Advances in Machine Learning for Molecules
José Miguel Herndndez-Lobato
Department of Engineering
University of Cambridge,
Microsoft Research Cambridge,
Alan Turing Institute
http://jmhl.org, jmh233@cam.ac.uk

Machine Learning Summer School, Madrid, 2018.

1/152

http://jmhl.org
mailto:jmh@cam.ac.uk

Motivation

Molecules make everything we know of and have a huge impact in our lives.

New molecules and materials can potentially solve important existing challenges:
® Drug and medicine design for health care
® Energy production and storage

® Greenhouse gas conversion

2/152

Motivation

Molecules make everything we know of and have a huge impact in our lives.

New molecules and materials can potentially solve important existing challenges:
® Drug and medicine design for health care
® Energy production and storage

® Greenhouse gas conversion

However, progress in drug and material discovery has been slow because of the cost of
® collecting data and

® making decisions based on that data,

which require a lot of human intervention.

3/152

Motivation

Molecules make everything we know of and have a huge impact in our lives.

New molecules and materials can potentially solve important existing challenges:
® Drug and medicine design for health care
® Energy production and storage

® Greenhouse gas conversion

However, progress in drug and material discovery has been slow because of the cost of
® collecting data and

® making decisions based on that data,

which require a lot of human intervention. But things are changing...

4 /152

More and more data is becoming available
Modern chemical-simulation tools based on density functional theory (DFT)

can estimate the properties of molecules before they are made in the laboratory.

Extensive datasets are available with properties of real and virtual molecules.

5/152

More and more data is becoming available

Modern chemical-simulation tools based on density functional theory (DFT)
can estimate the properties of molecules before they are made in the laboratory.

Extensive datasets are available with properties of real and virtual molecules.

Harvard Clean Energy Project:

In silico framework to study candidate
structures for organic photovoltaics.

3.5M molecules, 30,000 CPU years to
estimate molecule properties via DFT.

oy ’ﬁ%ﬁ%“:‘w

vf

6/152

More and more data is becoming available

Modern chemical-simulation tools based on density functional theory (DFT)
can estimate the properties of molecules before they are made in the laboratory.

Extensive datasets are available with properties of real and virtual molecules.

Harvard Clean Energy Project:

In silico framework to study candidate
structures for organic photovoltaics.

3.5M molecules, 30,000 CPU years to
estimate molecule properties via DFT.

QM9 dataset: 'J ‘:j
130,000 molecules with up to 9 atoms Ey N

(not counting hydrogen) and with 13
properties estimated by DFT.

7 /152

‘Robot scientist’ speeds up drug
discovery

BY EMMA STOYE | 5 FEBRUARY 2015

0000 00

Automated Al lab that learns and formulates hypotheses has identified

promising anti-cancer and anti-malarial compounds

An artificial intelligence system —
or ‘robot scientist’ — capable of
screening potential drugs almost
completely independently could
speed up drug development, say
the UK researchers who created
it. The approach has already
identified some promising leads,
including an anti-cancer

compound which also shows

anti-malarial properties.

8 /152

The role of machine learning

Machine learning (ML) can accelerate and automate the discovery process:

® DFT may take hours, while ML can make much faster predictions from data.

Molecule

~ 10® seconds | Properties

Prediction by machine leaming

(pm)frm} L

~ 10* seconds ~ 1072 seconds

Figures source: Gilmer et al. 2017 and Sanchez-Lengeling and Aspuru-Guzik 2018.
9 /152

The role of machine learning

Machine learning (ML) can accelerate and automate the discovery process:

® DFT may take hours, while ML can make much faster predictions from data.

® ML can be used to close the loop: use collected data to guide new synthesis
and characterization experiments or simulations.

Organic redox flow batteries

Material °| AQDS
concept molecule
Molecule
~ 10® seconds | Properties o Molecular
=l synthesis
3
]
Prediction by machine learning g Device Device
4 construction prototype
A < N A
=X =N =\ 4
N4 N ’
Training _ _ Testing and Soubity
) characterization It y't
~ 107= seconds —— voltammetry

~ 10* seconds

ﬁ Scaling and manufacturing

Figures source: Gilmer et al. 2017 and Sanchez-Lengeling and Aspuru-Guzik 2018.
10 /152

Existing libraries

Molecule data can be loaded, analyzed and visualized using public libraries, e.g.

RDKit: https://www.rdkit.org

In [75]: Draw.MolsToGridImage(mols[:3])

G i o o

out[75]:

Open-Source Cheminformatics
and Machine Learning

Once we have loaded the data, we can apply a machine learning (ML) method.

11 /152

https://www.rdkit.org

Existing libraries

Molecule data can be loaded, analyzed and visualized using public libraries, e.g.
RDKit: https://www.rdkit.org

In [75]: Draw.MolsToGridImage(mols[:3])

G i oy

Once we have loaded the data, we can apply a machine learning (ML) method.

out[75]:

Open-Source Cheminformatics
and Machine Learning

Challenges

Common ML methods only accept vectorial input data and

molecules are typically graphs with nodes being atoms and edges chemical bonds!

o IIVIaCh.i“e _, Target I S I;Aachine _, Target
earning | = jiction ®/\0/\ earning | =, ediction

method method

12/

152

https://www.rdkit.org

Outline

We will aim to cover...

e Representations of molecules for machine learning

e Molecular fingerprints
e SMILES
e Graph neural networks (GNNs)

For a more complete review see Sanchez-Lengeling and Aspuru-Guzik 2018.

e Reaction prediction problem

e GNN-based method

e seq2seq method

13 /152

Part I: Representations of molecules

14 /152

Molecular fingerprints

15 /152

Molecular fingerprints

An encoding of the molecular graph into a binary string [Rogers et al. 2010].

Input: molecular graph, radius parameter ~, length L

Assign integers to atoms by applying hash function to atom features.

For r =1 to
Concatenate atom integers with integers of neighboring atoms.

Assign new integers to atoms by applying hash function to concatenation.

Crate L-dimensional zero vector f.
Map generated integers to an entry in f which is set to 1.

16

152

Molecular fingerprints

An encoding of the molecular graph into a binary string [Rogers et al. 2010].

Input: molecular graph, radius parameter ~, length L

Assign integers to atoms by applying hash function to atom features.

For r =1 to
Concatenate atom integers with integers of neighboring atoms.

Assign new integers to atoms by applying hash function to concatenation.

Crate L-dimensional zero vector f.
Map generated integers to an entry in f which is set to 1.

