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Many questions in science are causal

Climatology: Economy:

Neuroscience:Medicine:
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Contents of this tutorial

Causality is clearly an important notion in daily life and in science.

But how should we formalize the notion of causality?

How to reason about causality?

How can we discover causal relations from data?

How to obtain causal predictions?

How do they differ from ordinary predictions in ML?

That is what you will learn in this tutorial!
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Probabilistic Inference vs. Causal Inference

Probabilistic Inference (traditional statistics / machine learning)

Models the distribution of the data

Focuses on predicting consequences of observations

Useful e.g. in medical diagnosis: given the symptoms of the patient,
what is the most likely disease?

Causal Inference

Models the mechanism that generates the data

Also allows to predict results of interventions

Useful e.g. in medical treatment: if we treat the patient with a drug,
will it cure the disease?

Causal reasoning is essential to answer questions of the type: given the
circumstances, what action should we take to achieve a certain goal?
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Causation 6= Correlation
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Causal relations

Definition (Informal)

Let X and Y be two distinct variables of system. X causes Y if changing
X (intervening on X ) leads to a change of Y .

Causal graph represents causal relationships between variables graphically.

Example

X1 X2

X1 and X2 are
causally unrelated

X1 X2

X1 causes X2

X1 X2

X2 causes X1

X1 X2

X1 and X2 cause
each other

X1 X2

X3

X1 and X2 have a
common cause X3

X1 X2

X3

X1 and X2 have a
common effect X3

Joris Mooij (UvA) MLSS 2018: Causality 2018-08-30 7 / 121



Direct causation

Let V = {X1, . . . ,XN} be a set of variables.

Definition

If Xi causes Xj even if all other variables V \ {Xi ,Xj} are hold fixed at
some values, then

we say that Xi causes Xj directly with respect to V

we indicate this in the causal graph on V by a directed edge Xi → Xj

Example

X1 X2

X3

X1 causes X2;

X1 causes X2 directly
w.r.t. {X1,X2,X3}

X1 X2

X3

X1 causes X2;

X1 does not cause X2 directly
w.r.t. {X1,X2,X3}

X1 X2

X3

X1 causes X2;

X1 causes X2 directly
w.r.t. {X1,X2,X3}
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Direct vs. indirect causation: Example

Each stone causes all subsequent stones to topple.

Each stone only directly causes the next neighboring stone to topple.

Causal graph:

X1 X2 X3 · · · X7 X8 X9
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Perfect interventions: Example

Suppose we intervene by keeping the second stone fixed in an “upright”
position (e.g. by glueing it to the floor), an operation that we denote by
do(X2 = upright).

Before the intervention, the causal graph is:

X1 X2 X3 X4 · · · X7 X8 X9

After the intervention do(X2 = upright), the causal graph is:

X1 X2 X3 X4 · · · X7 X8 X9

If we keep the second stone fixed, it is no longer affected by the other
stones.
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Perfect interventions

Definition (Informal)

A perfect (“surgical”, “atomic”) intervention on a set of variables X ⊆ V ,
denoted do(X = ξ), is an externally enforced change of the system that
ensures that X takes on value ξ and leaves the rest of the system
untouched.

The concept of perfect intervention assumes modularity: the causal
system can be divided into two parts, X and V \ X , and we can make
changes to one part while keeping the other part invariant.

Note

The intervention changes the causal graph by removing all edges that point
towards variables in X (because none of the variables can now cause X ).
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Confounders: Definition

Informally: a confounder is a latent common cause.

Definition

Consider three variables X ,Y ,H. H confounds X and Y if:

1 H causes X directly w.r.t. {X ,Y ,H}
2 H causes Y directly w.r.t. {X ,Y ,H}

Example

X Y

H

X Y

H
H2 H3

X Y

H

X Y

H

X Y

H

X Y

H
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Confounders: Example

Wealth might confound chocolate consumption and Nobel prize winners.
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Confounders: Graphical notation

We denote latent confounders by bidirected edges in the causal graph:

Example

X Y ≡ X Y

H

, X Y

H
H2 H3

, . . .

X Y ≡ X Y

H

, X Y

H
H3

, . . .

X Y ≡ X Y

H

, X Y

H
H2

, . . .
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Causal Cycles: Definition and Example

Let X ,Y be two variables in a system.

Definition

If X causes Y and X causes Y , then X and Y form a causal cycle.

Example (Damped Coupled Harmonic Oscillators)

Two masses, connected by a spring, suspended from
the ceiling by another spring.

Variables: vertical equilibrium positions Q1 and Q2.

Q1 causes Q2.

Q2 causes Q1.

Causal graph:

Q1 Q2

Cannot be modeled with acyclic causal model!

Q1

Q2
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Cycles: Relevance in Climatology

“Part of the uncertainty around future climates relates to important feedbacks
between different parts of the climate system: air temperatures, ice and snow

albedo (reflection of the sun’s rays), and clouds.” [Ahlenius, 2007]
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Cycles: Relevance in Biology

“Feedback mechanisms may be critical to allow cells to achieve the fine balance
between dysregulated signaling and uncontrolled cell proliferation (a hallmark of
cancer) as well as the capacity to switch pathways on or off when needed for
physiologic purposes.” [McArthur, 2014]
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Graph Terminology

Definition

A graph G that consists of directed and bidirected edges is called
Directed Mixed Graph (DMG).

If i1 → i2 → · · · → ik in G then i1 is ancestor of ik (i1 ∈ anG(ik)).

G is called cyclic if it contains a directed cycle:

i1 i2 . . . ik

The strongly connected component of a node i ∈ G is the set of
nodes j ∈ G such that i and j are each other’s ancestors.

If G does not contain such a directed cycle, it is called acyclic, and
known as an Acyclic Directed Mixed Graph (ADMG).

If, in addition, G does not contain any bidirected edges, it is called a
Directed Acyclic Graph (DAG).
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Defining Causality in terms of Probabilities?

When looking for a more quantitative treatment of causality, it is a natural
idea to try to define causality in terms of probabilities.

A näıve example of such an attempt could be:

Attempt at a definition

Given two binary random variables A,B. If

A precedes B in time, and

p(B = 1 |A = 1) > p(B = 1 |A = 0)

then A causes B.

This does not work, as exemplified by Simpson’s paradox.

Exercise

Please make Exercise 1.
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Simpson’s Paradox

Example (Simpson’s paradox)

We collect electronic patient records to investigate the effectiveness of a
new drug against a certain disease. We find that:

1 The probability of recovery is higher for patients that took the drug:

p(recovery | drug) > p(recovery | no drug)

2 For both male and female patients, the relation is opposite:

p(recovery | drug,male) < p(recovery | no drug,male)

p(recovery | drug, female) < p(recovery | no drug, female)

Does the drug cause recovery? I.e., would you use this drug if you are ill?

Note: Big data and deep learning do not help us here!
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Quantitative Models of Causality

Problems like these have historically prevented statisticians from
considering causality.

Nonetheless, different approaches have been proposed to model causality
in a quantitative way:

Potential outcome framework

Causal Bayesian Networks

Structural Causal Models (SCMs)

We will use SCMs, as they are arguably the most general of the three:

SCMs can model cycles naturally (natural connection to ubiquitous
ODE models)

Acyclic SCMs are closed under marginalization (can efficiently handle
latent variables)

SCMs can model counterfactuals (provides alternative to potential
outcome framework)

SCMs generalize Causal Bayesian Networks
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Structural Causal Models: Concepts

SCMs turn things upside down: rather than defining causality in terms of
probabilities, probability distributions are defined by a causal model,
thereby avoiding traps like Simpson’s paradox.

The system we are modeling is described by endogenous variables;
endogenous variables are:

observed,
modeled by structural equations.

The environment of the system is described by exogenous variables;
exogenous variables are:

latent (unobserved),
modeled by probability distributions,
not caused by endogenous variables,
provide the “source” of randomness.

Each endogenous variable has its own structural equation, which
describes how this variable depends causally on other variables.

