathrm{KID}=9$

WGAN samples, $f=16$, $f=64, \mathrm{FID}=293, \mathrm{KID}=39{ }^{19}$

The kernel inception distance (KID)

Faster training: performance scores vs generator iterations on MNIST

Results: celebrity faces 160×160

KID (FID)

scores:

■ Sobolev GAN:

$$
14 \text { (20) }
$$

- SN-GAN:

18 (28)
■ Old MMD GAN:
13 (21)

- SMMD GAN:

6 (12)
202599 face images, resized and cropped to 160 $\times 160$

Results: imagenet 64×64

KID (FID)

scores:

- BGAN: 47 (44)
- SN-GAN:

$$
44 \text { (48) }
$$

■ SMMD GAN:

$$
35 \text { (37) }
$$

ILSVRC2012 (ImageNet) dataset, 1281167 images, resized to 64×64. Around 20000 classes.

Results: imagenet 64×64

KID (FID)

scores:

- BGAN:

$$
47 \text { (44) }
$$

- SN-GAN:

44 (48)

- SMMD GAN: 35 (37)

ILSVRC2012 (ImageNet) dataset, 1281167 images, resized to 64×64. Around 20000 classes.

Results: imagenet 64×64

KID (FID)
 scores:

- BGAN:

47 (44)

- SN-GAN:

$$
44 \text { (48) }
$$

- SMMD GAN: 35 (37)

ILSVRC2012 (ImageNet) dataset, 1281167 images, resized to 64×64. Around 20000 classes.

Summary

■ MMD critic gives state-of-the-art performance for GAN training (FID and KID)

- use convolutional input features
- train with new gradient regulariser

■ Faster training, simpler critic network
■ Reasons for good performance:

- Unlike WGAN-GP, MMD loss still a valid critic when features not optimal
- Kernel features do some of the "work", so simpler h_{ψ} features possible.
- Better gradient/feature regulariser gives better critic

Code for "Demystifying MMD GANs," ICLR 2018, including KID score: https://github.com/mbinkowski/MMD-GAN
Code for new SMMD:
https://github.com/MichaelArbel/Scaled-MMD-GAN

Testing against a probabilistic model

Statistical model criticism

$f^{*}(x)$ is the witness function
Can we compute MMD with samples from Q and a model P ?
Problem: usualy can't compute $E_{p} f$ in closed form.

Stein idea

To get rid of $E_{p} f$ in

$$
\sup _{\|f\|_{\mathcal{F} \leq 1}}\left[E_{q} f-E_{p} f\right]
$$

we define the Stein operator

$$
\left[T_{p} f\right](x)=\frac{1}{p(x)} \frac{d}{d x}(f(x) p(x))
$$

Then

$$
E_{P} T_{P} f=0
$$

subject to appropriate boundary conditions. (Oates, Girolami, Chopin, 2016)

Stein idea: proof

$$
\begin{aligned}
E_{p}\left[T_{p} f\right] & =\int\left[\frac{1}{p(x)} \frac{d}{d x}(f(x) p(x))\right] p(x) d x \\
& \int\left[\frac{d}{d x}(f(x) p(x))\right] d x \\
& =[f(x) p(x)]_{-\infty}^{\infty}
\end{aligned}
$$

Stein idea: proof

$$
E_{p}\left[T_{p} f\right]=\int\left[\frac{1}{p(x)} \frac{d}{d x}(f(x) p(x))\right] p(x) d x
$$

Stein idea: proof

$$
\begin{gathered}
E_{p}\left[T_{p} f\right]=\int\left[\frac{1}{p(x)} \frac{d}{d x}(f(x) p(x))\right] p(x) d x \\
\int\left[\frac{d}{d x}(f(x) p(x))\right] d x
\end{gathered}
$$

Stein idea: proof

$$
\begin{aligned}
E_{p}\left[T_{p} f\right] & =\int\left[\frac{1}{p(x)} \frac{d}{d x}(f(x) p(x))\right] p(x) d x \\
& \int\left[\frac{d}{d x}(f(x) p(x))\right] d x \\
& =[f(x) p(x)]_{-\infty}^{\infty}
\end{aligned}
$$

Stein idea: proof

$$
\begin{aligned}
E_{p}\left[T_{p} f\right] & =\int\left[\frac{1}{p(x)} \frac{d}{d x}(f(x) p(x))\right] p(x) d x \\
& \int\left[\frac{d}{d x}(f(x) p(x))\right] d x \\
& =[f(x) p(x)]_{-\infty}^{\infty} \\
& =0
\end{aligned}
$$

Kernel Stein Discrepancy Stein operator
 $$
T_{p} f=\frac{1}{p(x)} \frac{d}{d x}(f(x) p(x))
$$

Kernel Stein Discrepancy (KSD)

$$
K S D(p, q, \mathcal{F})=\sup _{\|g\|_{\mathcal{F} \leq 1}} E_{q} T_{p} g-E_{p} T_{p} g
$$

Kernel Stein Discrepancy

Stein operator

$$
T_{p} f=\frac{1}{p(x)} \frac{d}{d x}(f(x) p(x))
$$

Kernel Stein Discrepancy (KSD)

$$
K S D(p, q, \mathcal{F})=\sup _{\|g\|_{\mathcal{F} \leq 1}} E_{q} T_{p} g-E_{p} T_{p g}=\sup _{\|g\|_{\mathcal{F}} \leq 1} E_{q} T_{p} g
$$

Kernel Stein Discrepancy

Stein operator

$$
T_{p} f=\frac{1}{p(x)} \frac{d}{d x}(f(x) p(x))
$$

Kernel Stein Discrepancy (KSD)

$$
K S D(p, q, \mathcal{F})=\sup _{\|g\|_{\mathcal{F} \leq 1}} E_{q} T_{p} g-E_{p} T_{p g}=\sup _{\|g\|_{\mathcal{F}} \leq 1} E_{q} T_{p} g
$$

Kernel Stein Discrepancy

Stein operator

$$
T_{p} f=\frac{1}{p(x)} \frac{d}{d x}(f(x) p(x))
$$

Kernel Stein Discrepancy (KSD)

$$
K S D(p, q, \mathcal{F})=\sup _{\|g\|_{\mathcal{F}} \leq 1} E_{q} T_{p} g-E_{p} T_{p g}=\sup _{\|g\|_{\mathcal{F}} \leq 1} E_{q} T_{p} g
$$

Kernel stein discrepancy

Closed-form expression for KSD: given $Z, Z^{\prime} \sim q$, then (Chwialkowski, Strathmann, G., ICML 2016) (Liu, Lee, Jordan ICML 2016)

$$
\operatorname{KSD}(p, q, \mathcal{F})=E_{q} h_{p}\left(Z, Z^{\prime}\right)
$$

where

$$
\begin{aligned}
h_{p}(x, y) & :=\partial_{x} \log p(x) \partial_{x} \log p(y) k(x, y) \\
& +\partial_{y} \log p(y) \partial_{x} k(x, y) \\
& +\partial_{x} \log p(x) \partial_{y} k(x, y) \\
& +\partial_{x} \partial_{y} k(x, y)
\end{aligned}
$$

and k is RKHS kernel for \mathcal{F}
Only depends on kernel and $\partial_{x} \log p(x)$. Do not need to normalize p, or sample from it.

