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Motivation

Molecules make everything we know of and have a huge impact in our lives.

New molecules and materials can potentially solve important existing challenges:

• Drug and medicine design for health care

• Energy production and storage

• Greenhouse gas conversion

However, progress in drug and material discovery has been slow because of the cost of

• collecting data and

• making decisions based on that data,

which require a lot of human intervention.

But things are changing...
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More and more data is becoming available

Modern chemical-simulation tools based on density functional theory (DFT)
can estimate the properties of molecules before they are made in the laboratory.

Extensive datasets are available with properties of real and virtual molecules.

Harvard Clean Energy Project:

In silico framework to study candidate
structures for organic photovoltaics.

3.5M molecules, 30,000 CPU years to
estimate molecule properties via DFT.

QM9 dataset:

130,000 molecules with up to 9 atoms
(not counting hydrogen) and with 13
properties estimated by DFT.
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The role of machine learning

Machine learning (ML) can accelerate and automate the discovery process:

• DFT may take hours, while ML can make much faster predictions from data.

• ML can be used to close the loop: use collected data to guide new synthesis
and characterization experiments or simulations.

Prediction by machine learning

Molecule
properties

Data Training

Figures source: Gilmer et al. 2017 and Sanchez-Lengeling and Aspuru-Guzik 2018.
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Existing libraries

Molecule data can be loaded, analyzed and visualized using public libraries, e.g.
RDKit: https://www.rdkit.org

Once we have loaded the data, we can apply a machine learning (ML) method.

Common ML methods only accept vectorial input data and

molecules are typically graphs with nodes being atoms and edges chemical bonds!

Machine 
learning
method

Target
prediction

Machine 
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Target
prediction
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Outline

We will aim to cover...

• Representations of molecules for machine learning

• Molecular fingerprints

• SMILES

• Graph neural networks (GNNs)

For a more complete review see Sanchez-Lengeling and Aspuru-Guzik 2018.

• Reaction prediction problem

• GNN-based method

• seq2seq method
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Part I: Representations of molecules
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Molecular fingerprints
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Molecular fingerprints

An encoding of the molecular graph into a binary string [Rogers et al. 2010].

Input: molecular graph, radius parameter R, length L

→ Assign integers to atoms by applying hash function to atom features.

→ For r = 1 to R

→ Concatenate atom integers with integers of neighboring atoms.

→ Assign new integers to atoms by applying hash function to concatenation.

→ Crate L-dimensional zero vector f.

→ Map generated integers to an entry in f which is set to 1.

Each integer represents a fragment in the graph.
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Molecular fingerprints

An encoding of the molecular graph into a binary string [Rogers et al. 2010].

Input: molecular graph, radius parameter R, length L

→ Assign integers to atoms by applying hash function to atom features.

→ For r = 1 to R

→ Concatenate atom integers with integers of neighboring atoms.

→ Assign new integers to atoms by applying hash function to concatenation.

→ Crate L-dimensional zero vector f.

→ Map generated integers to an entry in f which is set to 1.

Each generated integer represents a fragment in the graph. Another example:

...0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0...
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Pros and cons of fingerprints

Advantages:

• Very fast to compute and widely available (e.g. in RDKit).

• Produce very good predictive performance in practice.

• Easy to interpret: features represent the presence of substructures.

Disadvantages:

• The generated features are handcrafted and not data dependent.

• They are not smooth: similar fragments will map to different bits.
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SMILES
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SMILES

Simplified Molecular Input Line Entry System.

Allow us to represent a molecular graph in line notation.

Examples:

• CC represents CH3CH3 (ethane)

• CC(=O)O represents CH3COOH (acetic acid).

• C1CCCCC1 represents C6H12 (cyclohexane).

Some of the key elements of the SMILES format:

• Hydrogen atoms are implicit.

• Each atoms is connected to the previous atom in the sequence.

• Parenthesis indicate branches.

• Digits are used to label beginning and end of a cycle.

• Single bonds implicit, = used for double bonds, # for triple bonds.
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Example

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
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Neural networks and SMILES strings

SMILES strings are easily processed by neural networks.

Padding with white spaces can be used to guarantee all strings have equal size.

Recurrent neural networks:

CC O

Target
prediction

CC OC ---

1D convolutional neural networks:

CC OCC OC ---

Pooling layer

Target prediction

Fully connected layer
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Pros and cons of SMILES

Advantages:

• Molecules are easily encoded as simple text strings.

• Relatively easy to understand by humans.

• NLP methods can be applied to molecules (data dependent representation).

Disadvantages:

• Same molecule is represented by many different SMILES strings. Lack of
invariance to atom ordering! Although canonical SMILES somewhat circumvent
this by choosing a specific ordering.

• Atoms close in the graph may be far away within a SMILES string: short-range
dependencies may be transformed into long-range ones.
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Graph neural networks
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Graph neural networks (GNN)

Unlike SMILES, the molecular graph naturally encodes

• Invariance to permutation of nodes.

• Distances between atoms.

Can we directly work with graphs?

Yes!