SCMs are equipped with a notion of perfect intervention, which gives
them a causal semantics.
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Structural Causal Models: Example

Endogenous variables (binary):

X : the battery is charged
Y : the start engine is operational
S : the car starts

Exogenous variables (latent, independent, binary):

EX ∼ Ber(0.95)
EY ∼ Ber(0.99)
ES ∼ Ber(0.999)

Structural equations (one per endogenous variable):

X = fX (EX ) = EX

Y = fY (EY ) = EY

S = fS(X ,Y ,ES) = X ∧ Y ∧ ES

Causal graph:

X Y

S

Augmented
functional graph:

EX EY

ES

X Y

S
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Structural Causal Models: Formal Definition

Definition ([Wright, 1921, Pearl, 2000, Bongers et al., 2018])

A Structural Causal Model (SCM), also known as Structural Equation
Model (SEM), is a tuple M = 〈X ,E, f ,PE〉 with:

1 a product of standard measurable spaces X =
∏

i∈I Xi

(domains of the endogenous variables)

2 a product of standard measurable spaces E =
∏

j∈J Ej
(domains of the exogenous variables)

3 a measurable mapping f : X × E → X
(the causal mechanism)

4 a product probability measure PE =
∏

j∈J PEj on E
(the exogenous distribution)

Definition

A pair of random variables (X ,E ) is a solution of SCM M if
PE = PE and the structural equations X = f (X ,E ) hold a.s..
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Structural Causal Models: Example

Example

Augmented functional graph Ga(M):

X1X2

X3 X4

X5

E1E2

E3

E4

E5

Functional graph G(M):

X1X2

X3 X4

X5

Structural Causal Model M:

Formally:

(X ,E, f ,PE) =
(
∏5

i=1R,
∏5

j=1R, (f1, . . . , f5),
∏5

j=1 PEj )

Informally:

X1 = f1(E1) PE1 = . . .
X2 = f2(E1,E2) PE2 = . . .
X3 = f3(X1,X2,X5,E3) PE3 = . . .
X4 = f4(X1,X4,E4) PE4 = . . .
X5 = f5(X3,X4,E5) PE5 = . . .
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(Augmented) Functional Graphs

Definition

The components of the causal mechanism usually do not depend on all
variables: for i ∈ I,

Xi = fi (XpaIi
,EpaJi

)

where fi only depends on paIi ⊆ I (the endogenous parents of i) and
paJi ⊆ J (the exogenous parents of i).

Definition

The augmented functional graph Ga(M) of SCM M is a directed graph
with nodes I∪̇J and an edge k → i iff k ∈ paIi ∪̇paJi is a parent of i ∈ I.

Definition

The functional graph G(M) of SCM M is a DMG with nodes I, directed
edges k → i iff k ∈ paIi , and bidirected edges k ↔ i iff paJi ∩ paJk 6= ∅.
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Causal Graph

Definition

We say M has a self-loop at i ∈ I if i ∈ paIi .

Proposition ([Bongers et al., 2018])

If M has no self-loops, the causal graph of M is a subgraph of the
functional graph G(M).

In that case, generically:

The directed edges in G(M) represent direct causal relations w.r.t. I;

The bidirected edges in G(M) may represent the existence of
confounders w.r.t. I.

A direct causal relation Xi → Xj w.r.t. I can be detected
experimentally by intervening on all variables XI\{j} except Xj , and
testing if the marginal distributions of the solutions on Xj depend on
the value to which Xi is set.
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Interventions

To interpret an SCM as a causal model, we also need to define its
semantics under interventions.

Definition (Perfect Interventions, [Pearl, 2000])

The perfect intervention do(XI = ξI ) enforces XI to attain value ξI .

This changes the SCM M = 〈X ,E, f ,PE〉 into the intervened SCM
Mdo(XI=ξI ) = 〈X ,E, f̃ ,PE〉 where

f̃i =

{
ξi i ∈ I

fi (XpaIi
,EpaJi

) i /∈ I .

Interpretation: overrides default causal mechanisms that normally
would determine the values of the intervened variables.

In the (augmented) functional graph, the intervention removes all
incoming edges with an arrowhead at any intervened variable i ∈ I .
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Interventions: Example

Endogenous variables (binary):

X : the battery is charged
Y : the start engine is operational
S : the car starts

Exogenous variables (latent, independent, binary):

EX ∼ Ber(0.95)
EY ∼ Ber(0.99)
EZ ∼ Ber(0.999)

Structural equations (one per endogenous variable):

X = EX

Y = EY

S = X ∧ Y ∧ ES

Causal graph:

X Y

S

Augmented
functional graph:

EX EY

ES

X Y

S
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X = 1
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S = X ∧ Y ∧ ES

Causal graph:

X Y
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Exogenous variables (latent, independent, binary):

EX ∼ Ber(0.95)
EY ∼ Ber(0.99)
EZ ∼ Ber(0.999)

Structural equations (one per endogenous variable):
after loosing the key do(S = 0):

X = EX

Y = EY

S = 0

Causal graph:

X Y

S

Augmented
functional graph:
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Interventions: Example

Example

Observational (no intervention):
Functional graph G(M):

X1X2

X3 X4

X5

Structural Causal Model M:

X1 = f1(E1) PE1 = . . .
X2 = f2(E1,E2) PE2 = . . .
X3 = f3(X1,X2,X5,E3) PE3 = . . .
X4 = f4(X1,X4,E4) PE4 = . . .
X5 = f5(X3,X4,E5) PE5 = . . .

Intervention do(X3 = ξ3):
Functional graph G(Mdo(X3=ξ3)):

X1X2

X3 X4

X5

Structural Causal Model Mdo(X3=ξ3):

X1 = f1(E1) PE1 = . . .
X2 = f2(E1,E2) PE2 = . . .
X3 = ξ3 PE3 = . . .
X4 = f4(X1,X4,E4) PE4 = . . .
X5 = f5(X3,X4,E5) PE5 = . . .
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Distributions

Definition (Reminder)

A pair of random variables (X ,E ) is a solution of SCM M if
PE = PE and the structural equations X = f (X ,E ) hold a.s..

Definition

We call the set of probability distributions of the solutions X of an SCM
M the observational distributions of M.

A perfect intervention on M may change the distributions.

Definition

We call the family of sets of probability distributions of the solutions of
Mdo(I ,ξI ) (for I ⊆ I, ξI ⊆ X I ) the interventional distributions of M.

Crucial difference with traditional probabilistic models: SCMs
simultaneously model all distributions that are obtained under all perfect
interventions on a system.

Joris Mooij (UvA) MLSS 2018: Causality 2018-08-30 32 / 121



Distributions

Definition (Reminder)

A pair of random variables (X ,E ) is a solution of SCM M if
PE = PE and the structural equations X = f (X ,E ) hold a.s..

Definition

We call the set of probability distributions of the solutions X of an SCM
M the observational distributions of M.

A perfect intervention on M may change the distributions.

Definition

We call the family of sets of probability distributions of the solutions of
Mdo(I ,ξI ) (for I ⊆ I, ξI ⊆ X I ) the interventional distributions of M.

Crucial difference with traditional probabilistic models: SCMs
simultaneously model all distributions that are obtained under all perfect
interventions on a system.

Joris Mooij (UvA) MLSS 2018: Causality 2018-08-30 32 / 121



Acyclic SCMs vs. Causal Bayesian Networks

Definition

We call the SCM M acyclic if G(M) is acyclic.

Proposition

If M is acyclic, then:

its observational distribution exists and is unique.

all its interventional distributions exist and are unique.

In that case, we denote the observational density on X by pM(x), and the
interventional densities on X by pM

(
x | do(XI = ξI )

)
, following the

notation of [Pearl, 2000].

Proposition

If G(M) is acyclic and does not have bidirected edges, the SCM induces a
Causal Bayesian Network. Vice versa, for every Causal Bayesian Network
there exists an acyclic, causally sufficient SCM that induces it.
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Marginalization (Example)

Can we “integrate out” the details of a subsystem?

Example

SCM for complete system:
Functional graph G(M):

X1X2

X3 X4

X5

Structural Causal Model M:

X1 = f1(E1) PE1 = . . .
X2 = f2(E1,E2) PE2 = . . .
X3 = f3(X1,X2,X5,E3) PE3 = . . .
X4 = f4(X1,X4,E4) PE4 = . . .
X5 = f5(X3,X4,E5) PE5 = . . .

Marginalizing out X2,X4:

Functional graph G(M\{2,4}):

X1

X3

X5

Marginalization M\{2,4}:

X1 = f1(E1) PE1 = . . .
PE2 = . . .