Statistical model criticism

Chicago crime data

Statistical model criticism

Chicago crime data
Model is Gaussian mixture with two components.

Statistical model criticism

Chicago crime data
Model is Gaussian mixture with two components Stein witness function

Statistical model criticism

Chicago crime data
Model is Gaussian mixture with ten components.

Statistical model criticism

Chicago crime data

Model is Gaussian mixture with ten components Stein witness function
Code: https://github.com/karlnapf/kernel_goodness_of_fit

Kernel stein discrepancy

Further applications:

- Evaluation of approximate MCMC methods.
(Chwialkowski, Strathmann, G., ICML 2016; Gorham, Mackey, ICML 2017)

What kernel to use?

■ The inverse multiquadric kernel,

$$
k(x, y)=\left(c+\|x-y\|_{2}^{2}\right)^{\beta}
$$

for $\beta \in(-1,0)$.

```
arXiv.org > stat > arXiv:1703.01717
Statistics > Machine Learning
Measuring Sample Quality with Kernels
Jackson Gorham, Lester Mackey
ICML 2017
(Submitted on 6 Mar 2017 (v1), last revised 3 Aug 2017 (this version, v6))
```


Testing statistical dependence

Dependence testing

■ Given: Samples from a distribution $P_{X Y}$
\square Goal: Are X and Y independent?

MMD as a dependence measure?

Could we use MMD?

$$
M M D(\underbrace{P_{X Y}}_{P}, \underbrace{P_{X} P_{Y}}_{Q}, \mathcal{H}_{K})
$$

We don't have samples from $Q:=P_{X} P_{Y}$, only pairs

- Solution: simulate Q with pairs $\left(x_{i}, y_{j}\right)$ for $j \neq i$.

What kernel κ to use for the RKHS \mathcal{H}_{κ} ?

MMD as a dependence measure?

Could we use MMD?

$$
M M D(\underbrace{P_{X Y}}_{P}, \underbrace{P_{X} P_{Y}}_{Q}, \mathcal{H}_{\kappa})
$$

■ We don't have samples from $Q:=P_{X} P_{Y}$, only pairs $\left\{\left(x_{i}, y_{i}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P_{X Y}\right.$

- Solution: simulate Q with pairs $\left(x_{i}, y_{j}\right)$ for $j \neq i$.

$$
\text { What kernel } \kappa \text { to use for the RKHS } \mathcal{H}_{\kappa} \text { ? }
$$

MMD as a dependence measure?

Could we use MMD?

$$
M M D(\underbrace{P_{X Y}}_{P}, \underbrace{P_{X} P_{Y}}_{Q}, \mathcal{H}_{\kappa})
$$

■ We don't have samples from $Q:=P_{X} P_{Y}$, only pairs $\left\{\left(x_{i}, y_{i}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P_{X Y}\right.$

- Solution: simulate Q with pairs $\left(x_{i}, y_{j}\right)$ for $j \neq i$.

■ What kernel κ to use for the RKHS \mathcal{H}_{κ} ?

MMD as a dependence measure

Kernel k on images with feature space \mathcal{F},

$$
K(F, j)
$$

Kernel l on captions with feature space \mathcal{G},

MMD as a dependence measure

Kernel k on images with feature space \mathcal{F},

Kernel l on captions with feature space \mathcal{G},

Kernel κ on image-text pairs: are images and captions similar?

$$
=k(\pi, \pi) \times l(\approx, \equiv)
$$

MMD as a dependence measure

- Given: Samples from a distribution $P_{X Y}$
- Goal: Are X and Y independent?

$$
\begin{aligned}
& M M D^{2}\left(\widehat{P}_{X Y}, \widehat{P}_{X} \widehat{P}_{Y}, \mathcal{H}_{\kappa}\right):=\frac{1}{n^{2}} \operatorname{trace}(K L) \\
& (\mathrm{K}, \text { L column centered })
\end{aligned}
$$

MMD as a dependence measure

■ Given: Samples from a distribution $P_{X Y}$
■ Goal: Are X and Y independent?

$$
M M D^{2}\left(\widehat{P}_{X Y}, \widehat{P}_{X} \widehat{P}_{Y}, \mathcal{H}_{\kappa}\right):=\frac{1}{n^{2}} \operatorname{trace}(K L)
$$

MMD as a dependence measure

Two questions:
■ Why the product kernel? Many ways to combine kernels - why not eg a sum?

- Is there a more interpretable way of defining this dependence measure?

Illustration: dependence \neq correlation

■ Given: Samples from a distribution $P_{X Y}$

- Goal: Are X and Y dependent?

Illustration: dependence \neq correlation

■ Given: Samples from a distribution $P_{X Y}$

- Goal: Are X and Y dependent?

Correlation: 0.07

Illustration: dependence \neq correlation

- Given: Samples from a distribution $P_{X Y}$
- Goal: Are X and Y dependent?

Finding covariance with smooth transformations

Illustration: two variables with no correlation but strong dependence.

Finding covariance with smooth transformations

Illustration: two variables with no correlation but strong dependence.

Finding covariance with smooth transformations

Illustration: two variables with no correlation but strong dependence.

