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Planting the Seeds of Probabilistic Thinking:

Foundations, Tricks and Algorithms

Probabilistic machine learning approaches task of describing of data, to complex
systems or our world using the language and tools of probability. Aimost all of machine
learning can be viewed in probabilistic terms, making probabilistic thinking fundamental.
It is, of course, not the only view. But it is through this view that we can connect what we
do in machine learning to every other computational science, whether that be in
stochastic optimisation, control theory, operations research, econometrics, information
theory, statistical physics or bio-statistics. For this reason alone, mastery of probabilistic
thinking is essential.

The aim of this tutorial is to develop flexible and broad tools that will support your
probabilistic thinking. Part 1, Foundations looks at the philosophy of machine learning,
builds an understanding of the model-inference-algorithm paradigm, and the explores
fundamental areas of machine learning - we'll look at deep learning, kernels and
reinforcement learning. Part 2 Tricks, will look at 6 individual probabilistic problems and a
tricks to solve them, using these tricks to develop flexibility in our thinking. Part 3:
Algorithms will look at how the foundations and tricks combine to develop machine
learning algorithms, with a specific focus on the area of deep generative models.
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Planting the Seeds of
Probabilistic Thinking

Part I: Foundations



Shakir Mohamed

Learning Objectives

1. Language to think about the
Philosophy of Machine Learning

2. Understand the
Model-Inference-Algorithm paradigm

3. Use probabilistic thinking applied to
problems in supervised, unsupervised,



Probability

Some Definitions for probability

Logical Probability |

&?’ Statistical Probability | Degree of confirmation of

Frequency ratio of items | | a hypothesis based on
logical analysis

Probability as

Propensity
Probability used
for predictions

Subjective Probability |
Probability as a ‘
degree of belief

Probability is sufficient for the task of
reasoning under uncertainty
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Probability

Probability as a Degree of Belief

- Probability is a measure of the belief in a

proposition given evidence.
A description of a state of knowledge.

No such thing as Inherently Different observers
the probability subjective in that with different
of an event, since the it depends on the iInformation will
value depends on the believer’s have different
evidence used. information beliefs.
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Probabilistic Quantities

Probability p(x) p*(x) q(x)
Conditions p(x) >0 /p(x:)dx =1
p(x|z)p(z)
B Rul — —
ayes Rl plafx) = L2
Parameterisation pe(x|z) = p(x|z; 0)
Expectation Ce (x|2) | [ (X @)| = /pg (x/z) f(x; ¢)dx
Gradient Vof(x;0) = (f)fg;; ?)
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Statistical Operations

Estimation Hypothesis
and Learning Inference Testing

(Summarisation><:>< Comparison )

Data Experimental

Modelling Enumeration Design
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Probabilistic Models

Model: Description of the
world, of data, of potential
scenarios, of processes.

Bad
wea

A probabilistic model writes
out these models using the
language of probability

prob(traffic Jam)
prob(sirens | Accident)

prob(peak hour | Traffic Jam)

Most models in machine

learning are probabilistic.

You can choose what to learn: Just
the mean. Or the entire distribution.

Probabilistic models let you learn
probability distributions of data.
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Centrality of Inference

Inference
Artificial General Intelligence

Summarlsatlon Comparlson ) will be the refined instantiation

of these statistical operations.
Data
Enumeration

The core questions of
AGlI will be those of
probabilistic inference
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Linear Regression

Generalised Linear Regression Ly

n=w'x+b
!

p(y|x) = p(ylg(n); 0)

n = Bx

e The basic function can be any linear

fU n Ct I O n ’ e . g ) afﬁ n e ’ CO nVO I U t I O n . Target ) Regres;ion Link Inv link Activation
Real Linear Identity Identity
, Binary Logistic Logit log ﬁ Sigmoid Sigmoid
. ° ° [ 1
e g(.)isaninverse link function that we'l | | o |
Binary Probit Inv Gauss Gauss CDF Probit
° ° . —1
refer to as an activation function. by Gambel ot o O
log-log e ¢
log(—log(n))

Binary Logistic Hyperbolic Tanh

. . . . . Tangent

- tanh(n)
O pt I m I se t h e n e g a t Ive Io g I I ke I I h OOd Categorical Multinomial Multin. Logit Softmax
. Counts Poisson log(p) exp(v)
L —_ 10 g p y g 77 6 Counts Poisson \/(u) v2
) Non-neg. Gamma Reciprocal % %
Sparse Tobit max max(0;v) ReLU
Ordered Ordinal Cum. Logit
o(px—mn)
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Deep Networks

Recursive Generalised Linear Regression

e Recursively compose the basic linear functions.
e Gives a deep neural network.

Ely]l = hp o...0h;ohy(x)

non-linear, parametric models
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Likelihood

Probabilistic Model Likelihood function
p(y|x) = p(y|h(x); ) L(0) = logp(yn|xn;6)
n Likelihood of parameters

[; Efficient Estimators

| . .. 1\i¥Tésts with Good Po 7 ‘
| o Statistically efficient (Cramer-Rao lower | |

e Likelihood ratio tests
bound)
: : : e Can construct small
e Asymptotically unbiased, consistent | . :
: . - confidence regions
e Maximum entropy (principle of indifference) | A e ——

L —

| | Pool Information
| | « Combine different data sources
o Knowledge outside the datacan |

be used, like constraints on domain |

'Widely-applicable
| ¢« Handle data that is incompletely

observed, distorted, samples with bias
e Can offset or correct these issues.

e R — — —

Prescribed Likelihoods

Misspecification: Inefficient estimates; or confidence intervals/tests can fail Completely.