X3 = f3(X1, g2(E1,E2),X5,E3) PE3 = . . .
PE4 = . . .

X5 = f5(X3, g4(X1,E4),E5) PE5 = . . .

Joris Mooij (UvA) MLSS 2018: Causality 2018-08-30 34 / 121



Substituting equations

Given an SCM M and a subset of its endogenous variables L ⊆ I, with
complement O := I \ L. We can try to “substitute out” the structural
equations for L:

X = f (X ,E )

⇐⇒
{
XL = fL(XL,XO,E )

XO = fO(XL,XO,E )

⇐⇒
{
XL = gL(XO,E )

XO = fO(XL,XO,E )

⇐⇒
{
XL = gL(XO,E )

XO = fO(gL(XO,E ),XO,E )

This trick works if the structural equations for XL have a unique solution
for XL in terms of XO and E (for acyclic SCMs, this always works).
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Marginalization of an SCM

Definition ([Bongers et al., 2018])

If M = 〈X ,E, f ,PE〉 is uniquely solvable w.r.t. L ⊆ I, then it has a
marginalization M\L = 〈X I\L,E, f \L,PE〉, where the marginal causal

mechanism f \L is obtained by substituting the solution function gL for XL
in terms of XO (with O := I \ L) and E into the causal mechanism fO :

f \L(xO, e) := fO
(
gL(xpa(L)\L, epa(L)), xO, e

)
.

The marginalization preserves the causal semantics (restricted to the
remaining part of the system, I \ L):

Theorem ([Bongers et al., 2018])

The marginalization M\L is interventionally equivalent to M w.r.t. I \ L.
In other words, for any perfect intervention on a subset of I \ L, M\L and
M admit the same solutions (marginalized onto X I\L).
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Modeling (Random) ODE fixed points with an SCM

Theorem ([Mooij et al., 2013, Bongers and Mooij, 2018])

A random ODE describing a dynamical system induces an SCM that
models its equilibrium states, and how these change under perfect
interventions.

D:{
Ẋi (t) = fi (Xpa(i)),
Xi (0) = (X0)i

i ∈ I

Ddo(XI=ξI ):{
Ẋi (t) = 0,
Xi (0) = ξi

i ∈ I{
Ẋi (t) = fi (Xpa(i)),
Xi (0) = (X0)i

i /∈ I

MD:

Xi = Xi + fi (Xpa(i)) i ∈ I

MDdo(XI=ξI )
:

Xi = ξi i ∈ I

Xi = Xi + fi (Xpa(i)) i /∈ I

intervention

fixed points

intervention

fixed points

do(I , ξI ) do(I , ξI )
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From ODE to SCM: Example 1

Example (Damped coupled harmonic oscillators)

m1 m2 m3 m4

k0 k1 k2 k3 k4

X = 0 X = L

ODE D:

Ẍi =
ki
mi

(Xi+1 − Xi − li )−
ki−1
mi

(Xi − Xi−1 − li−1)− bi Ẋi

Structural Equations of induced SCM MD:

Xi =
ki (Xi+1 − li ) + ki−1(Xi−1 + li−1)

ki + ki+1

Functional graph of induced SCM G(MD):

X1 X2 X3 X4
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From ODE to SCM: Example 2

SEnzyme reaction: + E C P + E

kf

kr

kc

koki

d
dtS = ki − kfES + krC

d
dtE = −kfES + (kr + kc)C

d
dtC = kfES − (kr + kc)C

d
dtP = kcC − koP

Random differential equations:

S = kik
−1
f E

−1 − krk−1
f E

−1
C

E = k
−1
f (kr + kc)S

−1
C

C = kf (kr + kc)
−1
ES

P = kck
−1
o C

Structural causal model:

0 5 10 15 20 25 30 35
t (arbitrary unit)

2

1

0

1

2

Lo
g(

Co
nc

en
tra

tio
n)

S
E
C
P

t→∞

E S

C

P

d
dtS = ki − kfES + krC

d
dtE = η

d
dtC = kfES − (kr + kc)C

d
dtP = kcC − koP

Intervened RDE:

0 5 10 15 20 25 30 35
t (arbitrary unit)

2

1

0

1

2

Lo
g(

Co
nc

en
tra

tio
n)

S
E
C
P

S = kik
−1
f E

−1 − krk−1
f E

−1
C

E = η

C = kf (kr + kc)
−1
ES

P = kck
−1
o C

Intervened SCM:

t→∞

E S

C

P

do(E = η) do(E = η)

Figure 1: Example that illustrates how structural causal models can be used to describe the equilibrium solutions of
random differential equations (in this case, an enzyme reaction) and how these change under external interventions
(in this case, keeping the enzyme concentration E at a fixed value η). The diagram is commutative.

The advantage of SCMs over RDEs is that by not mod-
eling the transient random dynamics of the RDE, one ar-
rives at a more compact representation for learning and
prediction purposes of random systems that have reached
equilibrium. Another advantage is that the equilibrium
solutions of the RDE can be studied by statistical tools
applicable to SCMs. For example, one can marginal-
ize over a subset of the system’s variables and get an
even more parsimonious representation that preserves the
causal semantics (Bongers et al., 2016). This is illus-
trated in Figure 2 for the example of a damped cou-
pled harmonic oscillator, where we marginalize over the
momentum variables. Moreover, we can apply Markov
properties to the equilibrium solutions of the SCM by
using d-separation. This is also illustrated in Figure 2,
where we perform d-separation on the equilibrium solu-
tions of the intervened model and see that the position
variables Q1 and Q5 are independent given the posti-
tion variable Q3 which we held fixed. This enables the
study of stochastic and causal behavior of the equilib-
rium solutions of the RDE in terms of SCMs and hence
this sheds some new light on the concept of causality
as expressed within the framework of structural causal
models. Yet another advantage is that it is easier to deal
with confounders within the framework of SCMs, as we
only need to model the equilibrium distribution of these
confounders, and don’t need to model their dynamics.

In summary, we built a bridge between the world of ran-

dom differential equations and the world of structural
causal models. This allows us to study a plethora of
physical and engineering systems subject to time-varying
random disturbances within the framework of structural
causal models. We naturally extend the work of Mooij
et al. (2013) to the stochastic setting, which allows us to
address both cycles and confounders. In particular, we
relaxed the condition that the dynamical system has to
equilibrate to a single static equilibrium, and show that
if an RDE is sufficiently regular all equilibrium sample-
path solutions of the RDE are described by the solutions
of the associated SCM, while preserving the causal se-
mantics.

More generally, any chemical reaction can be modeled as an SCM at
equilibrium. (Note: the SCM is in general underspecified, i.e., it does not
retain all information about the equilibrium states of the dynamical system
[Blom & Mooij, 2018]).
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Representations of (acyclic) SCMs [Bongers et al., 2018]

SCM

Intervened SCM

Marginal SCM

Augmented Functional Graph

Functional Graph ⊇ Causal Graph

Direct causal relations
Confounders

Ancestral relations
⊇

Causal relations

Observational Distribution

(Conditional) Independences

Markov
Property
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(Conditional) independences

Definition (Independence)

Given two random variables X ,Y , we write X ⊥⊥ Y and say that X is
independent of Y if

p(x , y) = p(x)p(y).

Intuitively, X is independent of Y if we do not learn anything about X
when told the value of Y (or vice versa).

Definition (Conditional Independence)

Given a third random variable Z , we write X ⊥⊥ Y |Z and say that X is
(conditionally) independent from Y , given Z , if

p(x , y |Z = z) = p(x |Z = z)p(y |Z = z).

Intuitively, X is independent of Y if, given the value of Z , we do not learn
anything new about X when told the value of Y .
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(Directed) Paths

Definition (Paths, Ancestors)

Let G be a directed mixed graph.

A path q is a sequence of adjacent edges in which no node occurs
more than once.

A directed path is of the form i1 → i2 → · · · → ik .

If there is a directed path from X to Y , X is called an ancestor of Y .

The ancestors of Y are denoted anG(Y ), and include Y .

Example

X1X2

X3 X4

X5

X1 → X3 ← X1 is not a path.
X1 ↔ X2 → X3 is a path.

X1 → X4 → X5 is a directed path.
X4 → X5 ← X3 is not a directed path.