Define two spaces, one for each witness

Function in \mathcal{F}

$$
f(x)=\sum_{j=1}^{\infty} f_{j} \varphi_{j}(x)
$$

Feature map

$\varphi(x)=$	$\left[\varphi_{1}(x) \bigcap \bigcap\right.$
	${ }^{\varphi_{2}(x)}$ ¢
	$\varphi_{3}(x)$

Kernel for RKHS \mathcal{F} on \mathcal{X} :

$$
k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{\mathcal{F}}
$$

Function in \mathcal{G}

$$
g(y)=\sum_{j=1}^{\infty} g_{j} \phi_{j}(y)
$$

Feature map

Kernel for RKHS \mathcal{G} on \mathcal{Y} :

$$
l\left(x, x^{\prime}\right)=\left\langle\phi(y), \phi\left(y^{\prime}\right)\right\rangle_{\mathcal{G}}
$$

The constrained covariance

The constrained covariance is

$$
\operatorname{COCO}\left(P_{X Y}\right)=\sup ^{\|f\|_{\mathcal{F}} \leq 1} \operatorname{cov}[f(x) g(y)]
$$

The constrained covariance

The constrained covariance is

$$
\operatorname{COCO}\left(P_{X Y}\right)=\sup _{\substack{\|f\|_{\mathcal{F}} \leq 1 \\\|g\|_{\mathcal{G}} \leq 1}} \operatorname{cov}\left[\left(\sum_{j=1}^{\infty} f_{j} \varphi_{j}(x)\right)\left(\sum_{j=1}^{\infty} g_{j} \phi_{j}(y)\right)\right]
$$

The constrained covariance

The constrained covariance is

$$
\operatorname{COCO}\left(P_{X Y}\right)=\sup _{\substack{\|f\|_{\mathcal{F}} \leq 1 \\\|g\|_{\mathcal{G}} \leq 1}} E_{x y}\left[\left(\sum_{j=1}^{\infty} f_{j} \varphi_{j}(x)\right)\left(\sum_{j=1}^{\infty} g_{j} \phi_{j}(y)\right)\right]
$$

Fine print: feature mappings $\varphi(x)$ and $\phi(y)$ assumed to have zero mean.

The constrained covariance

The constrained covariance is

$$
\operatorname{COCO}\left(P_{X Y}\right)=\sup _{\substack{\|f\|_{\mathcal{F}} \leq 1 \\\|g\|_{\mathcal{G}} \leq 1}} E_{x y}\left[\left(\sum_{j=1}^{\infty} f_{j} \varphi_{j}(x)\right)\left(\sum_{j=1}^{\infty} g_{j} \phi_{j}(y)\right)\right]
$$

Fine print: feature mappings $\varphi(x)$ and $\phi(y)$ assumed to have zero mean. Rewriting:

$$
\begin{aligned}
& E_{x y}[f(x) g(y)] \\
& =\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots
\end{array}\right]^{\top} \underbrace{\mathbf{E}_{x y}\left(\left[\begin{array}{c}
\varphi_{1}(x) \\
\varphi_{2}(x) \\
\vdots
\end{array}\right]\left[\begin{array}{lll}
\phi_{1}(y) & \phi_{2}(y) & \ldots
\end{array}\right]\right)}_{C_{\varphi(x) \phi(y)}}\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots
\end{array}\right]
\end{aligned}
$$

The constrained covariance

The constrained covariance is

$$
\operatorname{COCO}\left(P_{X Y}\right)=\sup _{\substack{\|f\|_{\mathcal{F}} \leq 1 \\ \\\|g\|_{\mathcal{G}} \leq 1}} E_{x y}\left[\left(\sum_{j=1}^{\infty} f_{j} \varphi_{j}(x)\right)\left(\sum_{j=1}^{\infty} g_{j} \phi_{j}(y)\right)\right]
$$

Fine print: feature mappings $\varphi(x)$ and $\phi(y)$ assumed to have zero mean.
Rewriting:

$$
\begin{aligned}
& E_{x y}[f(x) g(y)] \\
& =\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots
\end{array}\right]^{\top} \underbrace{\mathbf{E}_{x y}\left(\left[\begin{array}{c}
\varphi_{1}(x) \\
\varphi_{2}(x) \\
\vdots
\end{array}\right]\left[\begin{array}{lll}
\phi_{1}(y) & \phi_{2}(y) & \ldots
\end{array}\right]\right)}_{C_{\varphi(x) \phi(y)}}\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots
\end{array}\right]
\end{aligned}
$$

COCO: max singular value of feature covariance $C_{\varphi(x) \phi\left(y_{41}\right.} /_{71}$

Computing COCO in practice

Given sample $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P_{X Y}$, what is empirical $\widehat{C O C O}$?

Computing COCO in practice

Given sample $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P_{X Y}$, what is empirical $\widehat{C O C O}$?
$\widehat{C O C O}$ is largest eigenvalue $\gamma_{\max }$ of

$$
\left[\begin{array}{cc}
0 & \frac{1}{n} K L \\
\frac{1}{n} L K & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\gamma\left[\begin{array}{cc}
K & 0 \\
0 & L
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] .
$$

$K_{i j}=k\left(x_{i}, x_{j}\right)$ and $L_{i j}=l\left(y_{i}, y_{j}\right)$.

Fine print: kernels are computed with empirically centered features $\varphi(x)-\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)$ and $\phi(y)-\frac{1}{n} \sum_{i=1}^{n} \phi\left(y_{i}\right)$.
G., Smola., Bousquet, Herbrich, Belitski, Augath, Murayama, Pauls, Schoelkopf, and Logothetis, AISTATS'05

Computing COCO in practice

Given sample $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P_{X Y}$, what is empirical $\widehat{C O C O}$?
$\widehat{C O C O}$ is largest eigenvalue $\gamma_{\text {max }}$ of

$$
\left[\begin{array}{cc}
0 & \frac{1}{n} K L \\
\frac{1}{n} L K & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\gamma\left[\begin{array}{cc}
K & 0 \\
0 & L
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] .
$$

$K_{i j}=k\left(x_{i}, x_{j}\right)$ and $L_{i j}=l\left(y_{i}, y_{j}\right)$.
Witness functions (singular vectors):

$$
f(x) \propto \sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right) \quad g(y) \propto \sum_{i=1}^{n} \beta_{i} l\left(y_{i}, y\right)
$$

Fine print: kernels are computed with empirically centered features $\varphi(x)-\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)$ and $\phi(y)-\frac{1}{n} \sum_{i=1}^{n} \phi\left(y_{i}\right)$.
G., Smola., Bousquet, Herbrich, Belitski, Augath, Murayama, Pauls, Schoelkopf, and Logothetis, AISTATS'05

Empirical COCO: proof (1)

The Lagrangian is

$$
\mathcal{L}(f, g, \lambda, \gamma)=\underbrace{\frac{1}{n} \sum_{i=1}^{n}\left[f\left(x_{i}\right) g\left(y_{i}\right)\right]}_{\text {covariance }}-\underbrace{\frac{\lambda}{2}\left(\|f\|_{\mathcal{F}}^{2}-1\right)-\frac{\gamma}{2}\left(\|g\|_{\mathcal{G}}^{2}-1\right)}_{\text {smoothness constraints }}
$$

Fine print: $f\left(x_{i}\right) g\left(y_{i}\right)$ centered to have zero empirical mean.

