MLSS 2018: Causality

Joris Mooij
j.m.mooij@uva.nl

爻 UNIVERSITY OF Amsterdam

August 30-31, 2018

Many questions in science are causal

Climatology:

Economy:

States that cut spending often see higher unemployment

Percent cuts in real state government spending since recession

Medicine:

Contents of this tutorial

Causality is clearly an important notion in daily life and in science.

- But how should we formalize the notion of causality?
- How to reason about causality?
- How can we discover causal relations from data?
- How to obtain causal predictions?
- How do they differ from ordinary predictions in ML?

That is what you will learn in this tutorial!

Probabilistic Inference vs. Causal Inference

Probabilistic Inference (traditional statistics / machine learning)

- Models the distribution of the data
- Focuses on predicting consequences of observations
- Useful e.g. in medical diagnosis: given the symptoms of the patient, what is the most likely disease?

Causal Inference

- Models the mechanism that generates the data
- Also allows to predict results of interventions
- Useful e.g. in medical treatment: if we treat the patient with a drug, will it cure the disease?

Causal reasoning is essential to answer questions of the type: given the circumstances, what action should we take to achieve a certain goal?

Contents

(1) Qualitative Causality: Causal Graphs
(2) Quantifying Causality: Structural Causal Models
(3) Markov Properties: From Graph to Conditional Independences

- Causal 'Inference: Predicting Causal Effects
(5) Causal Discovery: From Data to Causal Graph
- Causal Discovery by Experimentation
- Causal Discovery from Observational Data
- Causal Discovery from Multiple Contexts
(0) Dealing with Cycles
(7) Large-Scale Validation of Causal Discovery

Causation \neq Correlation

Causal relations

Definition (Informal)

Let X and Y be two distinct variables of system. X causes Y if changing X (intervening on X) leads to a change of Y.

Causal graph represents causal relationships between variables graphically.

Example

X_{1} and X_{2} are causally unrelated

X_{1} and X_{2} cause each other

X_{1} causes X_{2}

X_{1} and X_{2} have a common cause X_{3}

X_{2} causes X_{1}

X_{1} and X_{2} have a common effect X_{3}

Direct causation

Let $\boldsymbol{V}=\left\{X_{1}, \ldots, X_{N}\right\}$ be a set of variables.

Definition

If X_{i} causes X_{j} even if all other variables $\boldsymbol{V} \backslash\left\{X_{i}, X_{j}\right\}$ are hold fixed at some values, then

- we say that X_{i} causes X_{j} directly with respect to V
- we indicate this in the causal graph on \boldsymbol{V} by a directed edge $X_{i} \rightarrow X_{j}$

Example

X_{1} causes X_{2};
X_{1} causes X_{2} directly w.r.t. $\left\{X_{1}, X_{2}, X_{3}\right\}$

X_{1} causes X_{2};
X_{1} does not cause X_{2} directly w.r.t. $\left\{X_{1}, X_{2}, X_{3}\right\}$

X_{1} causes X_{2};
X_{1} causes X_{2} directly w.r.t. $\left\{X_{1}, X_{2}, X_{3}\right\}$

Direct vs. indirect causation: Example

- Each stone causes all subsequent stones to topple.
- Each stone only directly causes the next neighboring stone to topple.
- Causal graph:

Perfect interventions: Example

Suppose we intervene by keeping the second stone fixed in an "upright" position (e.g. by glueing it to the floor), an operation that we denote by $\mathrm{do}\left(X_{2}=\right.$ upright $)$.

Before the intervention, the causal graph is:

After the intervention $\operatorname{do}\left(X_{2}=\right.$ upright $)$, the causal graph is:

If we keep the second stone fixed, it is no longer affected by the other stones.

Perfect interventions

Definition (Informal)

A perfect ("surgical", "atomic") intervention on a set of variables $\boldsymbol{X} \subseteq \boldsymbol{V}$, denoted $\operatorname{do}(\boldsymbol{X}=\boldsymbol{\xi})$, is an externally enforced change of the system that ensures that \boldsymbol{X} takes on value $\boldsymbol{\xi}$ and leaves the rest of the system untouched.

The concept of perfect intervention assumes modularity: the causal system can be divided into two parts, \boldsymbol{X} and $\boldsymbol{V} \backslash \boldsymbol{X}$, and we can make changes to one part while keeping the other part invariant.

Note

The intervention changes the causal graph by removing all edges that point towards variables in \boldsymbol{X} (because none of the variables can now cause \boldsymbol{X}).

Confounders: Definition

Informally: a confounder is a latent common cause.

Definition

Consider three variables X, Y, H. H confounds X and Y if:
(1) H causes X directly w.r.t. $\{X, Y, H\}$
(2) H causes Y directly w.r.t. $\{X, Y, H\}$

Confounders: Definition

Informally: a confounder is a latent common cause.

Definition

Consider three variables X, Y, H. H confounds X and Y if:
(1) H causes X directly w.r.t. $\{X, Y, H\}$
(2) H causes Y directly w.r.t. $\{X, Y, H\}$

Example

Confounders: Example

Wealth might confound chocolate consumption and Nobel prize winners.

Confounders: Graphical notation

We denote latent confounders by bidirected edges in the causal graph:

Example

Causal Cycles: Definition and Example

Let X, Y be two variables in a system.

Definition

If X causes Y and X causes Y, then X and Y form a causal cycle.

Causal Cycles: Definition and Example

Let X, Y be two variables in a system.

Definition

If X causes Y and X causes Y, then X and Y form a causal cycle.

Example (Damped Coupled Harmonic Oscillators)

- Two masses, connected by a spring, suspended from the ceiling by another spring.
- Variables: vertical equilibrium positions Q_{1} and Q_{2}.
- Q_{1} causes Q_{2}.
- Q_{2} causes Q_{1}.
- Causal graph:

- Cannot be modeled with acyclic causal model!