Using GNN, which structure computations according to the graph connectivity.

GNNs have been developed for more than a decade, but with very rapid recent growth.

Many different works: Gori et al. 2005, Scarselli et al. 2005, 2009, Bruna et al. 2014, Duvenaud et al, 2015, Li et

al. 2016, Kipf & Welling 2016, Kearnes et al. 2016, Schütt et al. 2017, Jin et al. 2017, Gilmer et al. 2017, etc.

We will follow the general definition given by Battaglia et al. 2018.
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Key elements of GNNs

A GNN includes the following (vectorial) variables:

1 {ej∼k} are features for edges between nodes j and k.

2 {vi}Ni=1 are node features.

3 u are global features summarizing the graph properties.

Approach: {ej∼k}, {vi}Ni=1 and u are iteratively updated during a forward pass.

Predictions: made by using the final value of u as input to for example an MLP.

{ej∼k} could be initialized to indicate single, double or triple bond.

{vi}Ni=1 could be initialized to indicate atom type, degree, electronegativity, etc.
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Set functions and auxiliary variables

Set function: input is a set and output is a single element summarizing the input set.

It is invariant to input permutation and accepts a variable number of arguments.

Examples: elementwise summation, mean, maximum, etc.

GNNs use set functions to summarize...

• edge features of incoming edges to node i :
ēi ← Se2n({ei,k : k = 1, . . . ,N})

• all edge features: ē← Sedges({ej,k})
• all node features: v̄← Snodes({vi})

This creates auxiliary features {ēi}, ē and v̄.

84 / 152



Set functions and auxiliary variables

Set function: input is a set and output is a single element summarizing the input set.

It is invariant to input permutation and accepts a variable number of arguments.

Input outputInput output

1 2 3

Examples: elementwise summation, mean, maximum, etc.

GNNs use set functions to summarize...

• edge features of incoming edges to node i :
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• all node features: v̄← Snodes({vi})

This creates auxiliary features {ēi}, ē and v̄.
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Examples of set functions for summarizing incoming edges, all edges and all nodes:

The set functions are the equivalent of pooling in CNNs.

GNNs use the following update functions to update edge, node and global features:

As in CNNs, the same update functions are reused across all nodes and edges.
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The forward pass in a GNN

What if the number of layers L is larger than 1?
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The forward pass in a GNN

Target
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GNNs and message passing

Without u, the information that a node has after completing the forward pass for the
l-th layer is given by the nodes and edges that are at most l hops away.

Example for a single initial node:

O

O

O

O

O

O

O

O

Nodes and edges further away than L hops will not share any information without u.

u will allow nodes and edges to access a summary of the current overall graph state.
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Specific implementations of GNNs

• Message passing neural network (MPNN). Gilmer et al. 2017.

• enew
j,k ← Uedge(ej,k , vj , vk , u) ≡ A(einitial

j,k )vk .

• vnew
i ← Unode(ēi , vi , u) ≡ RNN(ēi , vi ).

• unew ← Uglobal(ē, v̄, u) ≡ v̄.
• ēnew

i ← Se2n({ei,k : k = 1, . . . ,N}) ≡
∑

k eT
i,k .

• v̄← Snodes({vi}) is given by the set2set model from Vinyals et al. (2015).
• ē and Sedges are not used.
• Includes a fully connected master node.

• Gated graph neural network (GGNN). Li et al. 2016.

Like MPNN, but with soft attention to obtain v̄:

• v̄← Snodes({vi}) ≡
∑

i σ(fgate(vi ))fup(vi ),

where σ(·) is the logistic function and fgate and fup are linear functions.

• Weisfeiler-Lehman network (WLN). Jin et al. 2017.

Like MPNN, but with the following changes:

• enew
j,k ← Uedge(ej,k , vj , vk , u) ≡ NN(vk , e

initial
j,k ).

• vnew
i ← Unode(ēi , vi , u) ≡ NN(ēi , vi ) when l = 1, . . . , L− 1 and

vnew
i ←

∑
j∈N(i) Linear(vj )� Linear(einitial

i,j )� Linear(vi ) otherwise.

• v̄← Snodes({vi}) ≡
∑

i vi .

• Neural graph fingerprints (NGFs). Duvenaud et al. 2015.

Like MPNN, but with Uedge(ej,k , vj , vk , u) ≡ vk , Unode(ēi , vi , u) ≡ NN(ēi ),
Snodes({vi}) ≡

∑
i softmax layerl (vi ) and Uglobal(ē, v̄, u) ≡ u + v̄
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Publicly available code

• Neural graph fingerprints: https://github.com/HIPS/neural-fingerprint/

Python, autograd, no GPU support.

• Message passing neural networks (and many other graph neural networks):
https://http://moleculenet.ai/

Python, tensorflow.

• Gated graph neural network:
https://github.com/Microsoft/gated-graph-neural-network-samples

Python, tensorflow.

• Weisfeiler-Lehman network:
https://github.com/wengong-jin/nips17-rexgen

Python, tensorflow.