Empirical COCO: proof (1)

The Lagrangian is

$$
\mathcal{L}(f, g, \lambda, \gamma)=\underbrace{\frac{1}{n} \sum_{i=1}^{n}\left[f\left(x_{i}\right) g\left(y_{i}\right)\right]}_{\text {covariance }}-\underbrace{\frac{\lambda}{2}\left(\|f\|_{\mathcal{F}}^{2}-1\right)-\frac{\gamma}{2}\left(\|g\|_{\mathcal{G}}^{2}-1\right)}_{\text {smoothness constraints }}
$$

Fine print: $f\left(x_{i}\right) g\left(y_{i}\right)$ centered to have zero empirical mean.
Assume (cf representer theorem):

$$
f=\sum_{i=1}^{n} \alpha_{i} \varphi\left(x_{i}\right) \quad g=\sum_{i=1}^{n} \beta_{i} \psi\left(y_{i}\right)
$$

for centered $\varphi\left(x_{i}\right), \phi\left(y_{i}\right)$.

Empirical COCO: proof (1)

The Lagrangian is

$$
\mathcal{L}(f, g, \lambda, \gamma)=\underbrace{\frac{1}{n} \sum_{i=1}^{n}\left[f\left(x_{i}\right) g\left(y_{i}\right)\right]}_{\text {covariance }}-\underbrace{\frac{\lambda}{2}\left(\|f\|_{\mathcal{F}}^{2}-1\right)-\frac{\gamma}{2}\left(\|g\|_{\mathcal{G}}^{2}-1\right)}_{\text {smoothness constraints }} .
$$

Fine print: $f\left(x_{i}\right) g\left(y_{i}\right)$ centered to have zero empirical mean.
Assume (cf representer theorem):

$$
f=\sum_{i=1}^{n} \alpha_{i} \varphi\left(x_{i}\right) \quad g=\sum_{i=1}^{n} \beta_{i} \psi\left(y_{i}\right)
$$

for centered $\varphi\left(x_{i}\right), \phi\left(y_{i}\right)$.
First step is smoothness constraint:

$$
\|f\|_{\mathcal{F}}^{2}-1=\langle f, f\rangle_{\mathcal{F}}-1
$$

Empirical COCO: proof (1)

The Lagrangian is

$$
\mathcal{L}(f, g, \lambda, \gamma)=\underbrace{\frac{1}{n} \sum_{i=1}^{n}\left[f\left(x_{i}\right) g\left(y_{i}\right)\right]}_{\text {covariance }}-\underbrace{\frac{\lambda}{2}\left(\|f\|_{\mathcal{F}}^{2}-1\right)-\frac{\gamma}{2}\left(\|g\|_{\mathcal{G}}^{2}-1\right)}_{\text {smoothness constraints }} .
$$

Fine print: $f\left(x_{i}\right) g\left(y_{i}\right)$ centered to have zero empirical mean.
Assume (cf representer theorem):

$$
f=\sum_{i=1}^{n} \alpha_{i} \varphi\left(x_{i}\right) \quad g=\sum_{i=1}^{n} \beta_{i} \psi\left(y_{i}\right)
$$

for centered $\varphi\left(x_{i}\right), \phi\left(y_{i}\right)$.
First step is smoothness constraint:

$$
\begin{aligned}
\|f\|_{\mathcal{F}}^{2}-1 & =\langle f, f\rangle_{\mathcal{F}}-1 \\
& =\left\langle\sum_{i=1}^{n} \alpha_{i} \varphi\left(x_{i}\right), \sum_{i=1}^{n} \alpha_{i} \varphi\left(x_{i}\right)\right\rangle_{\mathcal{F}}-1
\end{aligned}
$$

Empirical COCO: proof (1)

The Lagrangian is

$$
\mathcal{L}(f, g, \lambda, \gamma)=\underbrace{\frac{1}{n} \sum_{i=1}^{n}\left[f\left(x_{i}\right) g\left(y_{i}\right)\right]}_{\text {covariance }}-\underbrace{\frac{\lambda}{2}\left(\|f\|_{\mathcal{F}}^{2}-1\right)-\frac{\gamma}{2}\left(\|g\|_{\mathcal{G}}^{2}-1\right)}_{\text {smoothness constraints }} .
$$

Fine print: $f\left(x_{i}\right) g\left(y_{i}\right)$ centered to have zero empirical mean.
Assume (cf representer theorem):

$$
f=\sum_{i=1}^{n} \alpha_{i} \varphi\left(x_{i}\right) \quad g=\sum_{i=1}^{n} \beta_{i} \psi\left(y_{i}\right)
$$

for centered $\varphi\left(x_{i}\right), \phi\left(y_{i}\right)$.
First step is smoothness constraint:

$$
\begin{aligned}
\|f\|_{\mathcal{F}}^{2}-1 & =\langle f, f\rangle_{\mathcal{F}}-1 \\
& =\left\langle\sum_{i=1}^{n} \alpha_{i} \varphi\left(x_{i}\right), \sum_{i=1}^{n} \alpha_{i} \varphi\left(x_{i}\right)\right\rangle_{\mathcal{F}}-1 \\
& =\alpha^{\top} K \alpha-1
\end{aligned}
$$

Proof sketch (2)

Second step is covariance:

$$
\frac{1}{n} \sum_{i=1}^{n}\left[f\left(x_{i}\right) g\left(y_{i}\right)\right]=\frac{1}{n} \sum_{i=1}^{n}\left\langle f, \varphi\left(x_{i}\right)\right\rangle_{\mathcal{F}}\left\langle g, \varphi\left(y_{i}\right)\right\rangle_{\mathcal{G}}
$$

Proof sketch (2)

Second step is covariance:

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n}\left[f\left(x_{i}\right) g\left(y_{i}\right)\right] & =\frac{1}{n} \sum_{i=1}^{n}\left\langle f, \varphi\left(x_{i}\right)\right\rangle_{\mathcal{F}}\left\langle g, \varphi\left(y_{i}\right)\right\rangle_{\mathcal{G}} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left\langle\sum_{\ell=1}^{n} \alpha_{\ell} \varphi\left(x_{\ell}\right), \varphi\left(x_{i}\right)\right\rangle_{\mathcal{F}}\left\langle g, \varphi\left(y_{i}\right)\right\rangle_{\mathcal{G}}
\end{aligned}
$$

Proof sketch (2)

Second step is covariance:

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n}\left[f\left(x_{i}\right) g\left(y_{i}\right)\right] & =\frac{1}{n} \sum_{i=1}^{n}\left\langle f, \varphi\left(x_{i}\right)\right\rangle_{\mathcal{F}}\left\langle g, \varphi\left(y_{i}\right)\right\rangle_{\mathcal{G}} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left\langle\sum_{\ell=1}^{n} \alpha_{\ell} \varphi\left(x_{\ell}\right), \varphi\left(x_{i}\right)\right\rangle_{\mathcal{F}}\left\langle g, \varphi\left(y_{i}\right)\right\rangle_{\mathcal{G}} \\
& =\frac{1}{n} \alpha^{\top} K L \beta
\end{aligned}
$$

where $K_{i j}=k\left(x_{i}, x_{j}\right)=\left\langle\varphi\left(x_{i}\right), \varphi\left(x_{j}\right)\right\rangle_{\mathcal{F}} \quad L_{i j}=l\left(y_{i}, y_{j}\right)$.