Cycles: Relevance in Climatology

"Part of the uncertainty around future climates relates to important feedbacks between different parts of the climate system: air temperatures, ice and snow albedo (reflection of the sun's rays), and clouds." [Ahlenius, 2007]

Cycles: Relevance in Biology

"Feedback mechanisms may be critical to allow cells to achieve the fine balance between dysregulated signaling and uncontrolled cell proliferation (a hallmark of cancer) as well as the capacity to switch pathways on or off when needed for physiologic purposes." [McArthur, 2014]

Graph Terminology

Definition

- A graph \mathcal{G} that consists of directed and bidirected edges is called Directed Mixed Graph (DMG).
- If $i_{1} \rightarrow i_{2} \rightarrow \cdots \rightarrow i_{k}$ in \mathcal{G} then i_{1} is ancestor of $i_{k}\left(i_{1} \in \operatorname{an}_{\mathcal{G}}\left(i_{k}\right)\right)$.
- \mathcal{G} is called cyclic if it contains a directed cycle:

- The strongly connected component of a node $i \in \mathcal{G}$ is the set of nodes $j \in \mathcal{G}$ such that i and j are each other's ancestors.
- If \mathcal{G} does not contain such a directed cycle, it is called acyclic, and known as an Acyclic Directed Mixed Graph (ADMG).
- If, in addition, \mathcal{G} does not contain any bidirected edges, it is called a Directed Acyclic Graph (DAG).

Contents

(1) Qualitative Causality: Causal Graphs
(2) Quantifying Causality: Structural Causal Models
(3) Markov Properties: From Graph to Conditional Independences

4 Causal Inference: Predicting Causal Effects
(5) Causal Discovery: From Data to Causal Graph

- Causal Discovery by Experimentation
- Causal Discovery from Observational Data
- Causal Discovery from Multiple Contexts
(6) Dealing with Cycles
(7) Large-Scale Validation of Causal Discovery

Defining Causality in terms of Probabilities?

When looking for a more quantitative treatment of causality, it is a natural idea to try to define causality in terms of probabilities.

A naïve example of such an attempt could be:

Attempt at a definition

Given two binary random variables A, B. If

- A precedes B in time, and
- $p(B=1 \mid A=1)>p(B=1 \mid A=0)$
then A causes B.

Defining Causality in terms of Probabilities?

When looking for a more quantitative treatment of causality, it is a natural idea to try to define causality in terms of probabilities.

A naïve example of such an attempt could be:

Attempt at a definition

Given two binary random variables A, B. If

- A precedes B in time, and
- $p(B=1 \mid A=1)>p(B=1 \mid A=0)$
then A causes B.

This does not work, as exemplified by Simpson's paradox.

Exercise

Please make Exercise 1.

Simpson's Paradox

Example (Simpson's paradox)

We collect electronic patient records to investigate the effectiveness of a new drug against a certain disease. We find that:
(1) The probability of recovery is higher for patients that took the drug:

$$
p(\text { recovery } \mid \text { drug })>p(\text { recovery } \mid \text { no drug })
$$

(2) For both male and female patients, the relation is opposite:

$$
\begin{gathered}
p(\text { recovery } \mid \text { drug }, \text { male })<p(\text { recovery } \mid \text { no drug, male }) \\
p(\text { recovery } \mid \text { drug }, \text { female })<p(\text { recovery } \mid \text { no drug }, \text { female })
\end{gathered}
$$

Does the drug cause recovery? I.e., would you use this drug if you are ill?

Simpson's Paradox

Example (Simpson's paradox)

We collect electronic patient records to investigate the effectiveness of a new drug against a certain disease. We find that:
(1) The probability of recovery is higher for patients that took the drug:

$$
p(\text { recovery } \mid \text { drug })>p(\text { recovery } \mid \text { no drug })
$$

(2) For both male and female patients, the relation is opposite:

$$
\begin{gathered}
p(\text { recovery } \mid \text { drug }, \text { male })<p(\text { recovery } \mid \text { no drug, male }) \\
p(\text { recovery } \mid \text { drug }, \text { female })<p(\text { recovery } \mid \text { no drug }, \text { female })
\end{gathered}
$$

Does the drug cause recovery? I.e., would you use this drug if you are ill?

Note: Big data and deep learning do not help us here!

Quantitative Models of Causality

Problems like these have historically prevented statisticians from considering causality.

Nonetheless, different approaches have been proposed to model causality in a quantitative way:

- Potential outcome framework
- Causal Bayesian Networks
- Structural Causal Models (SCMs)

We will use SCMs, as they are arguably the most general of the three:

- SCMs can model cycles naturally (natural connection to ubiquitous ODE models)
- Acyclic SCMs are closed under marginalization (can efficiently handle latent variables)
- SCMs can model counterfactuals (provides alternative to potential outcome framework)
- SCMs generalize Causal Bayesian Networks

Structural Causal Models: Concepts

SCMs turn things upside down: rather than defining causality in terms of probabilities, probability distributions are defined by a causal model, thereby avoiding traps like Simpson's paradox.

- The system we are modeling is described by endogenous variables; endogenous variables are:
- observed,
- modeled by structural equations.
- The environment of the system is described by exogenous variables; exogenous variables are:
- latent (unobserved),
- modeled by probability distributions,
- not caused by endogenous variables,
- provide the "source" of randomness.
- Each endogenous variable has its own structural equation, which describes how this variable depends causally on other variables.
- SCMs are equipped with a notion of perfect intervention, which gives them a causal semantics.