17 /152

Molecular fingerprints

An encoding of the molecular graph into a binary string [Rogers et al. 2010].

Input: molecular graph, radius parameter ~, length L

— Assign integers to atoms by applying hash function to atom features.
Forr=1to
Concatenate atom integers with integers of neighboring atoms.
Assign new integers to atoms by applying hash function to concatenation.
Crate L-dimensional zero vector f.
Map generated integers to an entry in f which is set to 1.

18 /152

Molecular fingerprints

An encoding of the molecular graph into a binary string [Rogers et al. 2010].

Input: molecular graph, radius parameter ~, length L

— Assign integers to atoms by applying hash function to atom features.
Forr=1to
Concatenate atom integers with integers of neighboring atoms.
Assign new integers to atoms by applying hash function to concatenation.
Crate L-dimensional zero vector f.
Map generated integers to an entry in f which is set to 1.

Initial hashing

19 /152

Molecular fingerprints

An encoding of the molecular graph into a binary string [Rogers et al. 2010].

Input: molecular graph, radius parameter ~, length L

Assign integers to atoms by applying hash function to atom features.
— Forr=1to
Concatenate atom integers with integers of neighboring atoms.
Assign new integers to atoms by applying hash function to concatenation.
Crate L-dimensional zero vector f.
Map generated integers to an entry in f which is set to 1.

Initial hashing

20 /152

Molecular fingerprints

An encoding of the molecular graph into a binary string [Rogers et al. 2010].

Input: molecular graph, radius parameter ~, length L

Assign integers to atoms by applying hash function to atom features.

For r =1 to
— Concatenate atom integers with integers of neighboring atoms.

Assign new integers to atoms by applying hash function to concatenation.

Crate L-dimensional zero vector f.
Map generated integers to an entry in f which is set to 1.

Initial hashing

21 /152

Molecular fingerprints

An encoding of the molecular graph into a binary string [Rogers et al. 2010].

Input: molecular graph, radius parameter ~, length L

Assign integers to atoms by applying hash function to atom features.

For r =1 to
— Concatenate atom integers with integers of neighboring atoms.

Assign new integers to atoms by applying hash function to concatenation.

Crate L-dimensional zero vector f.
Map generated integers to an entry in f which is set to 1.

Initial hashing Concatenation
E—@ C-ED\QEB

o‘ecma‘ms
@ @ Ca> AD

22 /152

Molecular fingerprints

An encoding of the molecular graph into a binary string [Rogers et al. 2010].

Input: molecular graph, radius parameter ~, length L

Assign integers to atoms by applying hash function to atom features.

For r =1 to
Concatenate atom integers with integers of neighboring atoms.

— Assign new integers to atoms by applying hash function to concatenation.

Crate L-dimensional zero vector f.
Map generated integers to an entry in f which is set to 1.

Initial hashing Concatenation
E—@ C-ED\QEB

o‘ecma‘ms
@ @ Ca> AD

23 /152

Molecular fingerprints

An encoding of the molecular graph into a binary string [Rogers et al. 2010].

Input: molecular graph, radius parameter ~, length L

Assign integers to atoms by applying hash function to atom features.

For r =1 to
Concatenate atom integers with integers of neighboring atoms.

— Assign new integers to atoms by applying hash function to concatenation.

Crate L-dimensional zero vector f.
Map generated integers to an entry in f which is set to 1.

Initial hashing Concatenation Hashing
oe > @@ > m‘o
@ @ CA> dAD © ©®

24 /152

Molecular fingerprints

An encoding of the molecular graph into a binary string [Rogers et al. 2010].

Input: molecular graph, radius parameter ~, length L

Assign integers to atoms by applying hash function to atom features.

For r =1 to
Concatenate atom integers with integers of neighboring atoms.

Assign new integers to atoms by applying hash function to concatenation.

— Crate L-dimensional zero vector f.
Map generated integers to an entry in f which is set to 1.

Initial hashing Concatenation Hashing
oe > @@ > m‘o
@ @ CA> dAD © ©®

25 /152

Molecular fingerprints

An encoding of the molecular graph into a binary string [Rogers et al. 2010].

Input: molecular graph, radius parameter ~, length L

Assign integers to atoms by applying hash function to atom features.
Forr=1to
Concatenate atom integers with integers of neighboring atoms.
Assign new integers to atoms by applying hash function to concatenation.
— Crate L-dimensional zero vector f.
Map generated integers to an entry in f which is set to 1.

Initial hashing Concatenation Hashing
5—Q G-ED\QEB 1—@
o‘e > cma‘@ > m‘o >
00000000000000000000
@ @ Ca> AD ©® ®

26 /152

Molecular fingerprints

An encoding of the molecular graph into a binary string [Rogers et al. 2010].

Input: molecular graph, radius parameter ~, length L

Assign integers to atoms by applying hash function to atom features.
Forr=1to
Concatenate atom integers with integers of neighboring atoms.
Assign new integers to atoms by applying hash function to concatenation.
Crate L-dimensional zero vector f.
— Map generated integers to an entry in f which is set to 1.

Initial hashing Concatenation Hashing
5—Q G-ED\QEB 1—@
o‘e > cma‘@ > m‘o >
00000000000000000000
@ @ Ca> AD ©® ®

27 /152

Molecular fingerprints

An encoding of the molecular graph into a binary string [Rogers et al. 2010].

Input: molecular graph, radius parameter ~, length L

Assign integers to atoms by applying hash function to atom features.
Forr=1to
Concatenate atom integers with integers of neighboring atoms.
Assign new integers to atoms by applying hash function to concatenation.
Crate L-dimensional zero vector f.
— Map generated integers to an entry in f which is set to 1.

Initial hashing Concatenation Hashing Maboi bi)
apping to binary string
12345681 13
o‘ecma‘msm‘o
10101010101001010101
@ @ Ca> AD ©®

28 /152

Molecular fingerprints

An encoding of the molecular graph into a binary string [Rogers et al. 2010].

Input: molecular graph, radius parameter ~, length L

Assign integers to atoms by applying hash function to atom features.
For r =1 to
Concatenate atom integers with integers of neighboring atoms.
Assign new integers to atoms by applying hash function to concatenation.

Crate L-dimensional zero vector f.
Map generated integers to an entry in f which is set to 1.

Each generated integer represents a fragment in the graph.

Initial hashing Concatenation Hashing Maboi bi)
apping to binary string
12345681 13
10101010101001010101

© O CA> AD ®

29 /152

Molecular fingerprints

An encoding of the molecular graph into a binary string [Rogers et al. 2010].