Proof sketch (2)

Second step is covariance:

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n}\left[f\left(x_{i}\right) g\left(y_{i}\right)\right] & =\frac{1}{n} \sum_{i=1}^{n}\left\langle f, \varphi\left(x_{i}\right)\right\rangle_{\mathcal{F}}\left\langle g, \varphi\left(y_{i}\right)\right\rangle_{\mathcal{G}} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left\langle\sum_{\ell=1}^{n} \alpha_{\ell} \varphi\left(x_{\ell}\right), \varphi\left(x_{i}\right)\right\rangle_{\mathcal{F}}\left\langle g, \varphi\left(y_{i}\right)\right\rangle_{\mathcal{G}} \\
& =\frac{1}{n} \alpha^{\top} K L \beta \\
\text { where } K_{i j}=k\left(x_{i}, x_{j}\right)= & \left\langle\varphi\left(x_{i}\right), \varphi\left(x_{j}\right)\right\rangle_{\mathcal{F}} \quad L_{i j}=l\left(y_{i}, y_{j}\right) .
\end{aligned}
$$

The Lagranian is now:

$$
\mathcal{L}(f, g, \lambda, \gamma)=\frac{1}{n} \alpha^{\top} K L \beta-\frac{\lambda}{2}\left(\alpha^{\top} K \alpha-1\right)-\frac{\gamma}{2}\left(\beta^{\top} L \beta-1\right)
$$

What is a large dependence with COCO?

500 Samples, smooth density

Rough density

500 samples, rough density

Density takes the form:

$$
P_{X Y} \propto 1+\sin (\omega x) \sin (\omega y)
$$

Which of these is the more "dependent"?

Finding covariance with smooth transformations

Case of $\omega=1$:

Correlation: $\mathbf{0 . 5 0}$ COCO: 0.09

Finding covariance with smooth transformations

Case of $\omega=2$:

Correlation: 0.54

Finding covariance with smooth transformations

Case of $\omega=3$:

Finding covariance with smooth transformations

Case of $\omega=4$:

Correlation: 0.25 COCO: 0.02

Finding covariance with smooth transformations

Case of $\omega=$??:

Correlation: 0.14 COCO: 0.02

Finding covariance with smooth transformations

Case of $\omega=0$: uniform noise! (shows bias)

Dependence largest when at "low" frequencies

- As dependence is encoded at higher frequencies, the smooth mappings f, g achieve lower linear dependence.
■ Even for independent variables, COCO will not be zero at finite sample sizes, since some mild linear dependence will be found by f,g (bias)
■ This bias will decrease with increasing sample size.

Can we do better than COCO?

A second example with zero correlation.
First singular value of feature covariance $C_{\varphi(x) \phi(y)}$:

Can we do better than COCO?

A second example with zero correlation.
Second singular value of feature covariance $C_{\varphi(x) \phi(y)}$:

Can we do better than COCO?

A second example with zero correlation.
Second singular value of feature covariance $C_{\varphi(x) \phi(y)}$:

The Hilbert-Schmidt Independence Criterion

Writing the i th singular value of the feature covariance $C_{\varphi(x) \phi(y)}$ as

$$
\gamma_{i}:=\operatorname{COCO}_{i}\left(P_{X Y} ; \mathcal{F}, \mathcal{G}\right)
$$

define Hilbert-Schmidt Independence Criterion (HSIC)

$$
\operatorname{HSIC}^{2}\left(P_{X Y} ; \mathcal{F}, \mathcal{G}\right)=\sum_{i=1}^{\infty} \gamma_{i}^{2}
$$

G, Bousquet , Smola., and Schoelkopf, ALT05; G.., Fukumizu, Teo., Song., Schoelkopf., and Smola, NIPS 2007,.

The Hilbert-Schmidt Independence Criterion

Writing the i th singular value of the feature covariance $C_{\varphi(x) \phi(y)}$ as

$$
\gamma_{i}:=\operatorname{COCO}_{i}\left(P_{X Y} ; \mathcal{F}, \mathcal{G}\right)
$$

define Hilbert-Schmidt Independence Criterion (HSIC)

$$
\operatorname{HSIC}^{2}\left(P_{X Y} ; \mathcal{F}, \mathcal{G}\right)=\sum_{i=1}^{\infty} \gamma_{i}^{2}
$$

G, Bousquet , Smola., and Schoelkopf, ALT05; G.., Fukumizu, Teo., Song., Schoelkopf., and Smola, NIPS 2007,.
HSIC is MMD with product kernel!

$$
H S I C^{2}\left(P_{X Y} ; \mathcal{F}, \mathcal{G}\right)=M M D^{2}\left(P_{X Y}, P_{X} P_{Y} ; \mathcal{H}_{\kappa}\right)
$$

where $\kappa\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=k\left(x, x^{\prime}\right) l\left(y, y^{\prime}\right)$.

Asymptotics of HSIC under independence

- Given sample $\left\{\left(x_{i}, y_{i}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P_{X Y}\right.$, what is empirical $\widehat{H S I C}$?
- Empirical HSIC (biased)

$$
\widehat{\text { HSIC }}=\frac{1}{n^{2}} \operatorname{trace}(K L)
$$

$K_{i j}=k\left(x_{i}, x_{j}\right)$ and $L_{i j}=l\left(y_{i} y_{j}\right) \quad$ (K and L computed with empirically centered features)

- Statistical testing: given $P_{X Y}=P_{X} P_{Y}$, what is the threshold c_{α} such that $P\left(\overline{H S I C}>c_{\alpha}\right)<\alpha$ for small α ?

where $\lambda_{l} \psi_{l}\left(z_{j}\right)=\int h_{i j q r} \psi_{l}\left(z_{i}\right) d F_{i, q, r}, \quad h_{i j q r}=\frac{1}{4!} \sum_{(t, u, v, w)}^{(i, j, q, r)} k_{t u} l_{t u}+k_{t u} l_{v w}-2 k_{t u} l_{t v}$

Asymptotics of HSIC under independence

- Given sample $\left\{\left(x_{i}, y_{i}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P_{X Y}\right.$, what is empirical $\widehat{H S I C}$?
- Empirical HSIC (biased)

$$
\begin{gathered}
\widehat{H S I C}=\frac{1}{n^{2}} \operatorname{trace}(K L) \\
\begin{array}{l}
K_{i j}=k\left(x_{i}, x_{j}\right) \text { and } L_{i j}=l\left(y_{i} y_{j}\right) \quad(K \text { and } L \text { computed with } \\
\text { empirically centered features })
\end{array}
\end{gathered}
$$