Structural Causal Models: Example

Endogenous variables (binary):
X : the battery is charged
Y : the start engine is operational
S : the car starts
Exogenous variables (latent, independent, binary):

$$
\begin{aligned}
& E_{X} \sim \operatorname{Ber}(0.95) \\
& E_{Y} \sim \operatorname{Ber}(0.99) \\
& E_{S} \sim \operatorname{Ber}(0.999)
\end{aligned}
$$

Structural equations (one per endogenous variable):

$$
\begin{aligned}
& X=f_{X}\left(E_{X}\right)=E_{X} \\
& Y=f_{Y}\left(E_{Y}\right)=E_{Y} \\
& S=f_{S}\left(X, Y, E_{S}\right)=X \wedge Y \wedge E_{S}
\end{aligned}
$$

Causal graph:

Augmented functional graph:

E_{S}

Structural Causal Models: Formal Definition

Definition ([Wright, 1921, Pearl, 2000, Bongers et al., 2018])

A Structural Causal Model (SCM), also known as Structural Equation Model (SEM), is a tuple $\mathcal{M}=\left\langle\mathcal{X}, \mathcal{E}, \boldsymbol{f}, \mathbb{P}_{\mathcal{E}}\right\rangle$ with:
(1) a product of standard measurable spaces $\mathcal{X}=\prod_{i \in \mathcal{I}} \mathcal{X}_{i}$ (domains of the endogenous variables)
(2) a product of standard measurable spaces $\mathcal{E}=\prod_{j \in \mathcal{J}} \mathcal{E}_{j}$ (domains of the exogenous variables)
(3) a measurable mapping $\boldsymbol{f}: \mathcal{X} \times \mathcal{E} \rightarrow \mathcal{X}$ (the causal mechanism)
(9) a product probability measure $\mathbb{P}_{\mathcal{E}}=\prod_{j \in \mathcal{J}} \mathbb{P}_{\mathcal{E}_{j}}$ on \mathcal{E} (the exogenous distribution)

Definition

A pair of random variables $(\boldsymbol{X}, \boldsymbol{E})$ is a solution of SCM \mathcal{M} if $\mathbb{P}^{\boldsymbol{E}}=\mathbb{P}_{\mathcal{E}}$ and the structural equations $\boldsymbol{X}=\boldsymbol{f}(\boldsymbol{X}, \boldsymbol{E})$ hold a.s..

Structural Causal Models: Example

Example

Structural Causal Model \mathcal{M} :

Formally:
$\left(\mathcal{X}, \mathcal{E}, \boldsymbol{f}, \mathbb{P}_{\mathcal{E}}\right)=$
$\left(\prod_{i=1}^{5} \mathbb{R}, \prod_{j=1}^{5} \mathbb{R},\left(f_{1}, \ldots, f_{5}\right), \prod_{j=1}^{5} \mathbb{P}_{\mathcal{E}_{j}}\right)$

Informally:
Augmented functional graph $\mathcal{G}^{a}(\mathcal{M})$:

$$
\begin{array}{ll}
X_{1}=f_{1}\left(E_{1}\right) & \mathbb{P}^{E_{1}}=\ldots \\
X_{2}=f_{2}\left(E_{1}, E_{2}\right) & \mathbb{P}^{E_{2}}=\ldots \\
X_{3}=f_{3}\left(X_{1}, X_{2}, X_{5}, E_{3}\right) & \mathbb{P}^{E_{3}}=\ldots \\
X_{4}=f_{4}\left(X_{1}, X_{4}, E_{4}\right) & \mathbb{P}^{E_{4}}=\ldots \\
X_{5}=f_{5}\left(X_{3}, X_{4}, E_{5}\right) & \mathbb{P}^{E_{5}}=\ldots
\end{array}
$$

Functional graph $\mathcal{G}(\mathcal{M})$:

(Augmented) Functional Graphs

Definition

The components of the causal mechanism usually do not depend on all variables: for $i \in \mathcal{I}$,

$$
X_{i}=f_{i}\left(\boldsymbol{X}_{\mathrm{pa}_{i}^{\tau}}, \boldsymbol{E}_{\mathrm{pa}_{i}^{\mathcal{J}}}\right)
$$

where f_{i} only depends on $\mathrm{pa}_{i}^{\mathcal{I}} \subseteq \mathcal{I}$ (the endogenous parents of i) and $\mathrm{pa}_{i}^{\mathcal{J}} \subseteq \mathcal{J}$ (the exogenous parents of i).

Definition

The augmented functional graph $\mathcal{G}^{a}(\mathcal{M})$ of $\operatorname{SCM} \mathcal{M}$ is a directed graph with nodes $\mathcal{I} \dot{\cup} \mathcal{J}$ and an edge $k \rightarrow i$ iff $k \in \mathrm{pa}_{i}^{\mathcal{I}} \dot{\cup} \mathrm{pa}_{i}^{\mathcal{J}}$ is a parent of $i \in \mathcal{I}$.

Definition

The functional graph $\mathcal{G}(\mathcal{M})$ of SCM \mathcal{M} is a DMG with nodes \mathcal{I}, directed edges $k \rightarrow i$ iff $k \in \mathrm{pa}_{i}^{\mathcal{I}}$, and bidirected edges $k \leftrightarrow i$ iff $\mathrm{pa}_{i}^{\mathcal{J}} \cap \mathrm{pa}_{k}^{\mathcal{J}} \neq \emptyset$.

Causal Graph

Definition

We say \mathcal{M} has a self-loop at $i \in \mathcal{I}$ if $i \in \mathrm{pa}_{i}^{\mathcal{T}}$.

Proposition ([Bongers et al., 2018])

If \mathcal{M} has no self-loops, the causal graph of \mathcal{M} is a subgraph of the functional graph $\mathcal{G}(\mathcal{M})$.