— ——ar— e —— — e — ———— — e —
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Estimation Theory

Probabilistic

Model p(ylx) — p(y\h(x); 9)

function

Likelihood | °(9) = Z log p(yn |%n; 0)

Maximum Likelihood

Optimisation arg max L(g)
Objective 0

e Straightforward and natural way to learn parameters
e Can be biased in finite sample size, e.g., Gaussian
variances with N and N-1.

e Easy to observe overfitting of parameters.
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Estimation Theory

Probabilistic

Model p(8ly,x) o< p(y|h(x); 0)p(0)

Likelihood E(O) _ Zlogp(yn\xn; 0) + %R(G))

function

j\-lyiz )
/N :
\ |
/ \ i
// \\ : \
Gaussian (LZ) Laplace (L1) Lp-norm Spike and Slab i":'l}Af" T
Maximum a Posteriori (MAP) h * Generalises the MLE (uniform prior) |
| * Shrinkage: shrink parameters back |
S to initial beliefs. |
Optlfnlsa.tlon arg imax ,C(H) * Not every regulariser corresponds a |
Olajzedlie 0 ~ valid probability distribution. |

Shakir Mohamed ﬂ DeepMind




Regularisation

‘C(O) — Zlogp(yn‘xfﬁ 9) + %R(O))

4+ Regularisation is essential to overcome the limitations of
maximum likelihood estimation.

4+ Other names: Regularisation, penalised regression, shrinkage.

A wide range of available regularisation techniques:

e Large data sets

e |nput noise/jittering and data augmentation/expansion.
e |2 /L1regularisation (Weight decay, Gaussian prior)

e Binary or Gaussian Dropout

e Batch normalisation
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MAP Estimation

FI T o
Type of Solution A\
What is maximum is not /
necessarily typical H 5
MAP
; \
; q \\

b
\
\
\
Complete clement s \
OOJOOOOOOOOOOOOOJ0000000000JOOOOOOJOOOOQOQOOOOOOO §~

initial ssmple with N "o"o"o"o‘i"o bobesasés SIS I,
elements 1T,
! oooJooooooooooooooo:"‘.‘,-"v,'.' " h
2 00000000000000000000 /| ﬁ
' ; 90000000000000000009 /| q
MAP

Ny bootstrap ;
samples 4 9990909990090 0 000900 |

N, 90000000000000000000

Uncertainty | Parameterisation sensitive
q Can be reported using confidence Location of max will change

intervals or bootstrap estimates. | depending on parameterisation
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Invariant MAP

Popular Example

Changelon Ny |dp Bernoulli ply =1lp) = p
variables p(®) = p(p) |5
Uniform p(,u) —

Mode of the prior QbMAP — arg Imax p(¢)

$€|0,1] ‘ /\
Parameterisation 1 Parameterisation 2 Q — \\
Transform 1= ¢ p=1-(1- (/5)2 \\\ // ‘
s p(0)=20 | p(6)=201-9) | |
MAPEst. o ap = 1 drap =0 o

Clear sensitivity: Sensitive to units, affects interpretability, affects
gradients, learning stability, design of models.
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Invariant MAP

Use a modified probabilistic model that removes sensitivity
Invariant MAP p(y\h(x); H)p(B) ‘Z(B)‘ 3

e Use the Fisher information
e Connection to the natural gradients and trust-region

optimisation.
e Uninformative priors.

Proposed solutions have not fully dealt with the underlying issues.
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Bayesian Analysis

Issues arise as a consequence of:
* Reasoning only about the most likely solution, and

* Not maintaining knowledge of the underlying variability (and averaging
over this).

Motivates learning more than the mean.
This is the core of a Bayesian philosophy. p(e‘% X) X p(y|h(x); 9)p(9)

Pragmatic Bayesian Approach for

Probabilistic Reasoning in Deep Networks.
(and all of machine learning)

Bayesian reasoning over some, but not all parts of our models (yet).
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Bayesian Analysis

Interested in reasoning about two important quantities

siggieall  p(ylx) = [ plylh(x):6)p(6)d0
Posterior p(0ly,x) o p(y|h(x); 0)p(6)

e |n Bayesian analysis, things that are not. observed
must be integrated over - averaged out.

e This makes computation difficult.

e |ntegration is the central operation.

=

‘Intractable Integrals: Will often see this phrasing. |

| « Don't know the integral in closed form
e Very high-dimensional quantities and can't
compute (e.g., using quadrature)

e — e —
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Learning and Inference

Machine learning makes a distinction between

Statistics, no inference and learning:
distinction between .
o m— e Inference: reaso.n.abo.ut (.and. compute)
only inference (or unknown probabillity distributions.
estimation). e (Parameter) Learning is finding point

estimates of quantities in the model.

Bayesian statistics,
all quantities are

probability distributions, so Software Decision making
there is only the problem engineering, inference is and Al, refer to learning
of inference. the forward evaluation of a In general as the means of
trained model (to get understanding and acting
predictions). based on past

experience (data).
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Two Streams of ML

8§ Bayesian Reasoning

. . - Mainly conjugate and linear models
+ Rich non-linear models for y conjug

classification and sequence prediction. I - Potentially intractable inference,

computationally expensive or long

+ Scalable learning using stochastic : .
simulation time.

approximation and conceptually simple.

+ Unified framework for model building,

Easily com le with other gradient- . i iSi '
+ Easily composable with other gradient inference, prediction and decision making

based methods

+ Explicit accounting for uncertainty and

- Only point estimates o
Y P variability of outcomes

- Hard to score models, do selection and

: L + Robust to overfitting; tools for model
complexity penalisation.

selection and composition.

Natural to consider the marriage of these approaches: Bayesian Deep Learning

Shakir Mohamed ﬁ DeepMind



Bayesian Regression

Probabilistic models over functions
Prior p(@) — N(O‘O, I)

Observationmodel p(y|x,0) = Categorical(m(x;0))

Posterior p(@ \y, X)

functions and maintaining uncertainty )
over functions.

e Ways of learning distributions over J Q

e Difficult in parametric models (like deep '
networks) because of high-dimensional C) 7
parameter space. A

e Many ways to learn the posterior
distribution. Focus of Part llI
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Density Estimation

Learn probability distributions over the data itself

@ @ e Can learn distributions of some things
7 and point estimates of others.

e Deep Generative Models and
Unsupervised learning - more in Part lli

Factor Analysis / PCA
2~ N(z|p, X)

y~N(yWz,o,1)
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Decision-making

Probabilistic models of environments and actions

Prior over actions a ~ p(a)
Interaction only u(s,a) ~ Environment (a)
Reward/Utility p(R(s)|a) x exp(u(s,a))

> :
External Environment Observation/ Setup < common in

Sensation
Environment eXperImental deS|gn,

causal learning,
reinforcement learning.