Statistical testing: given $P_{X Y}=P_{X} P_{Y}$, what is the threshold c_{α} such that $P\left(\widehat{H S I C}>c_{\alpha}\right)<\alpha$ for small α ?

where $\lambda_{l} \psi_{l}\left(z_{j}\right)=\int h_{i j q r} \psi_{l}\left(z_{i}\right) d F_{i, q, r}, \quad h_{i j q r}=\frac{1}{4!} \sum_{(t, u, v, w)}^{(i, j, q, r)} k_{t u} l_{t u}+k_{t u} l_{v w}-2 k_{t u} l_{t v}$

Asymptotics of HSIC under independence

- Given sample $\left\{\left(x_{i}, y_{i}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P_{X Y}\right.$, what is empirical $\widehat{H S I C}$?
- Empirical HSIC (biased)

$$
\begin{gathered}
\widehat{H S I C}=\frac{1}{n^{2}} \operatorname{trace}(K L) \\
K_{i j}=k\left(x_{i}, x_{j}\right) \text { and } L_{i j}=l\left(y_{i} y_{j}\right) \quad(K \text { and } L \text { computed with }
\end{gathered}
$$ empirically centered features)

- Statistical testing: given $P_{X Y}=P_{X} P_{Y}$, what is the threshold c_{α} such that $P\left(\widehat{H S I C}>c_{\alpha}\right)<\alpha$ for small α ?

where $\lambda_{l} \psi_{l}\left(z_{j}\right)=\int h_{i j q r} \psi_{l}\left(z_{i}\right) d F_{i, q, r}, \quad h_{i j q r}=\frac{1}{4!} \sum_{(t, u, v, w)}^{(i, j, q, r)} k_{t u} l_{t u}+k_{t u} l_{v w}-2 k_{t u} l_{t v}$

Asymptotics of HSIC under independence

- Given sample $\left\{\left(x_{i}, y_{i}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P_{X Y}\right.$, what is empirical $\widehat{H S I C}$?
- Empirical HSIC (biased)

$$
\widehat{\text { HSIC }}=\frac{1}{n^{2}} \operatorname{trace}(K L)
$$

$K_{i j}=k\left(x_{i}, x_{j}\right)$ and $L_{i j}=l\left(y_{i} y_{j}\right) \quad(K$ and L computed with empirically centered features)

- Statistical testing: given $P_{X Y}=P_{X} P_{Y}$, what is the threshold c_{α} such that $P\left(\widehat{H S I C}>c_{\alpha}\right)<\alpha$ for small α ?
- Asymptotics of $\widehat{H S I C}$ when $P_{X Y}=P_{X} P_{Y}$:

$$
n \widehat{H S I C} \xrightarrow{D} \sum_{l=1}^{\infty} \lambda_{l} z_{l}^{2}, \quad z_{l} \sim \mathcal{N}(0,1) \text { i.i.d. }
$$

where $\lambda_{l} \psi_{l}\left(z_{j}\right)=\int h_{i j g r} \psi_{l}\left(z_{i}\right) d F_{i, q, r}, \quad h_{i j g r}=\frac{1}{4!} \sum_{(t, u, v, w)}^{(i, j, q, r)} k_{t u} l_{t u}+k_{t u} l_{v w}-2 k_{t u} l_{t v}$

A statistical test

■ Given $P_{X Y}=P_{X} P_{Y}$, what is the threshold c_{α} such that $P\left(\widehat{H S I C}>c_{\alpha}\right)<\alpha$ for small α (prob. of false positive)?

A statistical test

■ Given $P_{X Y}=P_{X} P_{Y}$, what is the threshold c_{α} such that $P\left(\widehat{H S I C}>c_{\alpha}\right)<\alpha$ for small α (prob. of false positive)?

- Original time series:

$$
\begin{aligned}
& X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7} X_{8} X_{9} X_{10} \\
& Y_{1} Y_{2} Y_{3} Y_{4} Y_{5} \quad Y_{6} \quad Y_{7} Y_{8} Y_{9} \quad Y_{10}
\end{aligned}
$$

- Permutation:

$$
\begin{aligned}
& X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7} X_{8} X_{9} X_{10} \\
& Y_{7} Y_{3} \quad Y_{9} \quad Y_{2} \quad Y_{4} \quad Y_{8} \quad Y_{5} \quad Y_{1} \quad Y_{6} \quad Y_{10}
\end{aligned}
$$

A statistical test

■ Given $P_{X Y}=P_{X} P_{Y}$, what is the threshold c_{α} such that $P\left(\widehat{H S I C}>c_{\alpha}\right)<\alpha$ for small α (prob. of false positive)?

■ Original time series:

$$
\begin{aligned}
& X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7} X_{8} X_{9} X_{10} \\
& Y_{1} Y_{2} Y_{3} Y_{4} \quad Y_{5} \quad Y_{6} \quad Y_{7} \quad Y_{8} \quad Y_{9} \quad Y_{10}
\end{aligned}
$$

- Permutation:

$$
\begin{aligned}
& X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7} X_{8} X_{9} X_{10} \\
& Y_{7} Y_{3} \quad Y_{9} \quad Y_{2} \quad Y_{4} \quad Y_{8} \quad Y_{5} \quad Y_{1} \quad Y_{6} \quad Y_{10}
\end{aligned}
$$

■ Null distribution via permutation

- Compute HSIC for $\left\{x_{i}, y_{\pi(i)}\right\}_{i=1}^{n}$ for random permutation π of indices $\{1, \ldots, n\}$. This gives HSIC for independent variables.
- Repeat for many different permutations, get empirical CDF
- Threshold c_{α} is $1-\alpha$ quantile of empirical CDF

Application: dependence detection across languages

Testing task: detect dependence between English and French text

Honourable senators, I have a question for the Leader of the Government in the Senate	Honorables sénateurs, ma question s'adresse au leader du gouvernement au Sénat
No doubt there is great pressure on provincial and municipal governments	Les ordres de gouvernements provinciaux et municipaux subissent de fortes pressions
In fact, we have increased federal investments for early childhood development.	Au contraire, nous avons augmenté le financement fédéral pour le développement des jeunes
•	•

Application: dependence detection across languages

Testing task: detect dependence between English and French text k-spectrum kernel, $k=10$, sample size $n=10$ Honourable senators, I
have a question for the
Leader of the Government
in the Senate
$\begin{aligned} & \text { No doubt there is great } \\ & \text { pressure on provincial and } \\ & \text { municipal governments } \\ & \text { In fact, we have increased } \\ & \text { federal investments for } \\ & \text { early childhood } \\ & \text { development. } \\ & \text { question s'adresse au leader } \\ & \text { du gouvernement au Sénat }\end{aligned}$
$\begin{aligned} & \text { Les ordres de gouvernements }\end{aligned}$
provinciaux et municipaux
subissent de fortes pressions

[^0]
Application:Dependence detection across languages

Results (for $\alpha=0.05$)
■ k-spectrum kernel: average Type II error 0
■ Bag of words kernel: average Type II error 0.18

Settings: Five line extracts, averaged over 300 repetitions, for "Agriculture" transcripts. Similar results for Fisheries and Immigration transcripts.

