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Part III: Bayesian Optimization of

Molecules
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Bayesian optimization

Objective

Acquisition Function α(x)

1 Get initial sample.

2 Fit a model to the data:

p(y |x,Dn) .

3 Select data collection strategy:

α(x) = Ep(y |x,Dn)[U(y |x,Dn)] .

4 Optimize acquisition function α(x).

5 Collect data and update model.

6 Repeat!
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Discovering new optimal molecules
Library generation

Fragments Bonding 
rules

Performance 
evaluation

Interesting 
molecules

22

1

Bayesian optimization (BO) can accelerate the search!

Challenges:

• The search space is discrete and structured.
• BO output should exhibit regularities found in real-world molecules.

Solution: combine BO methods with generative models of molecules.

Gómez-Bombarelli?, Wei?, Duvenaud?, Hernández-Lobato?, Sánchez-Lengeling, Sheberla,
Aguilera-Iparraguirre, Hirzel, Adams and Aspuru-Guzik, 2018. (? equal contributors).

4 / 118



Discovering new optimal molecules
Library generation

Fragments Bonding 
rules

Performance 
evaluation

Interesting 
molecules

22

1

Bayesian optimization (BO) can accelerate the search!

Challenges:

• The search space is discrete and structured.
• BO output should exhibit regularities found in real-world molecules.

Solution: combine BO methods with generative models of molecules.
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Molecules encoded as character strings using SMILES language.

A generative model on SMILES is obtained using a seq2seq VAE.

CC O

CC O

CC O

Continuous
data-driven 

representation
Encoder

Decoder
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Sampled molecules have statistics similar to those of real molecules:

Nearby latent representations decode into similar molecules:
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Easy to add a surrogate model from latent space to property.

Continuous latent
representation

Encoder Decoder

Predictor Property
estimate

SMILE STRING:
CC(NC1=CC=C(O)C=C1)=O

SMILE STRING: 
CC(NC1=CC=C(O)C=C1)=O

HO

H
N

O
HO

H
N

O

Gradient-based optimization can be used in latent space.
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Local optimization of OLED molecules

We optimize the delayed fluorescence decay rate κTADF, as estimated from
TDDFT computations on 150,000 molecules.
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However, many of the sampled SMILES strings are not valid molecules.
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Take home messages

Generative models of molecues...

1 Data-driven approach to molecule generation, no expertise needed.

2 Sampled molecules are realistic, unlike those generated with rules.

3 Create a continuous latent space which is useful for optimization.

Grammar variational autoencoder...

1 Produces a larger fraction of valid molecules when decoding.

2 Produces better predictions of molecule properties from latent space.

3 Molecule optimization results are improved.
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A lot of work going on this area...

Adding semantic constraints into GVAE:

• Dai, Tian, Dai, Skiena, and Song, 2018.

Generative models of graphs:

• Li, Vinyals, Dyer, Pascanu and Battaglia, 2018.

• Liu, Allamanis, Brockschmidt and Gaunt, 2018.

• Jin, Barzilay and Jaakkola, 2018.

Semi-supervised generative models:

• Kang and Cho, 2018.

Using GANs insead of VAEs:

• Guimaraes, Sanchez-Lengeling, Outeiral, Farias and Aspuru-Guzik, 2017.

• De Cao and Kipf, 2018.

and many more!
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Part IV: Predicting Electron Paths
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Motivation

Current generative models for molecules have limitations: will not tell you how
to synthesize the generated molecules.

OH

OHF

N

OH

Cl
OH

Statistical
Model

We want models that generate synthetic routes instead of just molecules!

Perhaps too challenging. We just focus for now on reaction prediction.
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Electron path

A chemical reaction is characterized by a sequential movement of electrons
alternating between breaking and forming bonds.

Represented by an arrow pushing diagram showing the path followed by
electrons (detailed steps of the reaction):

Goal: predict the electron path from input molecules.
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Prediction problem

Given the electron path, we directly obain the final products of the reaction.