In that case, generically:

- The directed edges in $\mathcal{G}(\mathcal{M})$ represent direct causal relations w.r.t. \mathcal{I};
- The bidirected edges in $\mathcal{G}(\mathcal{M})$ may represent the existence of confounders w.r.t. \mathcal{I}.
- A direct causal relation $X_{i} \rightarrow X_{j}$ w.r.t. \mathcal{I} can be detected experimentally by intervening on all variables $\boldsymbol{X}_{\mathcal{I} \backslash\{j\}}$ except X_{j}, and testing if the marginal distributions of the solutions on X_{j} depend on the value to which X_{i} is set.

Interventions

To interpret an SCM as a causal model, we also need to define its semantics under interventions.

Definition (Perfect Interventions, [Pearl, 2000])

- The perfect intervention $\mathrm{do}\left(\boldsymbol{X}_{I}=\boldsymbol{\xi}_{I}\right)$ enforces \boldsymbol{X}, to attain value $\boldsymbol{\xi}_{I}$.
- This changes the $\operatorname{SCM}_{\tilde{\sim}} \mathcal{M}=\left\langle\mathcal{X}, \mathcal{E}, \boldsymbol{f}, \mathbb{P}_{\mathcal{E}}\right\rangle$ into the intervened SCM $\mathcal{M}_{\mathrm{do}\left(\boldsymbol{X}_{l}=\xi_{l}\right)}=\left\langle\mathcal{X}, \mathcal{E}, \tilde{\boldsymbol{f}}, \mathbb{P}_{\mathcal{E}}\right\rangle$ where

$$
\tilde{f}_{i}= \begin{cases}\xi_{i} & i \in I \\ f_{i}\left(\boldsymbol{X}_{\mathrm{pa}_{i}^{\tau}}, \boldsymbol{E}_{\mathrm{pa}_{i}^{J}}\right) & i \notin I .\end{cases}
$$

- Interpretation: overrides default causal mechanisms that normally would determine the values of the intervened variables.
- In the (augmented) functional graph, the intervention removes all incoming edges with an arrowhead at any intervened variable $i \in I$.

Interventions: Example

Endogenous variables (binary):
X : the battery is charged
Y : the start engine is operational
S : the car starts
Exogenous variables (latent, independent, binary):

$$
\begin{aligned}
& E_{X} \sim \operatorname{Ber}(0.95) \\
& E_{Y} \sim \operatorname{Ber}(0.99) \\
& E_{Z} \sim \operatorname{Ber}(0.999)
\end{aligned}
$$

Structural equations (one per endogenous variable):

$$
\begin{aligned}
& X=E_{X} \\
& Y=E_{Y} \\
& S=X \wedge Y \wedge E_{S}
\end{aligned}
$$

Causal graph:

Augmented functional graph:

E_{S}

Endogenous variables (binary):
X : the battery is charged
Y : the start engine is operational
S : the car starts
Exogenous variables (latent, independent, binary):

$$
\begin{aligned}
& E_{X} \sim \operatorname{Ber}(0.95) \\
& E_{Y} \sim \operatorname{Ber}(0.99) \\
& E_{Z} \sim \operatorname{Ber}(0.999)
\end{aligned}
$$

Structural equations (one per endogenous variable): after charging the battery $\operatorname{do}(X=1)$:

$$
\begin{aligned}
& X=1 \\
& Y=E_{Y} \\
& S=X \wedge Y \wedge E_{S}
\end{aligned}
$$

Causal graph:

Augmented functional graph:

E_{S}

Endogenous variables (binary):
X : the battery is charged
Y : the start engine is operational
S : the car starts
Exogenous variables (latent, independent, binary):

$$
\begin{aligned}
& E_{X} \sim \operatorname{Ber}(0.95) \\
& E_{Y} \sim \operatorname{Ber}(0.99) \\
& E_{Z} \sim \operatorname{Ber}(0.999)
\end{aligned}
$$

Structural equations (one per endogenous variable): after loosing the key $\operatorname{do}(S=0)$:

$$
\begin{aligned}
& X=E_{X} \\
& Y=E_{Y} \\
& S=0
\end{aligned}
$$

Causal graph:

Augmented functional graph:

E_{S}

Interventions: Example

Example

Observational (no intervention):

Structural Causal Model \mathcal{M} :

$$
\begin{array}{ll}
X_{1}=f_{1}\left(E_{1}\right) & \mathbb{P}^{E_{1}}=\ldots \\
X_{2}=f_{2}\left(E_{1}, E_{2}\right) & \mathbb{P}^{E_{2}}=\ldots \\
X_{3}=f_{3}\left(X_{1}, X_{2}, X_{5}, E_{3}\right) & \mathbb{P}^{E_{3}}=\ldots \\
X_{4}=f_{4}\left(X_{1}, X_{4}, E_{4}\right) & \mathbb{P}^{E_{4}}=\ldots \\
X_{5}=f_{5}\left(X_{3}, X_{4}, E_{5}\right) & \mathbb{P}^{E_{5}}=\ldots
\end{array}
$$

Distributions

Definition (Reminder)

A pair of random variables $(\boldsymbol{X}, \boldsymbol{E})$ is a solution of SCM \mathcal{M} if $\mathbb{P}^{\boldsymbol{E}}=\mathbb{P}_{\mathcal{E}}$ and the structural equations $\boldsymbol{X}=\boldsymbol{f}(\boldsymbol{X}, \boldsymbol{E})$ hold a.s..

Definition

We call the set of probability distributions of the solutions \boldsymbol{X} of an SCM \mathcal{M} the observational distributions of \mathcal{M}.

Distributions

Definition (Reminder)

A pair of random variables $(\boldsymbol{X}, \boldsymbol{E})$ is a solution of SCM \mathcal{M} if $\mathbb{P}^{\boldsymbol{E}}=\mathbb{P}_{\mathcal{E}}$ and the structural equations $\boldsymbol{X}=\boldsymbol{f}(\boldsymbol{X}, \boldsymbol{E})$ hold a.s..