GPUs give about 4x speed up when working with small molecules (∼20 atoms).

The speed up will increase when working with larger molecules.
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Results neural graph fingerprints

Solubility dataset: aqueous solubility of 1144 molecules.

Drug efficacy: half-maximal effective concentration (EC 50) against malaria parasite.

Organic photovoltaics: DFT simulations of photovoltaic efficiency of molecules.

hand-engineered
features{

Slide source: Duvenaud et al. 2015
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Results message passing neural networks

QM-9 dataset with 130462 molecules.

Targets: 13 properties approximated by quantum mechanical simulations (DFT).

Performance: ratio of MAE and estimate of chemical accuracy for target.

MPNN

hand engineered features other graph-based methods

Slide source: Gilmer et al. 2017

134 / 152



SMILES vs. GNNs

Datasets:

ZINC: 250,000 drug-like commercially available molecules from the ZINC database.

QM9: Subset of size 108,000 among molecules with 9 atoms (not counting hydrogens).

SMILES: 1D CNN. Strings padded with spaces up to length 120 for ZINC and 34 for QM9.

GNNs: similar to neural graph fingerprints by Duvenaud et al. 2015.

Results:

GNNs

SMILES good on QM9 molecules, but much worse results on larger ZINC molecules!

Table source: Gómez-Bombarelli et al. 2017
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Pros and cons of graph neural networks

Advantages:

• Invariant to order in which atom and bond information is provided.

• Data driven approach for generating graph features.

• Empirically, they seem to have very good predictive performance.

Disadvantages:

• Higher computational cost than other neural network models.

• Propagation of local information somewhat limited by depth of network.

• Set functions prevent us from knowing the individual contributions of
nodes or edges in the update functions.
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Part II: Reaction prediction
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Definition and motivation

Chemical reaction: a process by which a set of input molecules called reactants or reagents
is transformed into another set of output molecules called products.

The reaction changes positions of electrons, forming and breaking bonds between atoms.

Predicting products from input reactants and reagents is key to automate the fabrication of
new medicines, energy capturing devices, nanomaterials, etc.

Figure source: Jiang et al. 2017 139 / 152



Reaction templates

They specify a molecular subgraph pattern and a corresponding graph transformation.

Can be generated automatically from reaction databases.

Example:

Since multiple templates can result in a match, another supervised learning method is
used to filter candidate products. Reaction templates are computationally expensive.

Templates fail to take into account context far away from reaction center.

Figure source: Jin et al. 2017
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Reaction prediction using GNNs

Jin et al. 2017 use GNNs to predict the reaction center (RC), that is, the set of nodes and
edges where graph edits occur.

The probability of the bond between atoms i and j belonging to the RC is σ(NN(vi , vj ))
where vi and vj are node features learned by a WLN and σ is the sigmoid function.

Top-K bonds selected and all possible products generated and then ranked by another WLN.
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Results of GNNs in reaction prediction

Data:

USPTO: 480K chemical reactions extracted from the US patent database.

Atoms have unique ID to easy match them before and after the reaction.

Baseline: template based approach described by Coley et al. 2017.

Accuracy in product identification

Human and model performance on 80 reactions randomly selected:

WLN

Slide source: Jin et al. 2017
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SMILES based approach for reaction prediction

Schwaller et al. 2018 use a seq2seq model to solve the reaction prediction problem.

Cl N
N

O
N

O

O

+ - +

O
S

O
O

O

N
NCl

NO

O
+

-

Input sequence: Cc1cc(Cl)n(C)n1 . O=[N+]([O-])O > O=S(=O)(O)O
Target sequence: Cc1nn(C)c(Cl)c1[N+](=O)[O-]

Based on existing technology for
language translation problems.

The model is formed by two LSTMs
(encoder and decoder) using an
attention mechanism.

Figure source: Schwaller et al. 2018
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Results seq2seq method in reaction prediction

Architecture and hyperparameters selected by a Bayesian optimization method.

Beam search of width 10 is used for selecting most probable decoding sequences.

Baseline: WLN method described by Jin et al. 2017 and based on reaction centers.

Evaluation on the full USPTO dataset:

Slide source: Schwaller et al. 2018
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Limitations of WLN and seq2seq methods

WLN:

• Jin et al. 2017 assumes independence of bonds in reaction center (RC).

• Inefficient two stage training process: RC prediction and product ranking.

seq2seq:

• Same as SMILES-based machine learning methods.

• Sampled sequences are not guaranteed to be valid SMILES strings.
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Take home messages

Machine learning (ML) can accelerate and automate the molecule discovery process.

Molecules are different from typical data and create their own challenges for ML.

Molecule representations...

1 Fingerprints are fast and accurate but handcrafted and not data dependent.

2 SMILES enable NLP methods but lack invariance and create long-range dependencies.

3 Graph neural networks are a state-of-the-art method with few limitations.

Reaction prediction...

1 Machine learning methods can achieve very good predictive performance.

2 Some of the best performing methods are based on SMILES or GNNs encodings.

3 But they still have limitations.
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Thanks!
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