Most reaction prediction approaches directly predict products from input.
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Why predict electron paths?

• Easy to interpret: if the model makes a mistake, its easy to see
where, and maybe even why.

• Sparse: typically reactions only affect 3-7 atoms out of 10-50.
Modeling an electron path enforces this sparsity.

• Chemically consistent: easy to incorporate chemical constraints
directly into a model for predicting electron paths.

• Generalizable: as electron paths exhibit regularities across different
reactions, we naturally generalize to new inputs.
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ELECTRO: an algorithm for electron paths

→ Select starting atom A.
→ Repeat:

→

Select atom B bonded to A and remove 2 electrons from bond A-B.

→

Should we stop?

→

Select new atom A and add bond B-A.

→

Should we stop?

→

Compute resulting electron path.

→

Compute resulting products.

→ Bradshaw, Kusner, Paige, Segler and Hernández-Lobato, Arxiv, 2018.
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ELECTRO: an algorithm for electron paths
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A probabilistic model

Electron path a = (a1, a2, . . . , aT ) defined by sequence of selected atoms.

Electrons removed and added alternatively from pairs of consecutive atoms.

We assume a is sampled from

pθ(a|M1) =

[
T∏
t=1

pθ(at |at−1,Mt)pθ(CONT|Mt)

]
pθ(STOP|MT+1) ,

where

• θ are the model parameters.

• Mt represents the current state of molecules.

• pθ(STOP|Mt) = 1− pθ(CONT|Mt) is the probability of stopping.

How to specify pθ(at |at−1,Mt) and pθ(CONT|Mt)?
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Forming node and graph embeddings

→ Initialize atom features h0,i .

→ For t = 1 to T :

→

Compute atom messages mt,i =
∑

j∼i Atype(j∼i)ht−1,j .

→

Update atom features ht,i = RNN(mt,i ,ht−1,i ).

→

Compute graph embedding hG = fdown{
∑

i σ[fgate(hT ,i )]fup(hT ,i )}.
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Stopping probability and next atom in path

The stopping probability is defined as pθ(STOP|Mt) = σ(fstop(hG)).

For the next atom, we use a softmax layer with inputs si = MLP(hT ,i ,CONTEXT)
and corresponding binary masks mi ∈ {0, 1} to remove invalid choices:

pθ(at = i |at−1,Mt) =
mi exp(si )∑
j mj exp(sj)

.
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Training data

USPTO: 480K chemical reactions extracted from the US patent database.

Atoms have unique ID to easy match them before and after the reaction.

Approximate electron paths obtained for 73% of USPTO by using simple rules.
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Results

Beam search to find top-K predictions for the electron path.

Multiple electron paths can result in same product (harder prediction task).

LITE variant ignores reagent information.

Product predictionElectron path prediction

Bonus: interpretable explanation for product prediction task.

115 / 118



Qualitative analysis

Easy to identify what went wrong!

First choice in green is incorrect, but ‘‘chemically reasonable”.

Second choice in magenta is correct.
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Take home messages

ELECTRO...

1 predicts electron paths with high accuracy.

2 produces an output that is very easy to interpret by chemists.

3 exploits that only a small number of atoms interact during the reaction.

4 also predicts final products with high accuracy.
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Take home messages

Generative models of molecues...

1 Data-driven approach to molecule generation, no expertise needed.

2 Sampled molecules are realistic, unlike those generated with rules.

3 Create a continuous latent space which is useful for optimization.

Grammar variational autoencoder...

1 Produces a larger fraction of valid molecules when decoding.

2 Produces better predictions of molecule properties from latent space.

3 Molecule optimization results are improved.

ELECTRO...

1 predicts electron paths with high accuracy.

2 produces an output that is very easy to interpret by chemists.

3 exploits that only a small number of atoms interact during the reaction.

4 also predicts final products with high accuracy.
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