Definition

We call the set of probability distributions of the solutions \boldsymbol{X} of an SCM \mathcal{M} the observational distributions of \mathcal{M}.

A perfect intervention on \mathcal{M} may change the distributions.

Definition

We call the family of sets of probability distributions of the solutions of $\mathcal{M}_{\mathrm{do}\left(I, \boldsymbol{\xi}_{I}\right)}\left(\right.$ for $\left.I \subseteq \mathcal{I}, \boldsymbol{\xi}_{I} \subseteq \mathcal{X}_{I}\right)$ the interventional distributions of \mathcal{M}.

Crucial difference with traditional probabilistic models: SCMs simultaneously model all distributions that are obtained under all perfect interventions on a system.

Acyclic SCMs vs. Causal Bayesian Networks

Definition

We call the $\operatorname{SCM} \mathcal{M}$ acyclic if $\mathcal{G}(\mathcal{M})$ is acyclic.

Proposition

If \mathcal{M} is acyclic, then:

- its observational distribution exists and is unique.
- all its interventional distributions exist and are unique.

In that case, we denote the observational density on \boldsymbol{X} by $p_{\mathcal{M}}(\boldsymbol{x})$, and the interventional densities on \boldsymbol{X} by $p_{\mathcal{M}}\left(\boldsymbol{x} \mid \operatorname{do}\left(\boldsymbol{X}_{I}=\boldsymbol{\xi}_{I}\right)\right)$, following the notation of [Pearl, 2000].

Proposition

If $\mathcal{G}(\mathcal{M})$ is acyclic and does not have bidirected edges, the SCM induces a Causal Bayesian Network. Vice versa, for every Causal Bayesian Network there exists an acyclic, causally sufficient SCM that induces it.

Marginalization (Example)

Can we "integrate out" the details of a subsystem?

Example

SCM for complete system:

Structural Causal Model \mathcal{M} :

$X_{1}=f_{1}\left(E_{1}\right)$	$\mathbb{P}^{E_{1}}=\ldots$
$X_{2}=f_{2}\left(E_{1}, E_{2}\right)$	$\mathbb{P}^{E_{2}}=\ldots$
$X_{3}=f_{3}\left(X_{1}, X_{2}, X_{5}, E_{3}\right)$	$\mathbb{P}^{E_{3}}=\ldots$
$X_{4}=f_{4}\left(X_{1}, X_{4}, E_{4}\right)$	$\mathbb{P}^{E_{4}}=\ldots$
$X_{5}=f_{5}\left(X_{3}, X_{4}, E_{5}\right)$	$\mathbb{P}^{E_{5}}=\ldots$

Functional graph $\mathcal{G}(\mathcal{M})$:

Marginalizing out X_{2}, X_{4} :
Marginalization $\mathcal{M} \backslash\{2,4\}$:

$X_{1}=f_{1}\left(E_{1}\right)$	$\mathbb{P}^{E_{1}}=\ldots$
$X_{3}=f_{3}\left(X_{1}, g_{2}\left(E_{1}, E_{2}\right), X_{5}, E_{3}\right)$	$\mathbb{P}^{E_{2}}=\ldots$
$\mathbb{P}^{E_{3}}=\ldots$	
$X_{5}=f_{5}\left(X_{3}, g_{4}\left(X_{1}, E_{4}\right), E_{5}\right)$	$\mathbb{P}^{P_{4}}=\ldots$
$\mathbb{P}^{E_{5}}=\ldots$	

Functional graph $\mathcal{G}(\mathcal{M} \backslash\{2,4\})$:

Substituting equations

Given an SCM \mathcal{M} and a subset of its endogenous variables $\mathcal{L} \subseteq \mathcal{I}$, with complement $\mathcal{O}:=\mathcal{I} \backslash \mathcal{L}$. We can try to "substitute out" the structural equations for \mathcal{L} :

$$
\begin{aligned}
& \boldsymbol{X}=\boldsymbol{f}(\boldsymbol{X}, \boldsymbol{E}) \\
\Longleftrightarrow & \begin{cases}\boldsymbol{X}_{\mathcal{L}} & =\boldsymbol{f}_{\mathcal{L}}\left(\boldsymbol{X}_{\mathcal{L}}, \boldsymbol{X}_{\mathcal{O}}, \boldsymbol{E}\right) \\
\boldsymbol{X}_{\mathcal{O}} & =\boldsymbol{f}_{\mathcal{O}}\left(\boldsymbol{X}_{\mathcal{L}}, \boldsymbol{X}_{\mathcal{O}}, \boldsymbol{E}\right)\end{cases} \\
\Longleftrightarrow & \begin{cases}\boldsymbol{X}_{\mathcal{L}} & =\boldsymbol{g}_{\mathcal{L}}\left(\boldsymbol{X}_{\mathcal{O}}, \boldsymbol{E}\right) \\
\boldsymbol{X}_{\mathcal{O}} & =\boldsymbol{f}_{\mathcal{O}}\left(\boldsymbol{X}_{\mathcal{L}}, \boldsymbol{X}_{\mathcal{O}}, \boldsymbol{E}\right)\end{cases} \\
\Longleftrightarrow & \begin{cases}\boldsymbol{x}_{\mathcal{L}} & =\boldsymbol{g}_{\mathcal{L}}\left(\boldsymbol{X}_{\mathcal{O}}, \boldsymbol{E}\right) \\
\boldsymbol{X}_{\mathcal{O}} & =\boldsymbol{f}_{\mathcal{O}}\left(\boldsymbol{g}_{\mathcal{L}}\left(\boldsymbol{X}_{\mathcal{O}}, \boldsymbol{E}\right), \boldsymbol{X}_{\mathcal{O}}, \boldsymbol{E}\right)\end{cases}
\end{aligned}
$$

This trick works if the structural equations for $\boldsymbol{X}_{\mathcal{L}}$ have a unique solution for $\boldsymbol{X}_{\mathcal{L}}$ in terms of $\boldsymbol{X}_{\mathcal{O}}$ and \boldsymbol{E} (for acyclic SCMs, this always works).