The ancestors of X3 are {X1,X2,X3}.
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Colliders and non-colliders

Definition (Colliders)

Let G be a directed mixed graph, and q a path on G.

A collider on q is a (non-endpoint) node X on q with precisely two
arrowheads pointing towards X on the adjacent edges:

→ X ←, → X ↔, ↔ X ←, ↔ X ↔

A non-collider on q is any node on the path which is not a collider.

Example

X1X2

X3 X4

X5

The path X3 → X5 ← X4 contains a collider X5.
The path X1 ↔ X2 → X3 contains no collider.
X5 is a non-collider on X5 ↔ X3 ← X1.
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Blocked paths

Definition

Let G be a directed mixed graph. Given a path q on G, and a set of nodes
S , we say that S blocks q if q contains

a non-collider which is in S , or

a collider which is not an ancestor of S .

Example

X1X2

X3 X4

X5

X3 → X5 ← X4 is blocked by ∅.
X3 → X5 ← X4 is blocked by {X1}.
X3 → X5 ← X4 is not blocked by {X5}.
X3 ← X2 ↔ X1 → X4 is blocked by {X1}.
X3 ← X2 ↔ X1 → X4 is not blocked by {X5}.
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d-separation

Definition (d-separation)

Let G be a directed mixed graph. For three sets X ,Y ,Z of nodes in G, we
say that X and Y are d-separated by Z iff all paths between a node in X
and a node in Y are blocked by Z , and write X ⊥G Y |Z .

Example

X1X2

X3 X4

X5

X3 and X4 are d-separated by {X1}.
X3 and X4 are d-separated by {X1,X2}.
X3 and X4 are not d-separated by ∅.
X3 and X4 are not d-separated by {X1,X5}.
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Exercise 2

Please make Exercise 2

Joris Mooij (UvA) MLSS 2018: Causality 2018-08-30 47 / 121



Acyclic Global Markov Property

Theorem

For an acyclic SCM, the following Global Markov Property holds:

X ,Y ⊥
G(M)

Z =⇒ X ⊥⊥
pM

Y |Z

for all subsets X ,Y ,Z of nodes.

In words: every d-separation in the functional graph G(M) of M implies a
(conditional) independence in the (unique) observational distribution
associated to M.

For cyclic SCMs, the notion of d-separation is too strong in general. A
weaker notion called σ-separation has to be used instead
[Forré and Mooij, 2017]. Under additional solvability conditions, a global
Markov condition using σ-separation can be shown to hold.
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Reichenbach’s Principle

Reichenbach’s Principle of Common Cause

The dependence X 6⊥⊥ Y implies that X → Y , Y → X , or X ↔ Y (or any
combination of these three).

Example

Significant correlation (p = 0.008) between human birth rate and
number of stork populations in European countries [Matthews, 2000]

Most people nowadays do not believe that storks deliver babies (nor
that babies deliver storks)

There must be some confounder explaining the correlation

S B S B

?

S B
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Proof of Reichenbach’s Principle

Assuming that p(X ,Y ) is generated by an acyclic SCM, we can easily
prove Reichenbach’s Principle by applying the Global Markov property:

Proof

X ⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

(The proof can be extended to include the cyclic case)
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Selection Bias

Reichenbach’s Principle may fail in case of selection bias.

Definition

If a data set is obtained by only including samples conditional on some
event, selection bias may be introduced.

Example

X Y

S

X : the battery is charged
Y : the start engine is operational
S : the car starts

A car mechanic (who only observes cars for which S = 0) will observe
a dependence between X and Y : X 6⊥⊥ Y | S .

When the car mechanic invokes Reichenbach’s Principle without
realizing that he is selecting on the value of S (maybe S is a latent
variable), a wrong conclusion will be drawn.
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Faithfulness Assumption

Let M be an acyclic SCM.

We have seen that the Global Markov Property holds:

X ,Y ⊥
G(M)

Z =⇒ X ⊥⊥
pM

Y |Z

for all subsets X ,Y ,Z of nodes.

Definition (Faithfulness Assumption)

For all subsets X ,Y ,Z of nodes,

X ,Y ⊥
G(M)

Z ⇐= X ⊥⊥
pM

Y |Z

Note: Faithfulness holds generically, i.e., up to measure-zero sets of
parameters [Meek, 1995]. In other words, SCM parameters need to be
carefully tuned in order to violate the faithfulness assumption.
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Faithfulness Violations

Faithfulness violations may occur e.g. in case of parameter cancellations or
deterministic relations.

Example (Parameter cancellation)

Consider an SCM M:

X = EX

Y = X + EY

Z = X − Y + EZ

X

Y

Z

Then:
Z ⊥⊥ pM X but Z 6⊥G(M) X .

Example (Deterministic relation)

Consider an SCM M:

X = EX

Y = X

Z = Y + EZ

X

Y

Z

Then:
Z ⊥⊥ pM Y |X but Z 6⊥G(M) Y |X .
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Representations of acyclic, faithful SCMs

SCM

Intervened SCM

Marginal SCM

Augmented Functional Graph

Functional Graph = Causal Graph

Direct causal relations
Confounders

Ancestral relations
=

Causal relations

Observational Distribution

(Conditional) Independences

Markov
Property

Faithfulness
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Causal Inference: Predicting Causal Effects

One important task (“causal inference”) is the prediction of causal effects.

Definition

The causal effect of X on Y is defined as p
(
y | do(X = x)

)
.

Special cases:

X binary: E
(
Y | do(X = 1)

)
− E

(
Y | do(X = 0)

)
X ,Y linearly related: ∂

∂xE
(
Y | do(X = x)

)

Note: In general, since p
(
y | do(X = x)

)
6= p(y |X = x), we cannot use

standard supervised learning (regression, classification) for this task.

Two approaches can be used:

Experimentation (Randomized Controlled Trials, A/B-testing)

Apply the Back-door Criterion (if causal graph is known)

Joris Mooij (UvA) MLSS 2018: Causality 2018-08-30 56 / 121



Causal Inference: Predicting Causal Effects

One important task (“causal inference”) is the prediction of causal effects.

Definition

The causal effect of X on Y is defined as p
(
y | do(X = x)

)
.

Special cases:

X binary: E
(
Y | do(X = 1)

)
− E

(
Y | do(X = 0)

)
X ,Y linearly related: ∂

∂xE
(
Y | do(X = x)

)
Note: In general, since p

(
y | do(X = x)

)
6= p(y |X = x), we cannot use

standard supervised learning (regression, classification) for this task.

Two approaches can be used:

Experimentation (Randomized Controlled Trials, A/B-testing)

Apply the Back-door Criterion (if causal graph is known)

Joris Mooij (UvA) MLSS 2018: Causality 2018-08-30 56 / 121



Causal discovery by experimentation

Experimentation (e.g., Randomized Controlled Trials, A/B-testing, . . . )
provides the gold standard for causal effect estimation.
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Identifiability: Example

If we cannot do experiments. . . Can we express p
(
y | do(X = x)

)
in terms

of the observational distribution?

Example

X Y

p
(
y | do(X = x)

)
=

p(y |X = x)

Yes!

X Y

H

p
(
y | do(X = x)

)
=
∫
p(h)p(y | x , h) dh

6=
p(y |X = x) =

∫
p(h | x)p(y | x , h) dh

No!
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Adjustment for covariates

We have seen that for the following causal graph,

X Y

H

adjusting for the confounder H, yields the causal effect of X on Y :∫
p(h)p(y | x , h) dh = p

(
y | do(X = x)

)
More generally, given a causal graph: which covariates H could we adjust
for in order to express the causal effect of X on Y in terms of the
observational distribution?

A sufficient condition is given by the Back-door Criterion.
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The Back-Door Criterion

Theorem (Back-Door Criterion [Pearl, 2000])

For an acyclic SCM, nodes X , Y and set of nodes H : if

1 X ,Y /∈ H ;

2 X is not an ancestor of any node in H in G(M);

3 H blocks all back-door paths X ← . . .Y and X ↔ . . .Y in G(M)
(i.e., all paths between X and Y that start with an arrowhead at X).

then the causal effect of X on Y can be obtained by adjusting for H:

p
(
y | do(X = x)

)
=

∫
p(y | x ,h)p(h) dh

(
=
∑
h

p(y | x ,h)p(h)

)
.