Testing higher order interactions

Detecting higher order interaction

How to detect V-structures with pairwise weak individual dependence?

Detecting higher order interaction

How to detect V-structures with pairwise weak individual dependence?

reaction

Detecting higher order interaction

How to detect V-structures with pairwise weak individual dependence?
$X \Perp Y, Y \Perp Z, X \Perp Z$

$\mathrm{X1}^{*} \mathrm{Y} 1$ vs Z 1

■ $X, Y \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$

- $Z \mid X, Y \sim \operatorname{sign}(X Y) \operatorname{Exp}\left(\frac{1}{\sqrt{2}}\right)$

Fine print: Faithfulness violated here!

V-structure discovery

Assume $X \Perp Y$ has been established.
V-structure can then be detected by:

■ Consistent CI test: $\mathbf{H}_{\mathbf{0}}: X \Perp Y \mid Z$ [Fukumizu et al. 2008, Zhang et al. 2011]
$■$ Factorisation test: $\mathbf{H}_{0}:(X, Y) \Perp Z \vee(X, Z) \Perp Y \vee(Y, Z) \Perp X$ (multiple standard two-variable tests)

How well do these work?

Detecting higher order interaction

Generalise earlier example to p dimensions
$X \Perp Y, Y \Perp Z, X \Perp Z$

X1 1 Y 1 vs Z 1

- $X, Y \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$
- $Z \mid X, Y \sim \operatorname{sign}(X Y) \operatorname{Exp}\left(\frac{1}{\sqrt{2}}\right)$
- $X_{2: p}, Y_{2: p}, Z_{2: p} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \mathbf{I}_{p-1}\right)$

Fine print: Faithfulness violated here!

V-structure discovery

CI test for $X \Perp Y \mid Z$ from zhang et al. (2011), and a factorisation test $_{64 / 71}$ $n=500$

Lancaster interaction measure

Lancaster interaction measure of $\left(X_{1}, \ldots, X_{D}\right) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised non-trivially.

$$
D=2: \quad \Delta_{L} P=P_{X Y}-P_{X} P_{Y}
$$

Lancaster interaction measure

Lancaster interaction measure of $\left(X_{1}, \ldots, X_{D}\right) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised non-trivially.

$$
\begin{array}{ll}
D=2: & \Delta_{L} P=P_{X Y}-P_{X} P_{Y} \\
D=3: & \Delta_{L} P=P_{X Y Z}-P_{X} P_{Y Z}-P_{Y} P_{X Z}-P_{Z} P_{X Y}+2 P_{X} P_{Y} P_{Z}
\end{array}
$$

Lancaster interaction measure

Lancaster interaction measure of $\left(X_{1}, \ldots, X_{D}\right) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised non-trivially.
$D=2: \quad \Delta_{L} P=P_{X Y}-P_{X} P_{Y}$
$D=3: \quad \Delta_{L} P=P_{X Y Z}-P_{X} P_{Y Z}-P_{Y} P_{X Z}-P_{Z} P_{X Y}+2 P_{X} P_{Y} P_{Z}$

Lancaster interaction measure

Lancaster interaction measure of $\left(X_{1}, \ldots, X_{D}\right) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised non-trivially.
$D=2: \quad \Delta_{L} P=P_{X Y}-P_{X} P_{Y}$
$D=3: \quad \Delta_{L} P=P_{X Y Z}-P_{X} P_{Y Z}-P_{Y} P_{X Z}-P_{Z} P_{X Y}+2 P_{X} P_{Y} P_{Z}$

Case of $P_{X} \Perp P_{Y Z}$

Lancaster interaction measure

Lancaster interaction measure of $\left(X_{1}, \ldots, X_{D}\right) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised non-trivially.
$D=2: \quad \Delta_{L} P=P_{X Y}-P_{X} P_{Y}$
$D=3: \quad \Delta_{L} P=P_{X Y Z}-P_{X} P_{Y Z}-P_{Y} P_{X Z}-P_{Z} P_{X Y}+2 P_{X} P_{Y} P_{Z}$
$(X, Y) \Perp Z \vee(X, Z) \Perp Y \vee(Y, Z) \Perp X \Rightarrow \Delta_{L} P=0$.
...so what might be missed?

Lancaster interaction measure

Lancaster interaction measure of $\left(X_{1}, \ldots, X_{D}\right) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised non-trivially.
$D=2: \quad \Delta_{L} P=P_{X Y}-P_{X} P_{Y}$
$D=3: \quad \Delta_{L} P=P_{X Y Z}-P_{X} P_{Y Z}-P_{Y} P_{X Z}-P_{Z} P_{X Y}+2 P_{X} P_{Y} P_{Z}$

$$
\Delta_{L} P=0 \nRightarrow(X, Y) \Perp Z \vee(X, Z) \Perp Y \vee(Y, Z) \Perp X
$$

Example:

$$
\begin{array}{|l|l|l|l|}
\hline P(0,0,0)=0.2 & P(0,0,1)=0.1 & P(1,0,0)=0.1 & P(1,0,1)=0.1 \\
\hline P(0,1,0)=0.1 & P(0,1,1)=0.1 & P(1,1,0)=0.1 & P(1,1,1)=0.2 \\
\hline
\end{array}
$$

A kernel test statistic using Lancaster Measure

Construct a test by estimating $\left\|\mu_{\kappa}\left(\Delta_{L} P\right)\right\|_{\mathcal{H}_{\kappa}}^{2}$, where $\kappa=k \otimes l \otimes m$:

$$
\begin{aligned}
& \left\|\mu_{\kappa}\left(P_{X Y Z}-P_{X Y} P_{Z}-\cdots\right)\right\|_{\mathcal{H}_{\kappa}}^{2}= \\
& \left\langle\mu_{\kappa} P_{X Y Z}, \mu_{\kappa} P_{X Y Z}\right\rangle_{\mathcal{H}_{\kappa}}-2\left\langle\mu_{\kappa} P_{X Y Z}, \mu_{\kappa} P_{X Y} P_{Z}\right\rangle_{\mathcal{H}_{\kappa}} \ldots
\end{aligned}
$$