Input: molecular graph, radius parameter ~, length L

Assign integers to atoms by applying hash function to atom features.

For r =1 to
Concatenate atom integers with integers of neighboring atoms.

Assign new integers to atoms by applying hash function to concatenation.

Crate L-dimensional zero vector f.
Map generated integers to an entry in f which is set to 1.

Each generated integer represents a fragment in the graph. Another example:

f=..01000000101010000...

30 /152

Pros and cons of fingerprints

Advantages:
e Very fast to compute and widely available (e.g. in RDKit).
e Produce very good predictive performance in practice.

e Easy to interpret: features represent the presence of substructures.

31/152

Pros and cons of fingerprints

Advantages:
e Very fast to compute and widely available (e.g. in RDKit).

e Produce very good predictive performance in practice.

e Easy to interpret: features represent the presence of substructures.

Disadvantages:
e The generated features are handcrafted and not data dependent.

e They are not smooth: similar fragments will map to different bits.

32 /152

SMILES

33 /152

SMILES

Simplified Molecular Input Line Entry System.
Allow us to represent a molecular graph in line notation.
Examples:
e CC represents CH3CHj3 (ethane)
e CC(=0)O0 represents CH3COOH (acetic acid).
e C1CCCCC1 represents CgHyo (cyclohexane).
Some of the key elements of the SMILES format:
e Hydrogen atoms are implicit.
e Each atoms is connected to the previous atom in the sequence.
e Parenthesis indicate branches.

o Digits are used to label beginning and end of a cycle.

Single bonds implicit, = used for double bonds, # for triple bonds.

34 /152

Example

_(:0)C3=C(02:0)C=CC(=C3 S(

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
35 /152

Example

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
36 /152

Example

_(:0)C3:C(CZ:O)C:CC(:C3)3(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
37/152

Example

_(:0)C3:C(C2:O)C:CC(:CS)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
38 /152

Example

_(:0)C3:C(C2:O)C:CC(:CS)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
39/152

Example

_(:0)C3:C(C2:O)C:CC(:CS)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
40 /152

Example

_(:0)C3:C(C2:O)C:CC(:CS)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
41/152

Example

_(:0)C3:C(C2:O)C:CC(:C3)8(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
42 /152

Example

_(:0)C3:C(C2:O)C:CC(:C3)8(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
43 /152

Example

_(:0)C3:C(C2:O)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
44 /152

Example

_(:0)C3:C(C2:O)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
45 /152

Example

_(:0)C3:C(C2:O)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
46 /152

Example

_(:0)C3:C(C2:O)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
47 /152

Example

_(:0)C3:C(C2:O)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
48 /152

Example

_(:0)C3:C(C2:O)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
49 /152

Example

_(:0)C3:C(C2:0)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
50 /152

Example

_(:0)C3:C(C2:0)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
51 /152

Example

_(:0)C3:C(C2:0)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
52 /152

Example

_(:0)C3:C(C2:0)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
53 /152

Example

_(:0)C3:C(C2:0)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
54 /152

Example

_(:0)C3:C(C2:0)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
55 /152

Example

_(:0)C3:C(C2:0)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
56 /152

Example

_(:0)C3:C(C2:O)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
57 /152

Example

_(:0)C3:C(C2:O)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
58 /152

Example

_C(:0)C3:C(C2:0)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
59 /152

Example

_C(:0)C3:C(C2:0)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
60 /152

Example

_C(:0)C3:C(C2:0)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
61 /152

Example

_C(:0)C3:C(C2:0)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
62 /152

Example

_C(:0)C3:C(C2:0)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
63 /152

Example

_C(:0)C3:C(C2:0)C:CC(:C3)S(=O)(=O)O

Figure source: Sanchez-Lengeling and Aspuru-Guzik, 2018.
64 /152

Neural networks and SMILES strings

SMILES strings are easily processed by neural networks.
Padding with white spaces can be used to guarantee all strings have equal size.

Recurrent neural networks:

Target
prediction

C C C (o] C C (o] -

1D convolutional neural networks:
Target prediction
*

= e
=]] m m m

AP

C C C C (o] -

65 /152

Pros and cons of SMILES

Advantages:
® Molecules are easily encoded as simple text strings.
® Relatively easy to understand by humans.

® NLP methods can be applied to molecules (data dependent representation).

66 /152

Pros and cons of SMILES

Advantages:
® Molecules are easily encoded as simple text strings.
® Relatively easy to understand by humans.

® NLP methods can be applied to molecules (data dependent representation).

Disadvantages:

® Same molecule is represented by many different SMILES strings. Lack of
invariance to atom ordering! Although canonical SMILES somewhat circumvent
this by choosing a specific ordering.

e Atoms close in the graph may be far away within a SMILES string: short-range
dependencies may be transformed into long-range ones.

67 /152

Graph neural networks

68 /152

Graph neural networks (GNN)

Unlike SMILES, the molecular graph naturally encodes
® |nvariance to permutation of nodes.
® Distances between atoms.

Can we directly work with graphs?

69 /152

Graph neural networks (GNN)

Unlike SMILES, the molecular graph naturally encodes
® |nvariance to permutation of nodes.
® Distances between atoms.

Can we directly work with graphs? Yes!

70 /152

Graph neural networks (GNN)

Unlike SMILES, the molecular graph naturally encodes
® |nvariance to permutation of nodes.
® Distances between atoms.

Can we directly work with graphs? Yes!

Using GNN, which structure computations according to the graph connectivity.

71/152

Graph neural networks (GNN)

Unlike SMILES, the molecular graph naturally encodes
® |nvariance to permutation of nodes.
® Distances between atoms.

Can we directly work with graphs? Yes!

Using GNN, which structure computations according to the graph connectivity.

rctwoh
/arget prediction

72 /152

Graph neural networks (GNN)

Unlike SMILES, the molecular graph naturally encodes
® |nvariance to permutation of nodes.
® Distances between atoms.

Can we directly work with graphs? Yes!

Using GNN, which structure computations according to the graph connectivity.

o'~
!

Graph neural
network

frcouo i
/arget prediction Target prediction

73 /152

Graph neural networks (GNN)

Unlike SMILES, the molecular graph naturally encodes
® |nvariance to permutation of nodes.
® Distances between atoms.

Can we directly work with graphs? Yes!

Using GNN, which structure computations according to the graph connectivity.

Graph neural
network

frctwor, i
/arget prediction Target prediction

GNNs have been developed for more than a decade, but with very rapid recent growth.