Action

Decision-maker <
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Probabilistic Dualities

Basis Function Regression

f(x) =w' ¢(x;0); {w,08} ~ N(0,0°T)

' r 2
.fuilz)cf;g)ln.\' Y = f(X) + C, €~ J\/ (0 O'y)

Kernel
Machines

/a_\'mi an

inference

Move from primal variables to dual variables

Kernel trick and methods

Infinite
limits

Gaussian
Processes

Probability distributions over functions

p(f) =N(0,K) p(y|lf) =N(f, %)

Gaussian processes
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Deep and Hierarchical

Hierarchical Model: models where the (prior) probability distributions can be
decomposed into a sequence of conditional distributions

p(z) = p(z1|22)p(22|23) - . . p(2L-1]|20)P(2L)

0900 0009 &
POP 99¢ (=)

g oY R
oN /@b

O O TmE 0C

OO () ORO

fee d?::'\)” ard Deep directed Hierarchical Mixture Deep Multi-view model/
. generative model of Experts Information Bottleneck
regression
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Foundations

How will you approach your ML research and practice?

In general: ;‘4 For the ML Core: |

Human-centred,  Probabilistic and pragmatic in approach
interdisciplinary approach *

“2" Sociological

% Componential

G WL u
qf"' &

& Psychological

Vi B
B8
£ ‘*\z&’ Vi

Physiological |

Sun’s Phenomenological e
Levels R | o —
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Architecture-Loss

O: Softmax
A
P*: Plus
4 AN
T* :Times B®: Weight
AR N
W*: Weight S'": Sigmoid
A
P': Plus
4 AN
T Times B":Weight
AR N
W': Weight X :Input

1. Computational Graphs

fs

/’l’fs—>$ (x)

2. Error propagation

Shakir Mohamed
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Model-Inference-Algorithm

o1 4 l_ii!'l_'!;l.‘l.'[rl-l.I:Il'"--u DL L L LI 1111119331333 Ty i i 1310131301333 10 0330 SN YNNI nEY

— 3. Algorithms e —

1. Models 2. Learning
Principles
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Directed and Undirected Fully-observed

/\ . ,<,:’:i-—‘;‘;\“\“\ o
&\ N \

N0 Parametric, Non-parametric | jtent Variable
And semi-parametric
fz)
| X
Models @
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Learning Principles

Maximum Two Sample Method of
Likelihood Comparison Moments
Variational Approx Bayesian Transportation
Inference Computation methods

Laplace
approximation

Maximum a
posteriori

Integr. Nested Max Mean

¥ 7

Cavity Methods . Nt 72
Laplace Approx Discrepency €
Expectation Markov chain M
Maximisation Monte Carlo
Noise Sequential
Contrastive Monte Carlo Learnin g
Principles

Shakir Mohamed ﬂ DeepMind



Algorithms

1 4 .)._—“l"l_‘!_'ﬁ-'l.'lf'l‘l‘l'-i'“l'ﬂ L L L LI 1 1111833313330y T g i 1310132130 113371030330 Na S NuNS NI NUNRTnEY

A given model and learning principle can be implemented in many ways.

Convolutional neural network

Implicit Generative Model
+ penalised maximum likelihood

+ Two-sample testing

e e Optimisation methods o U : : .
€. nsupervised-as-supervised learnin
TR AN (SGD, Adagrad) flz) P P 9

] & = & NN e e Approximate Bayesian Computation (ABC)
'3 Pl S Regularisation (L1, L2, e Generative adversarial network (GAN)
- = +=:-  batchnorm, dropout) X
| Latent variable model /\ Restricted Boltzmann Machine
z .

+ variational inference + maximum likelihood

Contrastive Divergence
Persistent CD

Parallel Tempering
Natural gradients

Shakir Mohamed ﬁ DeepMind

e VEM algorithm
e Expectation propagation

L’f/) e Approximate message passing
e Variational auto-encoders (VAE)




Deep Learning, Estimation theory,

Subjective Probability | ne
{ hierarchical models, dualities

Probability as a degree of belief

Probabilistic descriptions Probabilistic Model Likelihood function
of systems and data 000 90 @
E[y] QO 9O &

Bad
Weather

S
O O
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Last Time ...

A L L L L L L L L L I 1111013323 NIt T i 31813231V 13311 U333 1S ISR RN IRuNRTnENt

— 3. Algorithms —

¥ '
\\ \ .l ! 4 ) | /
W W T Convolutional neural network N W J»

AN + penalised maximum likelihood | '

AR e Optimisation methods
SO e (SGD, Adagrad)

3 t B }"’s-j‘-iyvf-',?(-, ~ e Regularisation (L1, L2,

] | = L-_ ~~--.  batchnorm, dropout) l

Latent variable model

§ z + variational inference |
1. Models o e VEM algorithm 2. Learning
° e Expectation propagation . -
(x)® Approximate message passing PrInCIPIes
\— e Variational auto-encoders (VAE)

Shakir Mohamed




Planting the Seeds of
Probabilistic Thinking

Part ll: Tricks



Learning Objectives

1. Develop tools to manipulate
distributions by studying 6
probability questions.

‘r

— — —

2. Build connections between
concepts in machine learning and
those in other computational sciences.

N R -
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Inferential Questions

Probabilistic dexterity is needed to solve the fundamental
problems of machine learning and artificial intelligence.

Evidence Moment Parameter
Estimation Computation Estimation
p(x) = / p(x,z)dz  E[f(z)x] = ] f(z)p(z|x)dz  p(8]xo:n)

p(X¢41|X0:¢) J=E, [ / C(x¢)dt|xo, u)]
0

Hypothesis Testing Experimental Design

B = logp(X|H1) — logp(X‘Hz) 1G = D[p(xt:T‘u)Hp(xO:t)]

Shakir Mohamed ﬁ DeepMind



Identity Trick

Transform an expectation w.r.t. distribution p,
into an expectation w.r.t. distribution q.