For the special case H = ∅, this should be read as:

p
(
y | do(X = x)

)
= p(y | x).
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The Back-door Criterion: Example

Example

X1X2

X3 X4

X5

The sets of variables that are admissible for adjustment to get the causal
effect of X2 on X5 are: {X1}, {X1,X4}. Therefore:

p(x5 | do(X2 = x2)) =

∫
p(x5 | x1, x2)p(x1) dx1

=

∫
p(x5 | x1, x2, x4)p(x1, x4) dx1 dx4

Some sets of variables that are not admissible for adjustment to get the
causal effect of X2 on X5 are: {X3}, {X1,X3}.
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Exercise 3

Please make Exercise 3
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Simpson’s Paradox

Remember Simpson’s paradox:

Example (Simpson’s paradox)

We collect electronic patient records to investigate the effectiveness of a
new drug against a certain disease. We find that:

1 The probability of recovery is higher for patients that took the drug:

p(recovery | drug) > p(recovery | no drug)

2 For both male and female patients, the relation is opposite:

p(recovery | drug,male) < p(recovery | no drug,male)

p(recovery | drug, female) < p(recovery | no drug, female)

Does the drug cause recovery? I.e., would you use this drug if you are ill?

The answer depends on the causal relationships between the variables!
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Resolving Simpson’s paradox

The crux to resolving Simpson’s paradox is to realize:

Seeing 6= doing

p(R = 1 |D = 1): the probability that somebody recovers, given the
observation that the person took the drug.

p
(
R = 1 | do(D = 1)

)
: the probability that somebody recovers, if we

force the person to take the drug.

Simpson’s paradox only manifests itself if we misinterpret correlation as
causation by identifying p(r |D = d) with p

(
r | do(D = d)

)
.

We should prescribe the drug if

p
(
R = 1 | do(D = 1)

)
> p

(
R = 1 | do(D=0)

)
.

How to find the causal effect of the drug on recovery?

1 Randomized Controlled Trials

2 Back-Door Criterion (requires knowledge of causal graph)
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Exercise 4

Please make Exercise 4
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Back-Door Criterion for Simpson’s paradox

Example (Scenario 1)

H

D R

R: Recovery
D: Took drug
H: Gender

There is one back-door path: D ← H → R, which is blocked by {H}.
D is not an ancestor of H.

Therefore, adjust for {H} to obtain causal effect of drug on recovery:

p
(
r | do(D = d)

)
=
∑
h

p(r |D = d ,H = h)p(h)

So in scenario I, you should not take the drug: for both males and
females, taking the drug lowers the probability of recovery.
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Back-Door Criterion for Simpson’s paradox

Example (Scenario 2)

H

D R

R: Recovery
D: Took drug
H: Gender

There are no back-door paths.

D is an ancestor of H.

Do not adjust for {H} to obtain causal effect of drug on recovery:

p
(
r | do(D = d)

)
= p(r |D = d)

So in scenario II, you should take the drug: in the general population,
taking the drug increases the probability of recovery.

(If you think gender-changing drugs are unlikely, replace “gender” by
“high/low blood pressure”, for example).
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Mutilated graphs

Definition

Given a DMG G and a subset X of nodes in G, we define

G
X

to be G without the incoming edges on nodes in X ;

GX to be G without the outgoing edges from nodes in X .

Example

X1X2

X3 X4

X5

G:

X1X2

X3 X4

X5

GX3
:

X1X2

X3 X4

X5

GX3 :
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Do-calculus [Pearl, 2000]

Pearl formulated three rules (the “do-calculus”) that can be used in
addition to the usual rules for probabilistic reasoning:

1 Ignoring observations:

p(y | do(x),w , z) = p(y | do(x),w) if Y ⊥
G
X

Z |X ,W

2 Action/observation exchange:

p(y | do(x), do(z),w) = p(y | do(x), z ,w) if Y ⊥
G
X ,Z

Z |X ,W

3 Ignoring actions:

p(y | do(x), do(z),w) = p(y | do(x),w) if Y ⊥
G
X ,Z(W )

Z |X ,W

where Z (W ) = Z \ AnG
X

(W ).

The do-calculus allows us to reason with (probabilistic) causal statements,
given (partial) knowledge of the causal structure. These rules are more
powerful than the Back-door Criterion for causal prediction purposes.
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Causal Discovery

We have seen how to perform causal reasoning, given the causal model.
But how do we get the causal model in the first place?

Establishing causal relations from data (“causal discovery”) is one of the
fundamental tasks in science.

Since the pioneering work by Peirce and Fisher, the
gold standard for causal discovery is a randomized,
controlled experiment.

More recently, causal discovery methods from purely
observational data have been developed, starting with
the work of Spirtes, Gleimour, Scheines, Pearl and
others.

These ideas have inspired causal discovery methods that combine
observational and interventional data in various ways.
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Randomized Controlled Trials [Fisher, 1935]

Z

D R

G: Z

D R

CGRCT :

R: Recovery, D: Drug, Z : latent confounders (e.g., genetics), C : coin flip.

Divide patients into two groups: treatment and control randomly
(e.g., by a coin flip).

Patients in the treatment group are forced to take a drug, and
patients in the control group are forced to not take the drug (but to
take a placebo instead): D = C .

Estimating the causal effect of the drug now becomes a standard
statistical exercise, as p(R |D = C ) = p(R | do(D = C )).

The RCT intervention breaks any back-door paths, if existent.

All evidence-based medicine is based on this idea.
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Causal Discovery by Experimentation: Example

0 2 4 6 8 10
0

2

4

6

8

10

ln Raf

ln
 M

e
k

Each dot is a measurement in a single
human immune system cell

Raf: abundance of phosphorylized Raf

Mek: abundance of phosphorylized Mek

blue = baseline,
red = reagent U0126 added

Question: What is the causal relation between Raf and Mek?

Hint: U0126 inhibits Mek.

Answer: Mek causes Raf
(Changing activity of Mek changes abundance of Raf.)

Note: How did we know that “U0126 inhibits Mek” in the first place?
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Causal Discovery from Observational Data

Experiments can be expensive, time-consuming, unethical, impractical or
even infeasible.

Intriguing alternative: causal discovery from purely observational data
[Spirtes et al., 2000, Pearl, 2000]!

SCM

Functional Graph ⊇ Causal GraphObservational Distribution

Observational Data

Causal
Discovery

Disclaimer: Works only under strong assumptions and with (possibly
very) large sample sizes.
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Approaches to Causal Discovery from Observational Data I

Conditional-independence constraint-based

Independence patterns in the data constrain the possible causal graphs.

LCD (Cooper, 1997)

Y-Structures (Mani & Cooper, 2004)

PC (Spirtes & Gleimour & Scheines, 2000), IC (Pearl, 2000)

FCI (Spirtes & Meek & Richardson, 1995; Zhang, 2008)

. . .

General constraint-based

Similar, but exploiting more general types of constraints in the data.

Verma constraints (Robins (1986), Verma & Pearl (1990), Tian &
Pearl (2002))

Nested Markov Models (Richardson, Evans, Robins, Shpitser (2017))

Algebraic Constraints (Van Ommen & Mooij (2017))

. . .
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Approaches to Causal Discovery from Observational Data II

Likelihood-based approaches

Score penalized likelihoods of possible causal graphs and select the best
one(s).

Bayesian Network Learning (Heckerman, Geiger, Chickering, 1995)

Greedy Equivalence Search (Chickering, 2002)

. . .

Restrictions on functional causal relations and noise distributions

Minimize the “complexity” of causal models.

LINGAM (Kano, Shimizu, 2003; Shimizu et al., 2006)

Additive Noise Models (Hoyer et al., 2006)

Post-Nonlinear Model (Zhang & Hyvärinen, 2009)

. . .

Joris Mooij (UvA) MLSS 2018: Causality 2018-08-30 78 / 121



Constraint-based Causal Discovery

From the pattern of conditional independences in the data we can
reconstruct a set of possible underlying causal graphs, even when allowing
for latent confounders [Spirtes et al., 2000].

X1 X2 X3 X4

2 0.1 0.2 0.5
2 0.13 0.21 0.49
2 0.23 0.21 0.51
5 0.5 0.19 0.52
5 0.6 0.18 0.51
2 0.2 0.22 0.92
2 0.23 0.21 0.99
5 0.53 1.2 0.95
5 0.55 1.19 0.97

Data

X2 6⊥⊥ X4

X2 ⊥⊥ X4 |X3

X1 ⊥⊥ X2

X1 6⊥⊥ X2 |X3

. . .