74 /152

Graph neural networks (GNN)

Unlike SMILES, the molecular graph naturally encodes
® |nvariance to permutation of nodes.
® Distances between atoms.

Can we directly work with graphs? Yes!

Using GNN, which structure computations according to the graph connectivity.

Graph neural
network

frctwor, i
/arget prediction Target prediction

GNNs have been developed for more than a decade, but with very rapid recent growth.

Many different works: Gori et al. 2005, Scarselli et al. 2005, 2009, Bruna et al. 2014, Duvenaud et al, 2015, Li et
al. 2016, Kipf & Welling 2016, Kearnes et al. 2016, Schiitt et al. 2017, Jin et al. 2017, Gilmer et al. 2017, etc.

75 /152

Graph neural networks (GNN)

Unlike SMILES, the molecular graph naturally encodes
® |nvariance to permutation of nodes.
® Distances between atoms.

Can we directly work with graphs? Yes!

Using GNN, which structure computations according to the graph connectivity.

Graph neural
network

frctwor, i
/arget prediction Target prediction

GNNs have been developed for more than a decade, but with very rapid recent growth.

Many different works: Gori et al. 2005, Scarselli et al. 2005, 2009, Bruna et al. 2014, Duvenaud et al, 2015, Li et
al. 2016, Kipf & Welling 2016, Kearnes et al. 2016, Schiitt et al. 2017, Jin et al. 2017, Gilmer et al. 2017, etc.

We will follow the general definition given by Battaglia et al. 2018. o

Key elements of GNNs

A GNN includes the following (vectorial) variables:
@ {e;«} are features for edges between nodes j and k.

@ {v;}Y, are node features.

© u are global features summarizing the graph properties.

77 /152

Key elements of GNNs

A GNN includes the following (vectorial) variables:
@ {e;«} are features for edges between nodes j and k.
@ {v;}Y, are node features.

© u are global features summarizing the graph properties.

Approach: {ej~x}, {vi}¥, and u are iteratively updated during a forward pass.

Predictions: made by using the final value of u as input to for example an MLP.

78 /152

Key elements of GNNs

A GNN includes the following (vectorial) variables:
@ {e;«} are features for edges between nodes j and k.
@ {v;}Y, are node features.

© u are global features summarizing the graph properties.

Approach: {ej«}, {vi}Y, and u are iteratively updated during a forward pass.

Predictions: made by using the final value of u as input to for example an MLP.

Features

@ (mmm global

() mEmE node

€jx HEEEDI] edge

79 /152

Key elements of GNNs

A GNN includes the following (vectorial) variables:
@ {e;«} are features for edges between nodes j and k.
@ {v;}Y, are node features.

© u are global features summarizing the graph properties.

Approach: {ej«}, {vi}Y, and u are iteratively updated during a forward pass.

Predictions: made by using the final value of u as input to for example an MLP.

Features

@ (mmm global

() mEmE node

€jx HEEEDI] edge

80 /152

Key elements of GNNs

A GNN includes the following (vectorial) variables:
@ {e;«} are features for edges between nodes j and k.
@ {v;}Y, are node features.

© u are global features summarizing the graph properties.

Approach: {ej«}, {vi}Y, and u are iteratively updated during a forward pass.

Predictions: made by using the final value of u as input to for example an MLP.

Features

@ (mmm global

() mEmE node

€jx HEEEDI] edge

81/152

Key elements of GNNs

A GNN includes the following (vectorial) variables:
@ {e;«} are features for edges between nodes j and k.
@ {v;}Y, are node features.

© u are global features summarizing the graph properties.
Approach: {ej«}, {vi}Y, and u are iteratively updated during a forward pass.
Predictions: made by using the final value of u as input to for example an MLP.

Features

@ (mmm global

() mEmE node

€jx HEEEDI] edge

82 /152

Key elements of GNNs

A GNN includes the following (vectorial) variables:
@ {e;«} are features for edges between nodes j and k.
@ {v;}Y, are node features.

© u are global features summarizing the graph properties.
Approach: {ej~x}, {vi}¥, and u are iteratively updated during a forward pass.
Predictions: made by using the final value of u as input to for example an MLP.

Features

@ (mmm global

() mEmE node

€jx HEEEDI] edge

{ej~k} could be initialized to indicate single, double or triple bond.

{vi}¥, could be initialized to indicate atom type, degree, electronegativity, etc.

83 /152

Set functions and auxiliary variables

Set function: input is a set and output is a single element summarizing the input set.

It is invariant to input permutation and accepts a variable number of arguments.

84 /152

Set functions and auxiliary variables

Set function: input is a set and output is a single element summarizing the input set.

It is invariant to input permutation and accepts a variable number of arguments.

Input output
i
® @0

85/152

Set functions and auxiliary variables

Set function: input is a set and output is a single element summarizing the input set.

It is invariant to input permutation and accepts a variable number of arguments.

Input output Input output
® @0

86 /152

Set functions and auxiliary variables

Set function: input is a set and output is a single element summarizing the input set.

It is invariant to input permutation and accepts a variable number of arguments.

Input output Input output Input output
® @0 ® ®

87 /152

Set functions and auxiliary variables

Set function: input is a set and output is a single element summarizing the input set.

It is invariant to input permutation and accepts a variable number of arguments.

Input output Input output Input output
2o '\@@/’

Same output

88 /152

Set functions and auxiliary variables

Set function: input is a set and output is a single element summarizing the input set.

It is invariant to input permutation and accepts a variable number of arguments.

Input output Input output Input output
2o '\@@/’

Same output

Examples: elementwise summation, mean, maximum, etc.

89 /152

Set functions and auxiliary variables

Set function: input is a set and output is a single element summarizing the input set.

It is invariant to input permutation and accepts a variable number of arguments.

Input output Input output Input output
2o '\@@/’

Same output

Examples: elementwise summation, mean, maximum, etc.
GNNs use set functions to summarize...

® edge features of incoming edges to node i:
e +— Sezn({e,"k k= 1, ey N})

o all edge features: € <+ Sedges({€j,x})

® all node features: V <— Snodes({Vi})

90 /152

Set functions and auxiliary variables

Set function: input is a set and output is a single element summarizing the input set.

It is invariant to input permutation and accepts a variable number of arguments.

Input output Input output Input output
2o '\@@/’

Same output

Examples: elementwise summation, mean, maximum, etc.
GNNs use set functions to summarize...

® edge features of incoming edges to node i:
e +— Sezn({e,"k k= 1, ey N})

o all edge features: € <+ Sedges({€j,x})

® all node features: V <— Snodes({Vi})

This creates auxiliary features {&;}, € and v.