/ p(%) £ (x)dx =|Epo) [ ()]

200190 )]|= / 1(x)g(x, f)dx

Do this by introducing a probabilistic one ;%

Shakir Mohamed ﬂ DeepMind



Identity Trick

p(x) = /P(X|Z)p(z)dz
@ i) = [ pixia)pla)fia

/\ ) Re-group/re-weight p(X) — /p(X\Z)Zq?(—gq(z)dz
Condltlons (2"
* g(z)>0, when p(x|z)p(z) #0O. p(x) = Eq(z) (x|z) —z)

e (z) is known/easy to handle.

Shakir Mohamed ﬂ DeepMind



Importance Sampling

p(x) — Eq{z) (Xlz)(_§

1
Monte Carlo _ (s) (s)
70 = 5 3 o)

2%) ~ q(2)

/\ Identity Trick Elsewhere

« Manipulate stochastic gradients
« Derive probability bounds
« RL for policy corrections

Shakir Mohamed ﬂ DeepMind



Hutchinson’s Trick

Compute the trace of a matrix: O(log det(X)) = Tr(X10X)

e KL between two Gaussians.
e (Gradient of a log-determinant.

Tr(A)
Sfez’] =1

(2 +mm')
Tr(AT) = Tr(AB[zT])
HEEEEE

Tr(A) = E[z' Az
Trace property
1111

Sampling z randomly, compute Trace using linear systems of equations

Shakir Mohamed ﬁ DeepMind
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Probability Flow Tricks

. Planar Flow
Distribution and sample I ~~ p(:l?)
g = g(#:0)
2y [9 (23 0)]

d
Change of Variables p(y) :p(x) d_g
X

Makes entropy

computation and Compute

backpropagation easy.
é?f(z)) f(z) =2z +uh(w'z+b)
0z det(I+ab' )=1+a'b

=+
-

Begin with a diagonal log det (
Gaussian and improve by
change of variables.

Ty T — !
Triangular Jacobians allow det(I T us ) o (]' Tu S) S h'w

for computational efficiency. Linear time computation of the determinant and its gradient.
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Normalising Flows

Sampling and Entropy

Z K =f,(-o...of2c>o.f|(z0)

K
log gre(zx) = log go(2z0) — Y _ logdet
k=1

§ oy L
.t' v ‘I ()
c 0|
: : -
by det )
g Normalizing !
- \
Flows \
S \
nE \\
— \
\\
Y
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Stochastic Optimisation

Common gradlent problem

e Don't know this expectation
in general.

e Gradient is of the parameters
of the distribution w.r.t. which
the expectation is taken.

1. Pathwise estimator: Differentiate the function f(z)
2. Score-function estimator: Differentiate the density q(z|x)

Typical problem areas
e Sensitivity analysis
e Generative models and inference
e Reinforcement learning and control
e Operations research and inventory control
e Monte Carlo simulation
e Finance and asset pricing
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Reparameterisation Tricks

Distributions can be expressed as a
transformations of other distributions.

z ~ p(z) 2~ qy(2)
Z — g(E, Qb) " p(E) = Inversion Method

; 0
g Samplers, one-liners and change-of-variables
de
p(z) = || ple) == |p(2)dz| = |p(e)d]

Shakir Mohamed ﬁ DeepMind



Pathwise Estimator

(Non-rigorous) Derivation

VoEqg)f(2)] = V¢/q¢(z f(z Known transformation

z ~ p(2)

Other names When to use
e Unconscious statistician + Function fis differentiable
e Stochastic backpropagation - Density g is known with a suitable transform of a
e Perturbation analysis simpler base distribution: inverse CDF, location-scale
e Reparameterisation trick transform, or other co-ordinate transform.
e Affine-independent inference - Easy to sample from base distribution.

Shakir Mohamed ﬂ DeepMind



Log-derivative Trick

Score function is the derivative of a log-likelihood function.

V4 (2)
q¢(2)

Vlogqs(z) =

Several useful properties

Expected score ERUSMESAVES -3 C I IENl

V(4 (2) _
qe(2)

]Eq(z) jvlf) log Qf,*)(z)] — /q(Z) V /Q(,*J(Z) =V1=90

VIV 108 p(c 0)] = 1(6) = Eygu[V log p(x:6)¥o logp(x )
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Score-function Estimator

~ / 152) G 4o(2)§ (2)dz

Log-deriv

Gradient

Control
Variate

Other names When to use
e Likelihood ratio method e Function is not differentiable, not analytical.
e REINFORCE and policy gradients e Distribution g is easy to sample from.
e Automated & Black-box inference e Density g is known and differentiable.

Shakir Mohamed ﬂ DeepMind



Bounding Tricks

An important result from convex analysis lets us move
expectations through a function:

For concave functions f(.)

f(Elz]) = E[f(z),

- -
=
N—

Logarithms are strictly concave allowing us to use Jensen’s inequality.

log / p()gl@) dx > / p(x) log g(x)da

Other Bounding Tricks

Bounding Trick Elsewhere e Fenchel duality
Optimisation; Variational Inference; Rao- e Holder’s inequality
Blackwell Theorem; e Monge-Kantorovich Inequality

Shakir Mohamed ﬁ DeepMind




Evidence Bounds

p(x) = [ p(xiz)p(z)iz

i) = [ pixiz)p(a) 8

px) = [ plxia)fa(a)ia

og0x) 2 [ ate)10g (plxla) ) )

log / p(2)g(z)dz > / p(z) log g(z)dz

Lower bound |
Shakir Mohamed ﬂ DeepMind




Density Ratio Trick

The ratio of two densities can be computed using a classifier of
using samples drawn from the two distributions.

p*(x)  ply=1x)
¢(x) ply=-1x)

Density Ratio Trick Elsewhere
- Generative Adversarial Networks (GANSs)

« Noise contrastive estimation, Classifier-ABC
« Two-sample testing

« Covariate-shift, calibration

Shakir Mohamed ﬁ DeepMind




Density Ratio Estimation

Asslgnlabels {y1,...,yn}t={+1,...,+1,-1,...,—1}

: . p*(x) ; p(y|x)p(x)
' T - P

N P00 plxly=1
ax) — plxly = 1)

: ~ ply=+1x)p(x) /ply = —1|x)p(x)
S

%
Class probabilit
b Lk q(x)

Computing a density ratio is equivalent to class probability estimation.
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Strengthen your probabilistic dexterity.