Marginalization of an SCM

Definition ([Bongers et al., 2018])

If $\mathcal{M}=\left\langle\mathcal{X}, \mathcal{E}, \boldsymbol{f}, \mathbb{P}_{\mathcal{E}}\right\rangle$ is uniquely solvable w.r.t. $\mathcal{L} \subseteq \mathcal{I}$, then it has a marginalization $\mathcal{M} \backslash \mathcal{L}=\left\langle\mathcal{X}_{\mathcal{I} \backslash \mathcal{L}}, \mathcal{E}, \boldsymbol{f} \backslash \mathcal{L}, \mathbb{P}_{\mathcal{E}}\right\rangle$, where the marginal causal mechanism $\boldsymbol{f} \backslash \mathcal{L}$ is obtained by substituting the solution function $\boldsymbol{g}_{\mathcal{L}}$ for $\boldsymbol{X}_{\mathcal{L}}$ in terms of $\boldsymbol{X}_{\mathcal{O}}$ (with $\mathcal{O}:=\mathcal{I} \backslash \mathcal{L}$) and \boldsymbol{E} into the causal mechanism $\boldsymbol{f}_{\boldsymbol{O}}$:

$$
\boldsymbol{f}^{\backslash \mathcal{L}}\left(\boldsymbol{x}_{\mathcal{O}}, \boldsymbol{e}\right):=\boldsymbol{f}_{\mathcal{O}}\left(\boldsymbol{g}_{\mathcal{L}}\left(\boldsymbol{x}_{\mathrm{pa}(\mathcal{L}) \backslash \mathcal{L}}, \boldsymbol{e}_{\mathrm{pa}(\mathcal{L})}\right), \boldsymbol{x}_{\mathcal{O}}, \boldsymbol{e}\right)
$$

The marginalization preserves the causal semantics (restricted to the remaining part of the system, $\mathcal{I} \backslash \mathcal{L}$):

Theorem ([Bongers et al., 2018])

The marginalization $\mathcal{M} \backslash \mathcal{L}$ is interventionally equivalent to \mathcal{M} w.r.t. $\mathcal{I} \backslash \mathcal{L}$. In other words, for any perfect intervention on a subset of $\mathcal{I} \backslash \mathcal{L}, \mathcal{M} \backslash \mathcal{L}$ and \mathcal{M} admit the same solutions (marginalized onto $\boldsymbol{\mathcal { X }}_{\mathcal{I} \backslash \mathcal{L}}$).

Modeling (Random) ODE fixed points with an SCM

Theorem ([Mooij et al., 2013, Bongers and Mooij, 2018])

A random ODE describing a dynamical system induces an SCM that models its equilibrium states, and how these change under perfect interventions.

From ODE to SCM: Example 1

Example (Damped coupled harmonic oscillators)

- ODE \mathcal{D} :

$$
\ddot{X}_{i}=\frac{k_{i}}{m_{i}}\left(X_{i+1}-X_{i}-l_{i}\right)-\frac{k_{i-1}}{m_{i}}\left(X_{i}-X_{i-1}-I_{i-1}\right)-b_{i} \dot{X}_{i}
$$

- Structural Equations of induced SCM $\mathcal{M}_{\mathcal{D}}$:

$$
X_{i}=\frac{k_{i}\left(X_{i+1}-l_{i}\right)+k_{i-1}\left(X_{i-1}+I_{i-1}\right)}{k_{i}+k_{i+1}}
$$

- Functional graph of induced $\operatorname{SCM} \mathcal{G}\left(\mathcal{M}_{\mathcal{D}}\right)$:

From ODE to SCM: Example 2

Enzyme reaction:

$$
\underset{k_{i} \uparrow}{S}+E \sim_{k_{r}}^{\longrightarrow} C \xrightarrow{k^{k_{c}}} P+E
$$

Random differential equations:

$$
\begin{aligned}
& \frac{d}{d t} S=k_{i}-k_{f} E S+k_{r} C \\
& \frac{d}{d t} E=-k_{f} E S+\left(k_{r}+k_{c}\right) C \\
& \frac{d}{d t} C=k_{f} E S-\left(k_{r}+k_{c}\right) C \\
& \frac{d}{d t} P=k_{c} C-k_{o} P
\end{aligned}
$$

Structural causal model:

$$
\xrightarrow{t \rightarrow \infty} \begin{aligned}
S & =k_{i} k_{f}^{-1} E^{-1}-k_{r} k_{f}^{-1} E^{-1} C \\
E & =k_{f}^{-1}\left(k_{r}+k_{c}\right) S^{-1} C \\
C & =k_{f}\left(k_{r}+k_{c}\right)^{-1} E S \\
P & =k_{c} k_{o}^{-1} C
\end{aligned}
$$

$$
\downarrow \operatorname{do}(E=\eta)
$$

$\downarrow \operatorname{do}(E=\eta)$
Intervened SCM:

$$
\begin{aligned}
& \frac{d}{d t} S=k_{i}-k_{f} E S+k_{r} C \\
& \frac{d}{d t} E=\eta \\
& \frac{d}{d t} C=k_{f} E S-\left(k_{r}+k_{c}\right) C \\
& \frac{d}{d t} P=k_{c} C-k_{o} P
\end{aligned}
$$

More generally, any chemical reaction can be modeled as an SCM at equilibrium. (Note: the SCM is in general underspecified, i.e., it does not retain all information about the equilibrium states of the dynamical system [Blom \& Mooij, 2018]).