91 /152

Set functions and auxiliary variables

Set function: input is a set and output is a single element summarizing the input set.

It is invariant to input permutation and accepts a variable number of arguments.

Input output Input output Input output
2o '\@@/’

Same output
Examples: elementwise summation, mean, maximum, etc.

GNNs use set functions to summarize...

® edge features of incoming edges to node i:
e +— Sezn({e,"k k= 1, ey N})

o all edge features: € <+ Sedges({€j,x})

® all node features: V <— Snodes({Vi})

This creates auxiliary features {&;}, € and v.

92 /152

Set functions and auxiliary variables

Set function: input is a set and output is a single element summarizing the input set.

It is invariant to input permutation and accepts a variable number of arguments.

Input output Input output Input output
2o '\@@/’

Same output

Examples: elementwise summation, mean, maximum, etc.
GNNs use set functions to summarize...

® edge features of incoming edges to node i: @D,
e +— Sezn({e,"k k= 1, ey N})

o all edge features: € <+ Sedges({€j,x})

® all node features: V < Shodes({Vi})

This creates auxiliary features {&;}, € and v.

93 /152

Set functions and auxiliary variables

Set function: input is a set and output is a single element summarizing the input set.

It is invariant to input permutation and accepts a variable number of arguments.

Input output Input output Input output
2o '\@@/’

Same output

Examples: elementwise summation, mean, maximum, etc.

GNNs use set functions to summarize...

® edge features of incoming edges to node i: @D, @ @
€1.4
€4
€24
()—)

e +— Sezn({e,"k k= 1, ey N})
e all edge features: & <— Sedges({€j,c})

® all node features: V <— Snodes({Vi})

This creates auxiliary features {&;}, € and v.

94 /152

Examples of set functions for summarizing incoming edges, all edges and all nodes:

® V< Snodes({Vi})

95 /152

Examples of set functions for summarizing incoming edges, all edges and all nodes:

® V< Snodes({Vi})

The set functions are the equivalent of pooling in CNNs.

96 /152

Examples of set functions for summarizing incoming edges, all edges and all nodes:

® V< Snodes({Vi})

The set functions are the equivalent of pooling in CNNs.

Update functions

GNNs use the following update functions to update edge, node and global features:

ne - - -
o ej,;” — Z/ledge(ej,k, Vj, Vi, u) ° VFEW «— U, (e,-, Vi, u) o u™ Z/[g|o|,a|(e7 v, u)

97 /152

Examples of set functions for summarizing incoming edges, all edges and all nodes:

® V< Snodes({Vi})

The set functions are the equivalent of pooling in CNNs.

Update functions

GNNs use the following update functions to update edge, node and global features:

ney = = =
® €]y < Uedge(€jk; Vj, Vi, 1) ® Vi < Unode(&i, Vi, u) ® u"™" < Ugiobal(€, V, u)

As in CNNs, the same update functions are reused across all nodes and edges.
98 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
ej'?i"" «— Z/Iedge(ejﬂk, Vi, Vi, u)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

99 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
—>for ejk in {€jk} do
ej'?i"" «— Z/Iedge(ejﬂk, Vi, Vi, u)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

100 / 152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
> new euedge(ejk,vj,vk,)
for v, in {v;} do
e +— Segn({e,"k k= 1, ceey
v?ew — L{node(é;, v;, u)
€ ¢ Sedges({€) k})
V< Snodes({vi})
uev ug|oba|(é, _I7 u)
return MLP(u)

Update edge features

N}) # Summarize incoming edges to i
Update features for node i

Summarize all edges
Summarize all nodes

Update global features
Compute prediction from features u

101 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
—>for ejk in {€jk} do
ej'?i"" «— Z/Iedge(ejﬂk, Vi, Vi, u)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

102 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
> el Uedge(®jk, Vjs Vi, 1)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

103 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
—>for ejk in {€jk} do
ej'?i"" «— Z/Iedge(ejﬂk, Vi, Vi, u)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

104 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
> el Uedge(®jk, Vjs Vi, 1)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

105 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
—>for ejk in {€jk} do
ej'?i"" «— Z/Iedge(ejﬂk, Vi, Vi, u)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

106 / 152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
> el Uedge(®jk, Vjs Vi, 1)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

107 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
—>for ejk in {€jk} do
ej'?i"" «— Z/Iedge(ejﬂk, Vi, Vi, u)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

108 / 152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
> el < Uedge(®jk, Vjs Vi, 1)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

109 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
—>for ejk in {€jk} do
ej'?i"" «— Z/Iedge(ejﬂk, Vi, Vi, u)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

110 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
-> ery Uedge(€) k, Vj, Vi, 1)
for v, in {v;} do
e +— Segn({e,"k k= 1, ceey
v?ew — L{node(é;, v;, u)
€ ¢ Sedges({€) k})
V< Snodes({vi})
uev ug|oba|(é, _I7 u)
return MLP(u)

Update edge features

N}) # Summarize incoming edges to i
Update features for node i

Summarize all edges
Summarize all nodes

Update global features
Compute prediction from features u

111 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ej in {eij} do
ejl?,ekw « uedge(ej,k, Vj, Vi, u)

—for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

112 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
ej'?i"" «— Z/Iedge(ejﬂk, Vi, Vi, u)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

>

113 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
ej'?i"" «— Z/Iedge(ejﬂk, Vi, Vi, u)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
—-> VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

114 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ej in {eij} do
ejl?,ekw « uedge(ej,k, Vj, Vi, u)

—for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

115 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
ej'?i"" «— Z/Iedge(ejﬂk, Vi, Vi, u)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

>

116 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
ej'?i"" «— Z/Iedge(ejﬂk, Vi, Vi, u)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
—-> VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

117 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ej in {eij} do
ejl?,ekw « uedge(ej,k, Vj, Vi, u)

—for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

118 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
ej'?i"" «— Z/Iedge(ejﬂk, Vi, Vi, u)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

>

119 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
ej'?i"" «— Z/Iedge(ejﬂk, Vi, Vi, u)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
—-> VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

120 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ej in {eij} do
ejl?,ekw « uedge(ej,k, Vj, Vi, u)

—for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

121 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ej in {eij} do
ejl?,ekw « uedge(ej,k, Vj, Vi, u)

for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i

VI < Unode (€7, Vi, u) # Update features for node i

€ Seqges({€j1}) # Summarize all edges
V < Snodes({Vi}) # Summarize all nodes

u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

X
S

Update edge features

—->

e

L yesn. @

122 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
ej'?i"" «— Z/Iedge(ejﬂk, Vi, Vi, u)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
—-> VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