CIs
X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

Possible Causal Graphs
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Causal Discovery from Observational Data: V-Structure

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

4

X

Y

blue: Z = 0, red: Z = 1

X Y

Z

X ⊥⊥ Y , X 6⊥⊥ Y |Z ,
X 6⊥⊥ Z , X 6⊥⊥ Z |Y ,
Y 6⊥⊥ Z , Y 6⊥⊥ Z |X .

Question: What is the causal relation between X , Y and Z?

Hint: Assume an acyclic, faithful SCM without latent confounders
generated the data, and assume no selection bias or measurement error

Answer: X causes Z ; Y causes Z ; X and Y causally unrelated

Note: Strong assumptions, but no experiments needed!
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Markov equivalence classes for three variables

X ⊥⊥ Y , X ⊥⊥ Y | Z
Y ⊥⊥ Z , Y ⊥⊥ Z | X
Z ⊥⊥ X , Z ⊥⊥ X | Y

X

Y Z

X

Y Z

X

Y Z

X

Y Z

X

Y Z

X

Y Z

X

Y Z

Y ⊥⊥ X , Y ⊥⊥ X | Z
Y ⊥⊥ Z , Y ⊥⊥ Z | X

X

Y Z

X

Y Z

Z ⊥⊥ X , Z ⊥⊥ X | Y
Z ⊥⊥ Y , Z ⊥⊥ Y | X

X

Y Z

X

Y Z

X ⊥⊥ Y , X ⊥⊥ Y | Z
X ⊥⊥ Z , X ⊥⊥ Z | Y

X

Y Z

X

Y Z

Z ⊥⊥ X | Y

X

Y Z

X

Y Z

X

Y Z

X ⊥⊥ Y | Z

X

Y Z

X

Y Z

X

Y Z

Y ⊥⊥ Z | X

X

Y Z

X

Y Z

X

Y Z

Z ⊥⊥ X

X

Y Z

X ⊥⊥ Y

X

Y Z

Y ⊥⊥ Z

X

Y Z
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Exercise 5

Please make Exercise 5
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Causal Discovery from Observational Data: Y-Structure
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black: X3 = 0, red: X3 = 1

Question: What is the causal relation between X3 and X4?
Hint: Assume an acyclic, faithful SCM generated the data, and assume no
selection bias or measurement error.

Answer: X3 causes X4 and they are not confounded. Hence, the
causal effect of X3 on X4 satisfies p(x4 | do(X3 = x3)) = p(x4 | x3).
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Causal Discovery from Observational Data: Y-Structure
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black: X3 = 0, red: X3 = 1

Question: What is the causal relation between X3 and X4?
Hint: Assume an acyclic, faithful SCM generated the data, and assume no
selection bias or measurement error.

Answer: X3 causes X4 and they are not confounded. Hence, the
causal effect of X3 on X4 satisfies p(x4 | do(X3 = x3)) = p(x4 | x3).
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Y-structures: Empirical Performance I

Precision of prediction X causes Y :

 0
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Baseline: random guessing
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Y-structures: Empirical Performance II

Causal prediction error for E(Y | do(X = x)):

 0
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 e

rr
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baseline 1
baseline 2

Baseline 1: p(y | do(X = x)) = p(y), Baseline 2: p(y | do(X = x)) = p(y |x)
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Hardness of Causal Discovery

Appendix B. Causal Orderings and Adjacency Matrices 223

d Number of DAGs with d nodes
1 1
2 3
3 25
4 543
5 29281
6 3781503
7 1138779265
8 783702329343
9 1213442454842881
10 4175098976430598143
11 31603459396418917607425
12 521939651343829405020504063
13 18676600744432035186664816926721
14 1439428141044398334941790719839535103
15 237725265553410354992180218286376719253505
16 83756670773733320287699303047996412235223138303
17 62707921196923889899446452602494921906963551482675201
18 99421195322159515895228914592354524516555026878588305014783
19 332771901227107591736177573311261125883583076258421902583546773505

Table B.1: The number of DAGs depending on the number d of nodes, taken from http:

//oeis.org/A003024 [OEIS Foundation Inc., 2017]. The length of the numbers grows
faster than any linear term.

Source: [Peters et al., 2017]
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(Augmented) FCI

[Spirtes et al., 2000, Spirtes et al., 1999, Ali et al., 2005, Zhang, 2008]

Source: [Claassen & Heskes, 2011]
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FCI: Example (“Extended Y-structure”)

Independences: Z ⊥⊥ U, Z ⊥⊥ Y |X

U Z

X

Y

R0a

U Z

X

Y

R0b

U Z

X

Y

R1

U Z

X

Y

R2b

U Z

X

Y

R4b

U Z

X

Y
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Local Causal Discovery (LCD)

Local Causal Discovery: simple causal discovery algorithm (Cooper, 1997).

Definition

If for three variables X ,Y ,Z :

Y 6∈ an(X ) ∧ Z 6∈ an(X ) ∧ X 6⊥⊥ Y ∧ Y 6⊥⊥ Z ∧ X ⊥⊥ Z |Y ,

then (X ,Y ,Z ) is an LCD triplet.

Theorem

If an acyclic, faithful SCM generated the data without selection bias or
measurement error, the only causal graphs that yield an LCD triplet are:

X Y Z X Y Z X Y Z

Therefore, Y ∈ an(Z ) and p(Z | do(Y = y)) = p(Z |Y = y).
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LCD: Example

pErk : abundance of phosphorylized Erk in each cell

pS6: abundance of phosphorylized S6 in cell

I : green = baseline, red = PMA-IONO activator added

pErk
-2 0 2 4 6 8

p
S

6

-2

-1

0

1

2

3

4

5

6

7

8
Streptonigrin: 1.0e-01, 0.0e+00

(X ,Y ,Z ) is
LCD triplet iff:

Y 6∈ an(X )
Z 6∈ an(X )
X 6⊥⊥ Y
Y 6⊥⊥ Z
X ⊥⊥ Z |Y

What is the causal relation?

LCD triplet (I , pS6, pErk), so pS6→ pErk.

Note: no prior knowledge on the effects of PMA-IONO needed!
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Causal Discovery: Example Application

Protein Abundance Data:
(Sachs et al, 2005)

1
2

3
4

5
6

7
8

Raf Mek PLCg PIP2 PIP3 Erk Akt PKA PKC p38 JNK

Condition Reagent Intervention
1 - observational
2 Akt-inhibitor inhibits AKT activity
3 G0076 inhibits PKC activity
4 Psitectorigenin inhibits PIP2 abundance
5 U0126 inhibits MEK activity
6 LY294002 inhibits PIP2/PIP3 activity
7 PMA activates PKC + global
8 β2CAMP activates PKA + global

Causal Graph:
(“Signalling network”)

Raf

Mek

Erk

Plcg

PIP2

PKC

PIP3

Akt

PKA

P38Jnk

(depicted here: “consensus” network)
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Causal Discovery from Multiple Contexts
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(Fisher, 1935) + + + + + + + + + + - - b
(Cooper and Yoo, 1999) - + - + - - - - - - + - b
(Tian and Pearl, 2001) - + - - + - - + - - + - b
(Sachs et al., 2005) - + - + - - - - - - + - b
(Eaton and Murphy, 2007) - + - + + + + + + + + - b
(Chen et al., 2007) + + + + + + + + + + + - b
(Claassen and Heskes, 2010) + + - - + + + + + - + + a
(Tillman and Spirtes, 2011) + + - - + + + + + - + + a
(Hauser and Bühlmann, 2012) - + - + - - - - - - + - b
(Hyttinen et al., 2012) + - + + - - - - - - + - a
(Mooij and Heskes, 2013) - ± ± + + + - + - - + - b
(Hyttinen et al., 2014) + + ± + - - - - - - + + a
(Triantafillou and Tsamardinos, 2015) + + - + - - - - - - + + a
(Rothenhäusler et al., 2015) + - ± - - - - + + + + - a
(Peters et al., 2016) ± ± ± + + + + + + - + - b
(Oates et al., 2016a) - - - - - - - + - - + - b
(Zhang et al., 2017) - + - + + + + + + + + - b
JCI + + + + + + + + + + + ± b
JCI-LCD (Cooper, 1997) + + + + + + + + + + + - b
JCI-HEJ + + ± + + + + + + + + - b
JCI-FCI + + - + + + + + + + + - b

Table 3: Overview of causal discovery methods that can combine data from multiple contexts.
Features offered by the original implementations of these methods are indicated. Combination
strategies are: (a) obtain statistics or constraints from each context separately and then construct a
single causal graph based on the combined statistics, (b) pool all data and construct a single causal
graph directly from the pooled data. When a feature is offered only under additional restrictive
assumptions, it is indicated with a ± sign.