A kernel test statistic using Lancaster Measure

$\nu \backslash \nu^{\prime}$	$P_{X Y Z}$	$P_{X Y Y} P_{Z}$	$P_{X Z} P_{Y}$	$P_{Y Z} P_{X}$	$P_{X} P_{Y} P_{Z}$
$P_{X Y Y}$	$(\mathrm{K} \circ \mathbf{L} \circ \mathbf{M})_{++}$	$((\mathbf{K} \circ \mathrm{L}) \mathrm{M})_{++}$	$((\mathrm{K} \circ \mathrm{M}) \mathrm{L})_{++}$	$((\mathrm{M} \circ \mathrm{L}) \mathrm{K})_{++}$	$\operatorname{tr}\left(\mathrm{K}_{+} \circ \mathrm{L}_{+} \circ \mathrm{M}_{+}\right)$
$P_{X Y} P_{Z}$		$(\mathrm{K} \circ \mathrm{L})_{++} \mathrm{M}_{++}$	$(\mathrm{MKL})_{++}$	(KLM) ${ }_{++}$	$(\mathrm{KL})_{++} \mathrm{M}_{++}$
$P_{X Z} P_{Y}$			$(\mathbf{K} \circ \mathbf{M})_{++} \mathbf{L}_{++}$	(KML) ${ }_{++}$	(KM) ${ }_{++} \mathbf{L}_{++}$
$P_{\boldsymbol{Y Z}} P_{X}$				$(\mathbf{L} \circ \mathbf{M})_{++} \mathbf{K}_{++}$	$(\mathrm{LM})_{++} \mathrm{K}_{++}$
$P_{X} P_{Y} P_{Z}$					$\mathbf{K}_{++} \mathbf{L}_{++} \mathbf{M}_{++}$

Table: V-statistic estimators of $\left\langle\mu_{\kappa} \nu, \mu_{\kappa} \nu^{\prime}\right\rangle_{\mathcal{H}_{\kappa}}$ (without terms $P_{X} P_{Y} P_{Z}$). H is centering matrix $I-n^{-1}$

A kernel test statistic using Lancaster Measure

$\nu \backslash \nu^{\prime}$	P ${ }_{\text {XYZ }}$	$P_{X Y Y} P_{Z}$	$P_{X Z} P_{Y}$	$P_{Y Z} P_{X}$	$P_{X} P_{Y} P_{Z}$
$P_{X Y Z}$	$(\mathrm{K} \circ \mathbf{L} \circ \mathbf{M})_{++}$	$((\mathrm{K} \circ \mathrm{L}) \mathrm{M})_{++}$	$((\mathrm{K} \circ \mathrm{M}) \mathrm{L})_{++}$	$((\mathrm{M} \circ \mathrm{L}) \mathrm{K})_{++}$	$\operatorname{tr}\left(\mathrm{K}_{+} \circ \mathrm{L}_{+} \circ \mathrm{M}_{+}\right)$
$P_{X Y Y} P_{Z}$		$(\mathrm{K} \circ \mathrm{L})_{++} \mathrm{M}_{++}$	$(\mathrm{MKL})_{++}$	$(\mathrm{KLM})_{++}$	$(\mathrm{KL})_{++} \mathrm{M}_{++}$
$P_{X X Z} P_{Y}$			$(\mathbf{K} \circ \mathbf{M})_{++} \mathbf{L}_{++}$	(KML) ${ }_{++}$	(KM) ++ $^{\mathbf{L}_{++}}$
$P_{Y Z} P_{X}$				$(\mathbf{L} \circ \mathbf{M})_{++} \mathbf{K}_{++}$	$(\mathrm{LM})_{++} \mathrm{K}_{++}$
$P_{X} P_{Y} P_{Z}$					$\mathbf{K}_{++} \mathbf{L}_{++} \mathbf{M}_{++}$

Table: V-statistic estimators of $\left\langle\mu_{\kappa} \nu, \mu_{\kappa} \nu^{\prime}\right\rangle_{\mathcal{H}_{\kappa}}$ (without terms $P_{X} P_{Y} P_{Z}$). H is centering matrix $I-n^{-1}$

Lancaster interaction statistic: Sejdinovic, G, Bergsma, NIPS13

$$
\left\|\mu_{\kappa}\left(\Delta_{L} P\right)\right\|_{\mathcal{H}_{\kappa}}^{2}=\frac{1}{n^{2}}(H \mathbf{K} H \circ H \mathrm{~L} H \circ H \mathrm{M} H)_{++}
$$

Empirical joint central moment in the feature space

V-structure discovery

Lancaster test, CI test for $X \Perp Y \mid Z$ from zhang et al. (2011), and a factorisation test, $n=500$

Interaction for $D \geq 4$

- Interaction measure valid for all D :
(Streitberg, 1990)

$$
\Delta_{S} P=\sum_{\pi}(-1)^{|\pi|-1}(|\pi|-1)!J_{\pi} P
$$

- For a partition π, J_{π} associates to the joint the corresponding factorisation,

$$
\text { e.g., } J_{13|2| 4} P=P_{X_{1} X_{3}} P_{X_{2}} P_{X_{4}} \text {. }
$$

Interaction for $D \geq 4$

- Interaction measure valid for all D :
(Streitberg, 1990)

$$
\Delta_{S} P=\sum_{\pi}(-1)^{|\pi|-1}(|\pi|-1)!J_{\pi} P
$$

- For a partition π, J_{π} associates to the joint the corresponding factorisation, e.g., $J_{13|2| 4} P=P_{X_{1} X_{3}} P_{X_{2}} P_{X_{4}}$.

Interaction for $D \geq 4$

- Interaction measure valid for all D :
(Streitberg, 1990)

$$
\Delta_{S} P=\sum_{\pi}(-1)^{|\pi|-1}(|\pi|-1)!J_{\pi} P
$$

- For a partition π, J_{π} associates to the joint the corresponding factorisation,

$$
\text { e.g., } J_{13|2| 4} P=P_{X_{1} X_{3}} P_{X_{2}} P_{X_{4}} \text {. }
$$

Co-authors

From Gatsby:

■ Mikolaj Binkowski
■ Kacper Chwialkowski

- Wittawat Jitkrittum
- Heiko Strathmann

■ Dougal Sutherland
■ Wenkai Xu

External collaborators:

■ Kenji Fukumizu

- Bernhard Schoelkopf
- Dino Sejdinovic

■ Bharath Sriperumbudur

- Alex Smola
- Zoltan Szabo

Questions?

[^0]: (K and L column centered)