123 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
ej'?i"" «— Z/Iedge(ejﬂk, Vi, Vi, u)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
> & < Sedges({€j k}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

124 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
ej'?i"" «— Z/Iedge(ejﬂk, Vi, Vi, u)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
>V Snodes({Vi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

125 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
ej'?i"" «— Z/Iedge(ejﬂk, Vi, Vi, u)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
= u"" < Ugiobal (€, V, u) # Update global features
return MLP(u) # Compute prediction from features u

Update edge features

126 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
ej'?i"" «— Z/Iedge(ejﬂk, Vi, Vi, u)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
—return MLP(u) # Compute prediction from features u

Update edge features

> Tar_ge_t
prediction

127 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
eﬁe}(w «— Z/Iedge(ejﬂk, Vi, Vi, u)
for v; in {v;} do
& « Seon({€ik: k=1,...,N}) # Summarize incoming edges to i
VI < Unode (€7, Vi, u) # Update features for node i
€ Seqges({€j1}) # Summarize all edges
V Snodes({Vvi}) # Summarize all nodes
u"" < Usiobal (€, V, u) # Update global features
—return MLP(u) # Compute prediction from features u

Update edge features

> Tar_ggt
prediction

What if the number of layers L is larger than 17

128 /152

The forward pass in a GNN

Input: initial {v;,}";, {ej~x} and u.
for ejk in {€jk} do
ejp’ekw «— Z/Iedge(ej,k, Vi, Vi, u)
for v; in {v;} do
e +— Sezn({e,-,k k=].7 ceey N})
v?ew — Z/{node(é,‘, v;, u)
& Sugas({er})
V< Snodes({Vi})
uev ug|oba|(é, _I7 u)
- return MLP(u)

Repeat for Il =1,..., L

> Tar_ggt
prediction

What if the number of layers L is larger than 17
129 /152

GNNs and message passing
Without u, the information that a node has after completing the forward pass for the
I-th layer is given by the nodes and edges that are at most / hops away.

Example for a single initial node:

o] o [e]

\O \0 o

1=0 I=1 1=2 1=3

Nodes and edges further away than L hops will not share any information without u.

u will allow nodes and edges to access a summary of the current overall graph state.

130 /152

Specific implementations of GNNs

® Message passing neural network (MPNN). Gilmer et al. 2017.

ejq)e‘:\/ < Z/[edge(ej'J(7 Vj, Vi, u) = A(e}':}(‘ia')vk.

VI < Unode(€;, Vi, u) = RNN(E;, v;).

u"" < Ugjopal (€, V,u) = V.

é?ew < Segn({e;,k k= 1, ey N}) = Zk eIk.

V < Shodes({Vvi}) is given by the set2set model from Vinyals et al. (2015).
€ and Seqges are not used.

Includes a fully connected master node.

® Gated graph neural network (GGNN). Li et al. 2016.
Like MPNN, but with soft attention to obtain v:

® ¥ Snodes({vi}) = 22, o (fgate(vi))fup (vi),
where o(-) is the logistic function and fzate and fyp are linear functions.

® Weisfeiler-Lehman network (WLN). Jin et al. 2017.
Like MPNN, but with the following changes:
o e;‘jl"’ <~ Medge(ej,k, Vj, Vi, u) = NN(vk, e}r:Ltial)_
® VW ¢ Unode(€j,vi,u) = NN(&;,v;) when / =1,...,L —1 and
view — ZjeN(i) Linear(vjv) ® Linear(e;’j}tia') @ Linear(v;) otherwise.
® V< Snodes({vi}) = Zi Vi

® Neural graph fingerprints (NGFs). Duvenaud et al. 2015.
Like MPNN, but with Uegge(€j ks Vj, Vi, U) = Vi, Unode (€, vi, u) = NN(E;),
Shodes({Vi}) = >, softmax_layer;(v;) and Ugiobal (€, V,u) =u + ¥

131

152

Publicly available code

® Neural graph fingerprints: https://github.com/HIPS/neural-fingerprint/
Python, autograd, no GPU support.

® Message passing neural networks (and many other graph neural networks):
https://http://moleculenet.ai/
Python, tensorflow.

® Gated graph neural network:
https://github.com/Microsoft/gated-graph-neural-network-samples
Python, tensorflow.

® Weisfeiler-Lehman network:
https://github.com/wengong-jin/nipsi7-rexgen

Python, tensorflow.

GPUs give about 4x speed up when working with small molecules (~20 atoms).

The speed up will increase when working with larger molecules.

https://github.com/HIPS/neural-fingerprint/
https://http://moleculenet.ai/
https://github.com/Microsoft/gated-graph-neural-network-samples
https://github.com/wengong-jin/nips17-rexgen

Results neural graph fingerprints

Solubility dataset: aqueous solubility of 1144 molecules.

Drug efficacy: half-maximal effective concentration (EC 50) against malaria parasite.

Organic photovoltaics: DFT simulations of photovoltaic efficiency of molecules.

Dataset | Solubility [4] Drug efficacy [S] Photovoltaic efficiency [8]
Units | log Mol/L ECjsp in nM percent
Predict mean | 4.29 + 0.40 1.47 +£0.07 6.40 + 0.09
hand-engineered [Circular FPs + linear layer | 1.71 + 0.13 1.13 + 0.03 2.63 +0.09
features Circular FPs + neural net | 1.40 £ 0.13 1.36 £ 0.10 2.00 £+ 0.09
Neural FPs + linear layer | 0.77 £ 0.11 1.15 £ 0.02 2.58 +0.18
Neural FPs + neural net | 0.52 + 0.07 1.16 + 0.03 1.43 + 0.09

Slide source: Duvenaud et al. 2015

133 /152

Results message passing neural networks

QM-9 dataset with 130462 molecules.
Targets: 13 properties approximated by quantum mechanical simulations (DFT).