28
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JCI: Combining the best of two worlds

Question

Can we combine the ideas of the “classical” approach to causal discovery
based on experimentation with the “modern” approach based on
conditional independences?

We hope to:

obtain reliability of “classical” approach

exploit conditional independences in the data to reduce the number of
experiments necessary

Answer

We propose Joint Causal Inference, a framework for causal discovery, that
achieves this.
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Randomized Controlled Trials, or A/B-testing

C1 X1

0 1
0 0
0 1
0 0
0 0
0 0
0 0
0 0
1 0
1 0
1 1
1 1
1 0
1 1
1 0
1 1

Two variables: context variable C1, system variable X1

C1: 0=control, 1=intervention
X1: 0=looking for work, 1=found work
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Two equivalent points of view

(a) Separate data sets

Two-sample test:

Is p
(
x | do(C = 0)

)
= p

(
x | do(C = 1)

)
?

Placebo (C = 0):
X

-0.2
0.6
-1.7
. . .

Drug (C = 1):
X

-0.3
1.8
-0.1
. . .

(b) Pooled data

Independence test:

Is X ⊥⊥ C?

C X
0 -0.2
0 0.6
0 -1.7
0 . . .
1 -0.3
1 1.8
1 -0.1
1 . . .
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Causal Inference for Randomized Controlled Trial

Proposition

Suppose C (treatment) and X (outcome) can be modeled with a
Structural Causal Model. The Randomized Controlled Trial assumptions

X does not cause C (because X happens after C )

X and C are unconfounded (because of the randomization)

no selection bias (measure and analyze all samples)

imply that if C 6⊥⊥ X , then C causes X (correlation implies causation).

Proof

C ⊥⊥ X

C X

C 6⊥⊥ X

C X

C 6⊥⊥ X

C X

C 6⊥⊥ X

C X

C 6⊥⊥ X

C X

C 6⊥⊥ X

C X

C 6⊥⊥ X

C X

C 6⊥⊥ X

C X

Joris Mooij (UvA) MLSS 2018: Causality 2018-08-30 97 / 121



Causal Inference for Randomized Controlled Trial

Proposition

Suppose C (treatment) and X (outcome) can be modeled with a
Structural Causal Model. The Randomized Controlled Trial assumptions

X does not cause C (because X happens after C )

X and C are unconfounded (because of the randomization)

no selection bias (measure and analyze all samples)

imply that if C 6⊥⊥ X , then C causes X (correlation implies causation).

Proof

C ⊥⊥ X

C X

C 6⊥⊥ X

C X

C 6⊥⊥ X

C X

C 6⊥⊥ X

C X

C 6⊥⊥ X

C X

C 6⊥⊥ X

C X

C 6⊥⊥ X

C X

C 6⊥⊥ X

C X

Joris Mooij (UvA) MLSS 2018: Causality 2018-08-30 97 / 121



JCI: Two types of variables

Definition

JCI generalizes the idea of RCTs to multiple context and system variables.
Distinguish:

Context variables {Ci}i∈I that model the context of the system,

System variables {Xj}j∈J that model the system of interest.

Example

Data for 3 observed system variables in 4 experimental conditions:

System variables:
X1: salary
X2: drug abuse
X3: depression

Context variables:
C1: back-to-work program
C2: psychotherapy

no interventions:

X1 X2 X3

0.1 0.2 0.5
0.13 0.21 0.49
0.23 0.21 0.51

only psychotherapy:

X1 X2 X3

0.5 0.19 0.52
0.6 0.18 0.51

only back-to-work program:

X1 X2 X3

0.2 0.22 0.92
0.23 0.21 0.99

both interventions:

X1 X2 X3

0.53 1.2 0.95
0.61 1.21 0.90
0.55 1.19 0.97
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JCI: Pooling the data

After explicitly adding the context variables, we pool the data:

Example

no interventions:
X1 X2 X3
0.1 0.2 0.5
0.13 0.21 0.49
0.23 0.21 0.51

only psychotherapy:
X1 X2 X3
0.5 0.19 0.52
0.6 0.18 0.51

only back-to-work program:
X1 X2 X3
0.2 0.22 0.92
0.23 0.21 0.99

both interventions:
X1 X2 X3
0.53 1.2 0.95
0.61 1.21 0.90
0.55 1.19 0.97

C1 C2 X1 X2 X3

0 0 0.1 0.2 0.5
0 0 0.13 0.21 0.49
0 0 0.23 0.21 0.51
0 1 0.5 0.19 0.52
0 1 0.6 0.18 0.51
1 0 0.2 0.22 0.92
1 0 0.23 0.21 0.99
1 1 0.53 1.2 0.95
1 1 0.61 1.21 0.90
1 1 0.55 1.19 0.97

System variables:
X1: salary
X2: drug abuse
X3: depression

Context variables:
C1: back-to-work program
C2: psychotherapy
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JCI: Assumptions

JCI Assumptions (Intuitive formulation)

We are modelling a generic setting in which the experimenter decides on
the performed interventions before the measurements are performed, and
this decision does not depend on anything else that might affect the
system of interest.

Formal JCI Assumptions

The causal graph G that includes both system variables {X1, . . . ,Xp} and
context variables {C1, . . . ,Cd}, which jointly models the experimental
design and the system in all experimental conditions, satisfies:

no variable directly causes any context variable Ci , and

none of the pairs {Xk ,Ci} of system and context variables is
confounded, and

each pair of context variables {Ci ,Cj} is confounded.

Furthermore, we assume the absence of selection bias.
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Joint Causal Inference

Question: How can we discover

interv. variables system variables
C1 C2 X1 X2 X3

0 2 0.1 0.2 0.5
0 2 0.13 0.21 0.49
0 2 0.23 0.21 0.51

0 5 0.5 0.19 0.52
0 5 0.6 0.18 0.51

1 2 0.2 0.22 0.92
1 2 0.23 0.21 0.99

1 5 0.53 1.2 0.95
1 5 0.61 1.21 0.90
1 5 0.55 1.19 0.97

pooled data
X1 6⊥⊥ C1

X1 ⊥⊥ C1 |C2

X3 ⊥⊥ X2 |X1

C1 6⊥⊥ C2

. . .

CIs

C1 C2

X1 X2 X3

JCI Assumptions

+
C1 C2

X1

X2 X3

causal graphs

Answer: Simply apply a standard constraint-based causal discovery
method (designed for purely observational data) on the pooled data, and
incorporate the JCI assumptions as background knowledge.
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Evaluation on simulated data I

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
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ROC curves for ancestral relations (hej-jci)
0 context vars arel (area = 0.60, count=100) bs=0
1 context vars arel (area = 0.77, count=100) bs=0
2 context vars arel (area = 0.82, count=100) bs=0
3 context vars arel (area = 0.91, count=100) bs=0
4 context vars arel (area = 0.95, count=98) bs=0

(4 system variables, 500 samples in each data set)
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Evaluation on simulated data II
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ROC curves for direct causal relations (hej-jci)
0 context vars edge (area = 0.71, count=100) bs=0
1 context vars edge (area = 0.80, count=100) bs=0
2 context vars edge (area = 0.84, count=100) bs=0
3 context vars edge (area = 0.92, count=100) bs=0
4 context vars edge (area = 0.95, count=98) bs=0

(4 system variables, 500 samples in each data set)
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Evaluation on simulated data III
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ROC curves for confounders (hej-jci)
0 context vars conf (area = 0.64, count=100) bs=0
1 context vars conf (area = 0.66, count=100) bs=0
2 context vars conf (area = 0.71, count=100) bs=0
3 context vars conf (area = 0.74, count=100) bs=0
4 context vars conf (area = 0.81, count=98) bs=0

(4 system variables, 500 samples in each data set)
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Evaluation on real-world flow cytometry data

Raf

Mek

PLCgPIP2

PIP3

Erk

Akt

PKA

PKC

p38 JNK

Only observational data:

Raf

Mek

Akt

PLCg

PIP2

PIP3

JNK

Erk

PKAPKC

p38

ICAM.2AKT.inh G0076Psitectorigenin U0126LY294002

PMA

beta2CAMP

All (observational+interventional) data:
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The generalized directed global Markov property

Given the importance of the Markov property, the first thing we need is a
Markov property for cyclic SCMs.
We introduce a notion σ-separation that generalizes d-separation:

σ-separation implies d-separation.