Identity %

Hutchinson'’s i[zz'] =1

Flows p(y) = p(x) d—g

Log-derivative Vs log qe(z) = Vols2)

_w(®)

Reparameterisation z=g(e,¢) €~ p(e)

() ~ ply = =1 hl

Shakir Mohamed ﬁ DeepMind
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Last Time ...

020020
o-®
1.0-@
- e-e
16-@
4@
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O

feed?for&ard Deep directed Hierarchical Mixture Deep Multi-view model/
gressio generative model of Experts Information Bottleneck

Model-Inference-Algorithm

Subjective Probability |
Probability as a *
degree of belief

______________
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Manipulating Integrals

Moment
Computation

Evidence
Estimation

Parameter
Estimation

2)|x] = / f(2)p(zlx)dz  p(B]xo.n)

p(xt+1 ‘XO:t)

Hypothesis Testing

Experimental Design

B =logp(x|Hy) —logp(x|Hy) ZG = D|p(x¢.7|u)|p(x0:t)]
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Your Tricks

U ey

Strengthen your probabilistic dexterity.

Identity ——

Hutchinson'’s i[zz'] =1

Flows p(y) = p(x) d—g

Log-derivative Vs log qe(z) = Vols2)

_w(®)

Reparameterisation z=g(e,¢) €~ p(e)

o) ~ 2(y = —1H) h}

Shakir Mohamed ﬂ DeepMind
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Planting the Seeds of
Probabilistic Thinking

Part lll: Algorithms



Learning Objectives

Shakir Mohamed

1. Have knowledge of different
types of probabilistic models
for unsupervised learning.

2. Understand generative algorithms
(pixelCNN, VAEs, GANs) within the L
model-inference-algorithm framework.

3. Build awareness of the breadth of
applications of generative models.

ﬁ_ DeepMind



Beyond Classification

Mov n .
o. € .bey.o . Understand and simulate
associating inputs
how the world evolves
to outputs
Recognise objects in the Detect surprising
world and their factors events in the world

of variation

Establish concepts as Anticipate and
useful for reasoning and generate rich plans
decision making for the future

Shakir Mohamed



Generative Models

Ao ARy A by A model that allows us to
(g o "-',‘x."f,:;t" P "-“\l ,/";' "I 3 i ', \ }('l-’:' ‘— W
0 | o R L e learn a simulator of data
A R o R ,.
\ Pa \ G \ ’

\- =

Models that allow for
(conditional) density
estimation

Approaches for
unsupervised learning of
data

Characteristics are:
- Probabilistic models of data that

allow for uncertainty to be captured.
- High-dimensional data.

- Data distribution is targeted.

Shakir Mohamed ﬂ DeepMind
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Applications

Super-resolution,
Compression,
Text-to-speech

Planning,
Exploration
Intrinsic motivation
Model-based RL

Proteomics,
Drug Discovery,
Astronomy,
High-energy physics

Shakir Mohamed



Assistive Technologies

~ 7\ ™\ ram P e an 1N N\ ' ™ £ N N\ 4 A
Output @ @ @ © ®© @ @ @ ®@© @ @ ®@© ® ®© @

Hidden
Layer

Hi, how can | help?

Hidden
Layer

Hidden
Layer

nnt © © O 0000000000000

Fully-observed conditional generative model
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Compression-Communication

original bicubic SRGAN
(”l 59dB/0. 64’?1 (20 §4dB/(J 6“67)

JPEG

]

JPEG-2000

4§

.‘
)
y

s

VAE1

j

b g5 " | Compression rate:
VAE2 ’ . | 0.2bits/dimension
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Generative
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Main device 0 S A

Video from work of Memo Aktem
Shakir Mohamed
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Advancing Science

Moon

S—EOTOC
Chargrd =adrom ¢4 For
Neral Hadron (2,5, hecrron
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body _ -1
Te a.( M.~ e:=
N A o ‘1' f i
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- { roniec
1T N ) (‘(A : P
“_\_. o a 0,.\ . i
0/ e
ve @/ |
.9 @
3
field
, image | ’
' pixed | 4 i 'poinl’ spread
tub function
g | f S . QL
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Advancing Healthcare

; ,/;b ANALYZES DATA
/ FRom '000¢ OF

ff ( é ) PRTIENTS
LEAD'NG ':~ ® USING /@
Chuse \

ELECTRONIC WEALTH RECORDS

,Jhl r

HD‘ ~ & 8

2
§.

= O 13 EXWES
Prior Net ‘3 u S%g TARGETED c,.) . ::w :\o‘ T
Latent Space . 4 U>EM
Sample = WORKING
z.2.Z..... VERY HARD 24|47
o ~ 10 JDENTIFY CAL ABLE
P ‘ 2 SOLVING A
. ' — ML ALloWS CoNpyrere TO EVERY HOUR COUNTS CMALL DATA PROBLEM
- l [ | [TEACH M6 ROECTS ® bl \,F,RRN
Image 0 3 DCF'NE CLORE EACH MONE QMART ENGINEERES €
L~ - CMORKING \N HEALTHEAR
U-Net GOAL —— LEARN FROM (THER S \A OPEN EHRs
—6ET BEST POSSIBLE SCORE N
™ Quauity BASED HC SYSTEM

KR COLLECTIVE NEXT

¢
Patient B ~

Shakir Mohamed




Types of Generative Models

Fully-observed models

| Latent
variable 2
models

Shakir Mohamed

Undirected Models
e
@&

Sum-Product Networks




Types of Generative Models

Design Dimensions

<+ Data: binary, real-valued, nominal, strings,
Images.

<+ Dependency: independent, sequential,
temporal, spatial.

<+ Representation: continuous or discrete
<+ Dimension: parametric or non-parametric

<+ Computational complexity
<+ Modelling capacity

< Bias, uncertainty, calibration
<+ Interpretability

Shakir Mohamed



Fully-observed Models

Model Parameters are
global variables.