Performance: ratio of MAE and estimate of chemical accuracy for target.

hand engineered features other graph-based methods
Target BAML BOB CM ECFP4 HDAD | GC GG-NN DTNN | MPNN
mu 4.34 423 449 482 3.34 0.70 1.22 - 0.30
alpha 3.01 298 433 3454 1.75 227 1.55 - 0.92
HOMO 2.20 220 3.09 2.89 1.54 1.18 1.17 - 0.99
LUMO 276 274 426 3.10 1.96 1.10 1.08 - 0.87
gap 3.28 341 532 3.86 2.49 1.78 1.70 - 1.60
R2 3.25 0.80 2.83 90.68 1.35 473 3.99 - 0.15
ZPVE 3.31 340 4.80 24158 1091 9.75 2.52 - 1.27
uo 1.21 143 298 85.01 0.58 3.02 0.83 - 0.45
U 1.22 144 299 85.59 0.59 3.16 0.86 - 0.45
H 1.22 144 299 86.21 0.59 3.19 0.81 - 0.39
G 1.20 142 297 78.36 0.59 295 0.78 842 0.44
Cv 1.64 1.83 236 30.29 0.88 145 1.19 - 0.80
Omega 0.27 0.35 1.32 1.47 0.34 0.32 0.53 - 0.19
Average 2.17 2.08 337 5397 1.35 2.59 1.36 - 0.68

Slide source: Gilmer et al. 2017
134 /152

SMILES vs. GNNs

Datasets:

ZINC: 250,000 drug-like commercially available molecules from the ZINC database.
QM0: Subset of size 108,000 among molecules with 9 atoms (not counting hydrogens).
SMILES: 1D CNN. Strings padded with spaces up to length 120 for ZINC and 34 for QM9.

GNNSs: similar to neural graph fingerprints by Duvenaud et al. 2015.

Results:

Database/Property | Mean ~ECFP GNNs SMILES
ZINC250k/logP 1.14 0.38 0.05 0.16
ZINC250k/QED 0.112 0.045 0.017 0.041
QM9/HOMO, eV 0.44 0.20 0.12 0.12
QM9/LUMO, eV 1.05 0.20 0.15 0.11

QM9/Gap, eV 1.07 0.30 0.18 0.16

SMILES good on QM9 molecules, but much worse results on larger ZINC molecules!

Table source: Gémez-Bombarelli et al. 2017

135 /152

Pros and cons of graph neural networks

Advantages:
e Invariant to order in which atom and bond information is provided.
e Data driven approach for generating graph features.

e Empirically, they seem to have very good predictive performance.

136 /152

Pros and cons of graph neural networks

Advantages:
e Invariant to order in which atom and bond information is provided.
e Data driven approach for generating graph features.

e Empirically, they seem to have very good predictive performance.

Disadvantages:
e Higher computational cost than other neural network models.
e Propagation of local information somewhat limited by depth of network.

e Set functions prevent us from knowing the individual contributions of
nodes or edges in the update functions.

137 /152

Part Il: Reaction prediction

138 /152

Definition and motivation

Chemical reaction: a process by which a set of input molecules called reactants or reagents
is transformed into another set of output molecules called products.

The reaction changes positions of electrons, forming and breaking bonds between atoms.

Reagent
Reactants o Products o
Li /\O/\
+
©/ H)H/ i
reactant 1 reactant 2 product 1 product 2

Predicting products from input reactants and reagents is key to automate the fabrication of
new medicines, energy capturing devices, nanomaterials, etc.

< ; .;f.'.".‘ :

Figure source: Jiang et al. 2017 139 /152

Reaction templates

They specify a molecular subgraph pattern and a corresponding graph transformation.

Can be generated automatically from reaction databases.

Example:
i 11 26

WOHQ N22 10% 2 (o
13 25 N 22
37Ny

1
NH, N 14\
2 5 NN 20 21 N 20 21
\
5 27 15 18 19 18 19
3
,Cl 4 Ng—iz

CI29 12
Reaction template |
,Ca\
I N=Cy . = alioha X
gy g Car ——~ >_C a = aliphatic carbon
Car~NH © Ca~y, ™ Car=aromatic carbon
2

Bonds that change during the reaction (reaction center)

140

152

Reaction templates

They specify a molecular subgraph pattern and a corresponding graph transformation.
Can be generated automatically from reaction databases.

Example:
i 11 26

WOHQ N22 10% 2 (o
13 25 N 22
37Ny

4
NH, N 14\
2 6 N NEC % N\ Vs
5 27 15 18 19 18 19
3
L7 NH,

CI29 12
Reaction template |
C
_N-Cy N o
caTI /ﬁcar >—C Ca = allphatlf: carbon
Ca,\NH (0] ar\ ar C,, = aromatic carbon
2

Bonds that change during the reaction (reaction center)

Since multiple templates can result in a match, another supervised learning method is
used to filter candidate products. Reaction templates are computationally expensive.

141 /152

Reaction templates

They specify a molecular subgraph pattern and a corresponding graph transformation.
Can be generated automatically from reaction databases.

Example:
i 11 26

WOHQ N22 10% 2 (o
13 25 N 22
37Ny

4
NH, N 14\
2 6 N NEC 21 N\ Vs
5 27 15 18 19 18 19
3
L7 NH,

C|29 12
Reaction template |
N-c ’Ca‘
Ca” al Cy = aliphatic carbon
gl gl —— >_Cf" CaI = rpm tic carbon
Ca,\NH2 (0] a,\ ar = @aromatic carbo

Bonds that change during the reaction (reaction center)

Since multiple templates can result in a match, another supervised learning method is
used to filter candidate products. Reaction templates are computationally expensive.

Templates fail to take into account context far away from reaction center.

Figure source: Jin et al. 2017
142 /152

Reaction prediction using GNNs

Jin et al. 2017 use GNNs to predict the reaction center (RC), that is, the set of nodes and
edges where graph edits occur.

The probability of the bond between atoms i and j belonging to the RC is o(NN(v;, v;))
where v; and v; are node features learned by a WLN and o is the sigmoid function.

Top-K bonds selected and all possible products generated and then ranked by another WLN.

(1) Predict Reactivity Scores

Reactant Molecules Graph Representation (WLN)
N 23456 7 8 91011 1213 14 1516 17
NH O 1
o] Me 2
a 3
o B
Cl 5
(3) Candidate Ranking 6
(’) 2) Candidate Generation 7
Cl\j\N/ o C'Y\N’ [. () ~ , . 8
o el N4 0 TS oo °

©)(Me c\)ok/ Me o Me [Me 10

) 1\ c1) ol a A, oAy 1"

SNH OH |(SNH O N (12

—==NH O NH O \Ny o 13
w |l o S wl| o wl| &7 B m
O a g CNAN
[cl cl 15
[~} [~} Cl
\)\ 16

cr

143 /

Results of GNNSs in reaction prediction

Data:

USPTO: 480K chemical reactions extracted from the US patent database.
Atoms have unique ID to easy match them before and after the reaction.