For acyclic graph, σ-separation is equivalent to d-separation.

Inspired by ideas by [Spirtes, 1996], we show:

Theorem ([Forré and Mooij, 2017])

If an SCM M is uniquely solvable w.r.t. every strongly connected
component in G(M), then the generalized directed global Markov property
holds for any solution X of M with respect to the functional graph G(M):

A
σ
⊥
G(M)

B |Z =⇒ XA ⊥⊥
PX

XB |XZ A,B,Z ⊆ I.
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Markov properties: σ-separation

Definition (σ-separation, [Forré and Mooij, 2017])

In a DMG G, a path
← ←

i1 → · · · → in↔ ↔
is called σ-blocked by a set of nodes Z iff

one or both end nodes i1, in are in Z , or

it contains a collider ik−1
→↔ ik

←↔ ik+1 with ik 6∈ anG(Z ), or

it contains a non-collider with ik ∈ Z :

ik−1
→←↔ ik → ik+1, ik−1 ← ik

→←↔ ik+1,

where the child ik+1 (resp. ik−1) is not in scG(ik).

We say that A is σ-separated from B by Z , denoted A⊥σ B |Z , if every
path with one end node in A and one end node in B is σ-blocked by Z .
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Markov properties: Example

Example

Functional graph G(M):

X1 X2

X3X4

SCM M:

X1 = f1(X4,E1) = X4 + E1

X2 = f2(X1,E2) = X1 · E2

X3 = f3(X2,E3) = X2 + E3

X4 = f4(X3,E4) = X3 · E4

X1⊥d X3 |X2,X4

but

X1 6⊥σ X3 |X2,X4

So for any solution X of the SCM M, in general we do not have that
X1 ⊥⊥ X3 |X2,X4.

In general: No σ-separations between nodes within the same strongly
connected component.
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Directed global Markov property

Stronger statements can be derived for special cases:

Theorem ([Forré and Mooij, 2017])

If an SCM M satisfies at least one of the following three conditions:

1 M is linear, its exogenous variables have a density with respect to
Lebesgue measure, and M is solvable w.r.t. I;

2 all endogenous variables are discrete-valued, M is uniquely solvable
w.r.t. each ancestral subgraph of G(M);

3 M is acyclic;

then the directed global Markov property holds for any solution X of M
with respect to the functional graph G(M):

A
d
⊥
G(M)

B |Z =⇒ XA ⊥⊥
PX

XB |XZ A,B,Z ⊆ I.
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Results on Synthetic Data [Forré and Mooij, 2018]

[Forré and Mooij, 2018]: the first causal discovery algorithm that can
handle cycles, nonlinear relationships, latent confounding variables and
data from different (interventional) contexts.
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ROC curves for direct causal relations

0 interventions  (area = 0.61)
1 interventions  (area = 0.73)
3 interventions  (area = 0.85)
5 interventions  (area = 0.92)

ROC curves for detecting direct causal relations from observational and

interventional data, for varying numbers of interventional data sets.

Joris Mooij (UvA) MLSS 2018: Causality 2018-08-30 111 / 121



Contents

1 Qualitative Causality: Causal Graphs

2 Quantifying Causality: Structural Causal Models

3 Markov Properties: From Graph to Conditional Independences

4 Causal Inference: Predicting Causal Effects

5 Causal Discovery: From Data to Causal Graph
Causal Discovery by Experimentation
Causal Discovery from Observational Data
Causal Discovery from Multiple Contexts

6 Dealing with Cycles

7 Large-Scale Validation of Causal Discovery

Joris Mooij (UvA) MLSS 2018: Causality 2018-08-30 112 / 121



Example Gene Expression Data

YMR275C does not cause YPL142C:

2.0 1.5 1.0 0.5 0.0
YMR275C

0.3

0.2

0.1

0.0

0.1
YP

L1
42

C

Blue: observational; Red: interventional; Green: knockout of gene X .
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Example Gene Expression Data

YMR276W causes YPR154W:

0.6 0.4 0.2 0.0 0.2 0.4
YMR276W

0.2

0.1

0.0

0.1

0.2

0.3

0.4

YP
R1

54
W

Blue: observational; Red: interventional; Green: knockout of gene X .
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Causal Discovery from Large-Scale Micro-Array Data

Observational:

∼6,000 genes

∼
2
5
0
sa
m
p
le
s

Interventional:

∼6,000 genes

∼
1
,5
0
0
k
n
o
ck
o
u
ts

Large-scale Micro-Array Gene Expression Data
(Kemmeren et al., 2014):

Variables i ∈ {1, . . . , p}
(population gene expression levels)
p = 6170

Observational samples Xin, n = 1 . . .Nobs

(wild-type vs. wild-type)
Nobs = 262

Interventional samples X k
i , k = 1 . . .Nint

(single-gene knockouts/knockdowns)
Nint = 1462
one sample for every knocked out gene

Task: Predict from the data which gene expression
levels change when a certain gene is knocked out.
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k-fold Cross-validation

Using 5-fold cross-validation, we split the data into a training set used to
make predictions, and a test set used to define a ground truth for
validating the predictions.

Train:

Test:

Observational:

∼6,000 genes

∼
2
5
0
sa
m
p
le
s

Interventional:

∼6,000 genes

∼
1
,5
0
0
k
n
o
ck
o
u
ts
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ICP Performance
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ICP outperforms baselines (for the 0.61% strongest effects) for certain
ground truth scores (absolute normalized, SIE)
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Conclusion

Causality is clearly an important notion in daily life and in science, and yet
underexplored in statistics and machine learning.

In this tutorial, you have learned how to:

formalize the notion of causality;

reason about causality;

discover causal relations from data;

make causal predictions

that seeing is not the same as doing

This was just a sample of topics in an exciting research field. There is still
much more to learn and to discover!
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Further reading I

Bongers, S. and Mooij, J. M. (2018).

From random differential equations to structural causal models: the
stochastic case.

arXiv.org preprint, arXiv:1803.08784 [cs.AI].

Bongers, S., Peters, J., Schölkopf, B., and Mooij, J. M. (2018).

Theoretical aspects of cyclic structural causal models.

arXiv.org preprint, arXiv:1611.06221v2 [stat.ME].

Forré, P. and Mooij, J. M. (2017).

Markov properties for graphical models with cycles and latent variables.

arXiv.org preprint, arXiv:1710.08775 [math.ST].
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Further reading II

Forré, P. and Mooij, J. M. (2018).

Constraint-based causal discovery for non-linear structural causal models
with cycles and latent confounders.

In Proceedings of the 34th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-18).

Mooij, J. M., Janzing, D., and Schölkopf, B. (2013).

From ordinary differential equations to structural causal models: the
deterministic case.

In Nicholson, A. and Smyth, P., editors, Proceedings of the 29th Annual
Conference on Uncertainty in Artificial Intelligence (UAI-13), pages 440–448.
AUAI Press.

Pearl, J. (2000).

Causality: Models, Reasoning, and Inference.

Cambridge University Press.
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Further reading III

Peters, J., Janzing, D., and Schölkopf, B. (2017).

Elements of Causal Inference: Foundations and Learning Algorithms.

The MIT Press.

Spirtes, P., Glymour, C., and Scheines, R. (2000).

Causation, Prediction, and Search.

The MIT Press.

Wright, S. (1921).

Correlation and causation.

Journal of Agricultural Research, 20:557–585.

Joris Mooij (UvA) MLSS 2018: Causality 2018-08-30 120 / 121



Thank you for your attention!

Randall Munroe, www.xkcd.org
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