Representations of (acyclic) SCMs [Bongers et al., 2018]

Representations of (acyclic) SCMs [Bongers et al., 2018]

Causal relations

Contents

(1) Qualitative Causality: Causal Graphs
(2) Quantifying Causality: Structural Causal Models
(3) Markov Properties: From Graph to Conditional Independences
(4) Causal Inference: Predicting Causal Effects
(5) Causal Discovery: From Data to Causal Graph

- Causal Discovery by Experimentation
- Causal Discovery from Observational Data
- Causal Discovery from Multiple Contexts
(6) Dealing with Cycles
(7) Large-Scale Validation of Causal Discovery

(Conditional) independences

Definition (Independence)

Given two random variables X, Y, we write $X \Perp Y$ and say that X is independent of Y if

$$
p(x, y)=p(x) p(y)
$$

Intuitively, X is independent of Y if we do not learn anything about X when told the value of Y (or vice versa).

(Conditional) independences

Definition (Independence)

Given two random variables X, Y, we write $X \Perp Y$ and say that X is independent of Y if

$$
p(x, y)=p(x) p(y)
$$

Intuitively, X is independent of Y if we do not learn anything about X when told the value of Y (or vice versa).

Definition (Conditional Independence)

Given a third random variable Z, we write $X \Perp Y \mid Z$ and say that X is (conditionally) independent from Y, given Z, if

$$
p(x, y \mid Z=z)=p(x \mid Z=z) p(y \mid Z=z)
$$

Intuitively, X is independent of Y if, given the value of Z, we do not learn anything new about X when told the value of Y.

(Directed) Paths

Definition (Paths, Ancestors)

Let \mathcal{G} be a directed mixed graph.

- A path q is a sequence of adjacent edges in which no node occurs more than once.
- A directed path is of the form $i_{1} \rightarrow i_{2} \rightarrow \cdots \rightarrow i_{k}$.
- If there is a directed path from X to Y, X is called an ancestor of Y.
- The ancestors of Y are denoted $\operatorname{an}_{\mathcal{G}}(Y)$, and include Y.

(Directed) Paths

Definition (Paths, Ancestors)

Let \mathcal{G} be a directed mixed graph.

- A path q is a sequence of adjacent edges in which no node occurs more than once.
- A directed path is of the form $i_{1} \rightarrow i_{2} \rightarrow \cdots \rightarrow i_{k}$.
- If there is a directed path from X to Y, X is called an ancestor of Y.
- The ancestors of Y are denoted $\operatorname{an}_{\mathcal{G}}(Y)$, and include Y.

Example

$X_{1} \rightarrow X_{3} \leftarrow X_{1}$ is not a path.
$X_{1} \leftrightarrow X_{2} \rightarrow X_{3}$ is a path.
$X_{1} \rightarrow X_{4} \rightarrow X_{5}$ is a directed path.
$X_{4} \rightarrow X_{5} \leftarrow X_{3}$ is not a directed path.
The ancestors of X_{3} are $\left\{X_{1}, X_{2}, X_{3}\right\}$.

Colliders and non-colliders

Definition (Colliders)

Let \mathcal{G} be a directed mixed graph, and q a path on \mathcal{G}.

- A collider on q is a (non-endpoint) node X on q with precisely two arrowheads pointing towards X on the adjacent edges:

$$
\rightarrow X \leftarrow, \quad \rightarrow X \leftrightarrow, \quad \leftrightarrow X \leftarrow, \quad \leftrightarrow X \leftrightarrow
$$

- A non-collider on q is any node on the path which is not a collider.

Colliders and non-colliders

Definition (Colliders)

Let \mathcal{G} be a directed mixed graph, and q a path on \mathcal{G}.

- A collider on q is a (non-endpoint) node X on q with precisely two arrowheads pointing towards X on the adjacent edges:

$$
\rightarrow X \leftarrow, \quad \rightarrow X \leftrightarrow, \quad \leftrightarrow X \leftarrow, \quad \leftrightarrow X \leftrightarrow
$$

- A non-collider on q is any node on the path which is not a collider.

Example

The path $X_{3} \rightarrow X_{5} \leftarrow X_{4}$ contains a collider X_{5}. The path $X_{1} \leftrightarrow X_{2} \rightarrow X_{3}$ contains no collider. X_{5} is a non-collider on $X_{5} \leftrightarrow X_{3} \leftarrow X_{1}$.

Blocked paths

Definition

Let \mathcal{G} be a directed mixed graph. Given a path q on \mathcal{G}, and a set of nodes \boldsymbol{S}, we say that \boldsymbol{S} blocks q if q contains

- a non-collider which is in S, or
- a collider which is not an ancestor of \boldsymbol{S}.

Definition

Let \mathcal{G} be a directed mixed graph. Given a path q on \mathcal{G}, and a set of nodes S, we say that S blocks q if q contains

- a non-collider which is in S, or
- a collider which is not an ancestor of \boldsymbol{S}.

Example

$X_{3} \rightarrow X_{5} \leftarrow X_{4}$ is blocked by \emptyset.
$X_{3} \rightarrow X_{5} \leftarrow X_{4}$ is blocked by $\left\{X_{1}\right\}$.
$X_{3} \rightarrow X_{5} \leftarrow X_{4}$ is not blocked by $\left\{X_{5}\right\}$.
$X_{3} \leftarrow X_{2} \leftrightarrow X_{1} \rightarrow X_{4}$ is blocked by $\left\{X_{1}\right\}$.
$X_{3} \leftarrow X_{2} \leftrightarrow X_{1} \rightarrow X_{4}$ is not blocked by $\left\{X_{5}\right\}$.