Baseline: template based approach described by Coley et al. 2017.

Accuracy in product identification

USPTO-15K
Method Cov. P@1 P@3 P@5
Coleyetal. 100.0 72.1 86.6 90.7
WLN 90.1 767 856 868

Human and model performance on 80 reactions randomly selected:

Chemist 563 50.0 72.0 638 663 650 400 588 250 163
WLN 69.1

Slide source: Jin et al. 2017

144 /152

SMILES based approach for reaction prediction

Schwaller et al. 2018 use a seq2seq model to solve the reaction prediction problem.

J S

\ 2° o=nN
T (|) Cl T/

Input sequence: Cclcc(Cl)n(C)nl . O=[N+]([|O-])O > O=S(=0)(0)O
Target sequence: Cclnn(C)c(Cl)c1[N+](=0)[O-]

T, . a))a, a) ({8, ..a))

@c @0 i /> Based on existing technology for
[Attention] language translation problems.

The model is formed by two LSTMs
(encoder and decoder) using an
attention mechanism.

{Br,c,.. A2} <s> C 5

Figure source: Schwaller et al. 2018
145 /152

Results seq2seq method in reaction prediction

Architecture and hyperparameters selected by a Bayesian optimization method.
Beam search of width 10 is used for selecting most probable decoding sequences.
Baseline: WLN method described by Jin et al. 2017 and based on reaction centers.

Evaluation on the full USPTO dataset:

Jin's USPTO test set,? accuracies in [%)]

Method Top-1 Top-2 Top-3 Top-5
WLN?® 79.6 87.7 89.2
Our model 80.3 84.7 86.2 87.5

Slide source: Schwaller et al. 2018

146 /152

Limitations of WLN and seq2seq methods

WLN:

e Jin et al. 2017 assumes independence of bonds in reaction center (RC).

® |[nefficient two stage training process: RC prediction and product ranking.

seq2seq:

® Same as SMILES-based machine learning methods.

® Sampled sequences are not guaranteed to be valid SMILES strings.

147 /152

Take home messages

Machine learning (ML) can accelerate and automate the molecule discovery process.

Molecules are different from typical data and create their own challenges for ML.

Molecule representations...
@ Fingerprints are fast and accurate but handcrafted and not data dependent.
@ SMILES enable NLP methods but lack invariance and create long-range dependencies.

© Graph neural networks are a state-of-the-art method with few limitations.

Reaction prediction...
@ Machine learning methods can achieve very good predictive performance.
@ Some of the best performing methods are based on SMILES or GNNs encodings.
© But they still have limitations.

148 /152

References |

® Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. and Dahl, G. E. (2017, July).
Neural Message Passing for Quantum Chemistry. In International Conference on
Machine Learning (pp. 1263-1272).

® Sanchez-Lengeling, Benjamin, and Aldn Aspuru-Guzik. " Inverse molecular design using
machine learning: Generative models for matter engineering.” Science 361.6400 (2018):
360-365.

® Rogers, David, and Mathew Hahn. " Extended-connectivity fingerprints.” Journal of
chemical information and modeling 50.5 (2010): 742-754.

® Gori, M., Monfardini, G., and Scarselli, F. (2005). A new model for learning in graph
domains. In Proceedings of the International Joint Conference on Neural Networks
(IJCNN), volume 2, pages 729734. IEEE.

® Scarselli, F., Yong, S. L., Gori, M., Hagenbuchner, M., Tsoi, A. C., and Maggini, M.
(2005). Graph neural networks for ranking web pages. In Proceedings of the 2005
IEEE/WIC/ACM International Conference on Web Intelligence, pages 666672. IEEE.

® Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2009b). The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):6180.

® Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2014). Spectral networks and
locally connected networks on graphs. In Proceedings of the International Conference
on Learning Representations (ICLR).

149 /152

References |1

® Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T.,
Aspuru-Guzik, A., and Adams, R. P. (2015). Convolutional networks on graphs for
learning molecular fingerprints. In Advances in Neural Information Processing Systems,
pages 22242232.

® Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. (2016). Gated graph sequence
neural networks. In Proceedings of the International Conference on Learning
Representations (ICLR).

® Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph
convolutional networks. In Proceedings of the International Conference on Learning
Representations (ICLR).

® Kearnes, S., McCloskey, K., Berndl, M., Pande, V., and Riley, P. (2016). Molecular
graph convolutions: moving beyond fingerprints. Journal of computer-aided molecular
design, 30(8):595 608.

® Schiitt, K. T., Arbabzadah, F., Chmiela, S., Mller, K. R., and Tkatchenko, A. (2017).
Quantum-chemical insights from deep tensor neural networks. Nature communications,
8, 13890.

® Jin, W., Coley, C., Barzilay, R., and Jaakkola, T. (2017). Predicting organic reaction
outcomes with weisfeiler-lehman network. In Advances in Neural Information Processing
Systems (pp. 2607-2616).

® Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi V, Malinowski M,
Tacchetti A, Raposo D, Santoro A, Faulkner R, Gulcehre C. Relational inductive biases,
deep learning, and graph networks. arXiv preprint arXiv:1806.01261. 2018 Jun 4.

150 /152

References Il

® Vinyals, Oriol, Samy Bengio, and Manjunath Kudlur. " Order matters: Sequence to
sequence for sets.” arXiv preprint arXiv:1511.06391 (2015).

® Gémez-Bombarelli R., Wei J., Duvenaud D., Hernndez-Lobato J. M., Sdnchez-Lengeling
B., Sheberla D., Aguilera-Iparraguirre J., Hirzel T., Adam R. P. and Aspuru-Guzik A.
Automatic Chemical Design Using a Data-Driven Continuous Representation of
Molecules, ACS Central Science, 2018

® Jiang, Bo, Cuiling Li, Omer Dag, Hideki Abe, Toshiaki Takei, Tsubasa Imai, Md
Shahriar A. Hossain et al. " Mesoporous metallic rhodium nanoparticles.” Nature
communications 8 (2017): 15581.

® Coley, C.W., Barzilay, R., Jaakkola, T.S., Green, W.H. and Jensen, K.F., 2017.
Prediction of organic reaction outcomes using machine learning. ACS central science,
3(5), pp.434-443.

® Schwaller, P., Gaudin, T., Lanyi, D., Bekas, C. and Laino, T. (2018). Found in
Translation: predicting outcomes of complex organic chemistry reactions using neural
sequence-to-sequence models. Chemical science, 9(28), 6091-6098.

151 /152

Thanks!