6 Fully-observed models

: Q o Model observed data directly
9 without introducing any new
unobserved local variables.

Stochastic activations
& unobserved
random variables are

local variables.

R

L1 Cat(xl 7'(')

Lo Cat(atz 7T(X1))

x; ~ Cat(x;|m(x<pn))

p(x) = [ [ plaslf(x<i:0))

L2,
0
e
O
>
>
0
X
L
©
>

All conditional probabilities
described by deep networks.
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Properties

+ Can directly encode how observed points are related.
+ Any data type can be used
+ For directed graphical models:

+ Parameter learning simple: Log-likelihood is directly computable,
no approximation needed.

+ Easy to scale-up to large models, many optimisation tools available.
- Order sensitive.
- For undirected models,

- Parameter learning difficult: Need to compute normalising
constants.

- Generation can be slow: iterate through elements sequentially, or
using a Markov chain.

Shakir Mohamed ﬁ DeepMind



Directed

NADE, EoONADE
Fully-visible sigmoid
belief networks

Pixel CNN/RNN
RNN Language mod.
Context tree switching

Normal Means
Continuous
Markov Models
N-AR(p)
RNADE

Discrete Continuous

Boltzmann Machines

Discrete Markov Gaussian MRFs
Random Fields Log-linear models
Ising, Hopfield

and Potts Models

Undirected

Shakir Mohamed i’ DeepMind




Latent Variable Models

V4 Z
Latent variable models
f f@ Introduce an unobserved J

J(z) ‘ local random variables that | J(z)

+ @ represents hidden causes. .j‘; v
X
Prescribed models Implicit models

Use observer likelihoods and Likelihood-free or

assume observation noise. simulation-based models.

Diggle and Gratton (1984); Mohamed and Lakshminarayanan (2016)

Shakir Mohamed ﬁ DeepMind



Prescribed Models

DRAW
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Properties

+ Easy sampling.
+ Easy way to include hierarchy and depth.
+ Easy to encode structure believed to generate the data

+ Avoids order dependency assumptions: marginalisation of latent
variables induces dependencies.

+ Latents provide compression and representation the data.

+ Scoring, model comparison and selection possible using the
marginalised likelihood.

- Inversion process to determine latents corresponding to a input
is difficult in general

- Difficult to compute marginalised likelihood requiring
approximations.

- Not easy to specify rich approximations for latent posterior
distribution.

Shakir Mohamed ﬁ DeepMind




Cascaded Indian Sigmoid Belief Net
Buffet process Deep auto-regressive
Hierarchical Dirichlet Jl networks (DARN)

process

Non-parametric ,
Indian buffet process A Deep Gaussian

Dirichlet process Deep PIOSESS
mixture Discrete Recurrent Gaussian

Process
GP State space model

Nonlinear factor

Hidden Markov Model analysis
Discrete LVM Nonlinear Gaussian
Sparse LVMs . Continuous belief network
Direct/ -
) Deep Latent Gaussian
Linear

. (VAE, DRAW)
Parametric

PCA, factor analysis
Independent
components analysis

Gaussian process LVM

Gaussian LDS
Latent Gauss Field

Shakir Mohamed s DeepMind



Implicit Models

Change of variables for invertible functions

z ~ p(z) of —1 i Implicit models
p(x) = p(z) |det P |
(/ Transform an unobserved
/& noise source using a
parameterised function.
| 1024 | *l_ ; :}E‘:’_ Stride 2 > , Lﬁ:fi{‘i‘%éiif“i;::%
100 z ::>4 T C:Z'E’; i ;j::-:‘ 5;",:: ______;::‘::-3}
3 7)) }Er_——_—‘_—‘_—:—‘_—‘_—:——_—‘_—:—‘_—‘_}i::ﬂ s | e || Sindes
8 : -
s f 7~ N (O I) Project and reshape CONV 1 stidez 18 32\ |Stide 2
E o 7 CONV 2 CONV 3 64
S
q) CONV 4 -
C -Iq-; X = f(Z; 9) G(2)
3 = The transformation function is parameterised by a linear or

deep network (fully-connected, convolutional or recurrent).

Shakir Mohamed ﬂ DeepMind



Properties

+ Easy sampling, and natural to specify.
+ Easy to compute expectations without knowing final distribution.
+ Can exploit with large-scale classifiers and convolutional networks.

- Difficult to satisfy constraints: Difficult to maintain invertibility,
and challenging optimisation.

- Lack of noise model (likelihood):
- Difficult to extend to generic data types
- Difficult to account for noise in observed data.

- Hard to compute marginalised likelihood for model scoring,
comparison and selection.

Bedrooms

Convolutional generative
adversarial network

[ - B ! | & i o
— _':-._ . d i 3 ru.-'!fu-' E ‘L - J . .. ;:- -' = ,
Shakir Mohamed becoMind




Stochastic One-liners and

' 0
! 0
' 0
g Differential Equations inverse sampling :
W Hamiltonian and Distrib. warping
g Langevin SDE Normalising flows &
W Diffusion Models GAN generator nets [§
g Non- and volume Non- and volume K&
W preserving flows preserving transforms [
' 0
Diffusions * ' Functions
Continuous CiMe _ _ _ _ _ _ _ _ . o o e oo e e e e e Discrete time

Shakir Mohamed i’ DeepMind



Model-Inference-Algorithm

z z~ q(z/x)l

M Inference e Generator
odel B R —
e Network I 7 oy U (S0 O i -
q(z Ix) +
i lxreal l lxgenl
¥ ~p(x / Z) A D
Prescribed latent Implicit latent variable
variable models and models and estimation-
variational inference by-comparison
Variational Autoencoders Generative Adversarial
(VAES) Networks (GANSs)

Shakir Mohamed ﬂ DeepMind



Model Evidence

Model evidence (or marginal likelihood, partition function):
Integrating out any global and local variables enables
model scoring, comparison, selection, moment estimation,
normalisation, posterior computation and prediction.

We take steps to improve the model @
ewdence for glven data samples

/\M\

Integral is intractable in general and
requires approximation.

f(z)

f(z) Learnlng pr|n<:|ple Model Ewdence

/ p(x,2z)dz

< _F - _ _ e =

Basic idea:
Transform the integral into an
expectation over a simple,

known distribution.
Shakir Mohamed ﬁ DeepMind



Variational Inference

— By llog p(x12)] — K Llg(2)[[p(2)

This bound is exactly of the form we are looking for.

 Variational free energy: We obtain a functional and are free to choose
the distribution g(z) that best matches the true posterior.

- Evidence lower bound (ELBO): principled bound on the
marginal likelihood, or model evidence.

- Certain choices of g(z) makes this quantity easier to
compute. Examples to come.

Identity | Bounding T N
Shakir Mohamed ﬂ DeepMind




Variational Methods

_ Variational Principle
, General family of methods for approximating
complicated densities by a simpler class of densities. §

Approximation class

True posterior

Deterministic approximation procedures
with bounds on probabilities of interest.

Fit the variational parameters.

Shakir Mohamed



Variational Bound

Interpreting the bound:

log p

Approx. Posterior

S - |‘yA —

- Approximate posterior distribution g(z): Best match to true

posterior p(zly), one of the unknown inferential quantities of interest to
us.

« Reconstruction cost: The expected log-likelihood measure how well
samples from q(z) are able to explain the data y.

- Penalty: Ensures the the explanation of the data g(z) doesn’t deviate
too far from your beliefs p(z). A mechanism for realising Okham'’s razor.

Shakir Mohamed ﬂ DeepMind



Variational Bound

2| [ L)oo

=

Approx. Posterior

Some comments on q:

- Integration is now optimisation: optimise for q(z) directly.
- | write g(z) to simplify the notation, but it depends on the data, g(z/x).

- Easy convergence assessment since we wait until the free energy (loss)
reaches convergence.

- Variational parameters: parameters of q(z)
- E.g., if a Gaussian, variational parameters are mean and variance.

« Optimisation allows us to tighten the bound and get as close as
possible to the true marginal likelihood.

Shakir Mohamed ﬂ DeepMind



Real Posteriors

Require flexible approximations for the types of posteriors we are likely to see.

Shakir Mohamed



Mean-Fields

Mean-field methods assume that the distribution is factorised.

] .1 -iF:'- v,
True Posterior --.‘:-:_!'-..-

-,

M ost Expressive Least Expressive

)

Fully-factorised

( z) o< p(z|2)p(2) amr(2

s
||
™ —
PQ
§

Restricted class of approximations: every dimension (or subset
of dimensions) of the posterior is independent.

Shakir Mohamed



Structured Mean-field

Structured mean-field: introduce dependencies into our factorisation.

True Posterior Structured Approx. Fully-factorised

() (@)
@ ® @ @

Most Expressive : Least Expressive
I
¢*(2|z) o< p(z|2)p(z)  q(2) = | [ an(zal{z}imn)  amr(zle) = ] | a(z)
k k

Shakir Mohamed



Latent Gaussian Models

Examples: GP regression or DLGM.

z~N<z|o 1 yfvp(y\fe(?«'))
=TI

F(y,q) = Eq(z)llog p(y|2) ZKL q(zi)|Ip(zs

4 = 2
Shakir Mohamed ﬂ DeepMind



Families of Approximations

True Posterior Families of Posterior Approximations Fully-factorised
Normalising Structured mean-field Covariance models
flows N
— ,'/-\ O] +|:|:
4y @000 ©

i Auxiliary variables Mixtures

& B e

© ©0 000

Most Expressive : Least Expressive
I
q* (z|z) o p(z|2)p(2) aur(zlz) = | | a(z)
k

Shakir Mohamed [;0 DeepMind



Variational Optimisation

4 | ].0gp :
Approx. Posterior

- Variational EM
- Stochastic Variational Inference

- Doubly Stochastic Variational
Inference

- Amortised Inference | |

Shakir Mohamed ﬂ DeepMind



Variational EM

F(x,q) = Eq(z)[log p(x[z)| — K L|q(z)||p(z)]

Alternating optimisation for =t —IT I
the variational parameters and KLEqu*] k 5T
then model parameters (VEM). Fen Y MR-
SOy W :
Repeat: T .

Estep ¢ x VyuF(X,q) Var. params

M-step 0 ox Vo F(X,q) Model params

E M

p(x,2)
~ /(---)Qo(Z|X)dZ > V, —

16 (2]x) 7"

Shakir Mohamed



Amortised Inference

Repeat:

E-step (compute
,. —— , e e A A A R AT RO S 500 ) Instead of So|ving for every

Fori=1,..N } : , :
: observation, amortise using a model.

| | #n o VoEq, ) llog po(xalzn)] = VoK Lla(za)lIp(2)]

z~q(zl x)

1
0 o N ; Eq, ()| Vo 1og po(xn|2n))

 Inference network: g is an encoder, an inverse model, Inference
recognition model. Network
« Parameters of g are now a set of global parameters used qg(z Ix)
for inference of all data points - test and train.
« Amortise (spread) the cost of inference over all data.
« Joint optimisation of variational and model parameters. 1
 Inference networks provide an efficient mechanism for [l
| posterior inference with memory | e

Shakir Mohamed ﬁ DeepMind



Stochastic Gradients

p(x‘. Z) \
gy (z|x)~”

/LHMAZXMZ_*‘!IEHi'

Doubly stochastic estimators

Pathwise Estimator
When easy to use transformation is

available and differentiable function f.

= Ep (o) [vqbe(g(Ezw?(z)))]

2~ qy(2) :
z = g(e,¢) €~ ple)

Reparameterisation

Shakir Mohamed

Score-function estimator
When function f non-differentiable and

q(z) is easy to sample from.

= Eq2)f0(2) Vg log ge(2z))]

q DeepMind



Variational Autoencoder

Approx. Posterior Reconstruction
Inferen
Model CrEnee

Stochastic encoder-decoder system to (% 12) Network
[ ] [ J o (] /
implement variational inference. q(z 1x)

- Model (Decoder): likelihood p(x|z). i
- Inference (Encoder): variational distribution g(z|x) .
. Transforms an auto-encoder into a generative model  *~7*'?

Specific combination of variational inference in latent

variable models using inference networks
Variational Auto-encoder

But don’t forget what your model is, and what inference you use.

Shakir Mohamed ﬁ DeepMind



Learning by Comparison

For some models, we only have access to an unnormalised
probability or partial knowledge of the distribution.

@ q(x)

Basic idea:
Transform into

learning a model of
*
p*(x) the density ratio.

We compare the
estimated distribution q(x) to
the true distribution p*(x)

Interest is not in estimating the marginal probabilities, only in how they are related.

Shakir Mohamed ﬁ DeepMind



Estimation by Comparison

- Density Estimation
by Comparison

Two steps
1. Use a hypothesis test
or comparison to
obtain some model to
tells how data from our
model differs from

observed data. / \

Hy:p" =qp vs. p* # qo
L0, )

2. Adjust model to Density Difference Density Ralio
sk

better match the data re =P — (o

distribution using the / |

comparison model =0 [ T |

from step 1. | 2

P N = J‘ |

Max Mean Moment Bregman '
Discrepency Matching ~ Divergence Estimation ~ JDivergence

x v w X

- -

f(u) =ulogu — (u+ 1) log(u + 1)
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Adversarial Learning

Scoring Function
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Generatlve Adversarlal Networks
Alternatmg optimisation m(;n mglx f (X ‘9 ¢)
" Comparison loss 6 o¢ VgE (4 [log Dg(x)| + VgE, (2 [log(1 — Dg(x)]
Generative loss ¢ —V(b]Eq(z) [log(l — De(f¢(z))]

Instances of testing and inference: z ~ p(2)

 Unsupervised-as-supervised learning P xI" = fy(2)
o Classifier ABC

e Noise-contrastive estimation
o Adversarial learning and GANs

Density-ratio Reparameterisation
Shakir Mohamed ﬁ DeepMind




Method of Moments

Moment estimator Tangent of posterior odds.

hi(hi—1; oo )f—» , _ ,
. p(y = +1|z) o
= Vo log - =V €T
5 Vg fo(2) § m(O) pe(s) [f(S)] o 108 p(y = —1 ‘T) ¢f¢([’)
: :
o> |2 F = |[Ep+ o) [f ()] = Ep(z) [f (95 (2))]][
v¢f¢1 (l’) HH
»1 —»
-ZU
-—> o [ « Consistent estimators: the number of moments
is greater than the number of model
Z T T parameters.
i S « Features should not be not co-linear.
Model go(2) o) » More stable than adversarial training.
* T ? » Does not require frequent updating of the
classifier.

mgen Lreal
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Convergent Approaches

- 7
i A d KL ‘\ A —d (,“J - -~ - cw e »
> A > | Fé ~ >
Generat ; \ A \ $ } 3
enerator Enccder Generator
* Encoder Generator Encoder Generator f ‘ ‘
Lreal :Bgcn f + * ‘ Tree || Tgoen
\ '/ Treal Tree L l Lrer l v
Dy, A £ A c o Ll D¢
(a) DCGAN (b) VAE (d) AAE (e) AAE++/AAE-GAN

F(q,0) = Eqy, (212 [log pe(x|z)] — KL[g4(z

2+ (0 K Lg(2]%) ||p(2)] = K L{g(z)||p(z)] +1

e Replace density ratios by classifiers, replace posteriors with

x|)||p(2)]

q(z|x), p* (x)]

implicit models,

* Views from optimal transport and connections to integral probability metrics.
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Environments and Rewards

Environment as a generative process:
® An unknown likelihood;
® Not known analytically;
® Only able to observe its outcomes.

Action Prior

-
u(s,a) ~ Environment(a) Environment
| or Model

p(R(s)|a) x exp(u(s,a)) p(R(s,a))

All the key inferential questions can now be asked in this simple framework.

Shakir Mohamed ﬁ DeepMind



Planning-as-Inference

Simplest question

What is the posterior distribution over actions?
Maximising the probability of the return log p(R).

Variational inference in the hierarchical model

| F(0) = Evaio [R(s,0)] - KLlno(als) [p(a)] |

Action Prior
a

Recover policy search methods:

® Uniform prior over distributions Environment
@ Continuous policy parameters or Model
® Can evaluate environment, but not differentiate. P(R(s,a))

Shakir Mohamed ﬁ DeepMind



Policy Search
}—(9) — 4:7r(a|s) [R(Sva)] o KL[WH(aIS)”p(a)]

Policy gradient using score-function gradient

)|

Vg log T (a|s

Action Prior

B Appearance of the entropy penalty is natural and
alternative priors easy to consider.
® Can easily incorporate prior knowledge of the action

space.

® Use any of the tools of probabilistic inference available. Environment

® Easily handle stochastic and deterministic policies. or Model
P(R(s,a))

Shakir Mohamed ﬂ DeepMind



log p(zlx)

Hierarchical Planning

Prior
zlx

Action
Inference

q(a, ,Iz)

Action Prior

pla, [z)

Y

log p(a, ;Iz)

f

z -Inference
q(z Ix)

Environment

or Model
P(R la, x)

4
“q(a,z|x)

Shakir Mohamed

v

log p(Rla, x)
Variational MDP .

()] + i (al2)

alz)] — aK Ligo(z[x) [P

>




With a more realistic expansion as
graphical model
® Derive Bellman’s equation as a
different writing of message
passing.
® Application of the EM algorithm for
policy search becomes possible.
® Easily consider other variational
methods, like EP.
® Both model-free and model-based
methods emerge.

Shakir Mohamed

Action Prior

a

Environment
or Model

P(R(s.a))




True posterior

KL[q(z|y)lIp(2|y)]

Approximation class

Model
p(xz)

Inference
Network

q(zIx)

Shakir Mohamed

Planning, x

Super-reselution,
Exploration

Compression.
Teat-to-speech

Intrinsic motivation

. Model-based RLL
Proteomics,

Drug Discuvery.,
Astronomy, z
H:gh-cnorgy physices
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Probabilistic Thinking

Foundations | Tricks | Algorithms

Shakir Mohamed

Research Scientist, DeepMind
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Not exhaustive list, and many references to be updated.

Probabilistic Thinking
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