Definition (d-separation)

Let \mathcal{G} be a directed mixed graph. For three sets $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$ of nodes in \mathcal{G}, we say that \boldsymbol{X} and \boldsymbol{Y} are d-separated by \boldsymbol{Z} iff all paths between a node in \boldsymbol{X} and a node in \boldsymbol{Y} are blocked by \boldsymbol{Z}, and write $\boldsymbol{X} \perp_{\mathcal{G}} \boldsymbol{Y} \mid \boldsymbol{Z}$.

Definition (d-separation)

Let \mathcal{G} be a directed mixed graph. For three sets $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$ of nodes in \mathcal{G}, we say that \boldsymbol{X} and \boldsymbol{Y} are d-separated by \boldsymbol{Z} iff all paths between a node in \boldsymbol{X} and a node in \boldsymbol{Y} are blocked by \boldsymbol{Z}, and write $\boldsymbol{X} \perp_{\mathcal{G}} \boldsymbol{Y} \mid \boldsymbol{Z}$.

Example

X_{3} and X_{4} are d-separated by $\left\{X_{1}\right\}$.
X_{3} and X_{4} are d-separated by $\left\{X_{1}, X_{2}\right\}$.
X_{3} and X_{4} are not d-separated by \emptyset.
X_{3} and X_{4} are not d-separated by $\left\{X_{1}, X_{5}\right\}$.

Exercise 2

Please make Exercise 2

Acyclic Global Markov Property

Theorem

For an acyclic SCM, the following Global Markov Property holds:

$$
X, Y_{\mathcal{G}(\mathcal{M})}^{\perp} Z \quad \Longrightarrow \quad X \underset{p_{\mathcal{M}}}{\Perp} Y \mid Z
$$

for all subsets $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$ of nodes.

In words: every d -separation in the functional $\operatorname{graph} \mathcal{G}(\mathcal{M})$ of \mathcal{M} implies a (conditional) independence in the (unique) observational distribution associated to \mathcal{M}.

For cyclic SCMs, the notion of d-separation is too strong in general. A weaker notion called σ-separation has to be used instead
[Forré and Mooij, 2017]. Under additional solvability conditions, a global
Markov condition using σ-separation can be shown to hold.

Reichenbach's Principle

Reichenbach's Principle of Common Cause

The dependence $X \not \mathbb{\nVdash Y}$ implies that $X \rightarrow Y, Y \rightarrow X$, or $X \leftrightarrow Y$ (or any combination of these three).

Example

- Significant correlation $(p=0.008)$ between human birth rate and number of stork populations in European countries [Matthews, 2000]
- Most people nowadays do not believe that storks deliver babies (nor that babies deliver storks)
- There must be some confounder explaining the correlation

Assuming that $p(X, Y)$ is generated by an acyclic SCM, we can easily prove Reichenbach's Principle by applying the Global Markov property:
Proof

$X \Perp Y$

$X \notin Y$

$X \nVdash Y$

$X \Perp Y$
(The proof can be extended to include the cyclic case)

Selection Bias

Reichenbach's Principle may fail in case of selection bias.

Definition

If a data set is obtained by only including samples conditional on some event, selection bias may be introduced.

Example

X : the battery is charged
Y : the start engine is operational
S : the car starts

- A car mechanic (who only observes cars for which $S=0$) will observe a dependence between X and $Y: X \nVdash Y \mid S$.
- When the car mechanic invokes Reichenbach's Principle without realizing that he is selecting on the value of S (maybe S is a latent variable), a wrong conclusion will be drawn.

Faithfulness Assumption

Let \mathcal{M} be an acyclic SCM.
We have seen that the Global Markov Property holds:

$$
X, Y_{\mathcal{G}(\mathcal{M})}^{\perp} Z \quad \Longrightarrow \quad X \underset{p_{\mathcal{M}}}{\Perp} \boldsymbol{Y} \mid \boldsymbol{Z}
$$

for all subsets $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$ of nodes.

Definition (Faithfulness Assumption)

For all subsets $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$ of nodes,

$$
X, Y_{\mathcal{G}(\mathcal{M})}^{\perp} Z \quad \Longleftarrow \quad X \underset{P_{\mathcal{M}}}{\Perp} Y \mid Z
$$

Note: Faithfulness holds generically, i.e., up to measure-zero sets of parameters [Meek, 1995]. In other words, SCM parameters need to be carefully tuned in order to violate the faithfulness assumption.

Faithfulness violations may occur e.g. in case of parameter cancellations or deterministic relations.

Example (Parameter cancellation)

Consider an SCM \mathcal{M} :
$X=E_{X}$
$Y=X+E_{Y}$
$Z=X-Y+E_{Z}$

Then:
$Z \Perp_{p_{\mathcal{M}}} X$ but $Z \not \chi_{\mathcal{G}(\mathcal{M})} X$.

Example (Deterministic relation)

Consider an SCM \mathcal{M} :

$$
\begin{aligned}
& X=E_{X} \\
& Y=X \\
& Z=Y+E_{Z}
\end{aligned}
$$

Then:
$Z \Perp_{p_{\mathcal{M}}} Y \mid X$ but $Z \not \not_{\mathcal{G}(\mathcal{M})} Y \mid X$.

Representations of acyclic, faithful SCMs

Causal relations

Contents

(1) Qualitative Causality: Causal Graphs
(2) Quantifying Causality: Structural Causal Models
(3) Markov Properties: From Graph to Conditional Independences
4) Causal Inference: Predicting Causal Effects
(5) Causal Discovery: From Data to Causal Graph

- Causal Discovery by Experimentation
- Causal Discovery from Observational Data
- Causal Discovery from Multiple Contexts
(6) Dealing with Cycles
(7) Large-Scale Validation of Causal Discovery

Causal Inference: Predicting Causal Effects

One important task ("causal inference") is the prediction of causal effects.

Definition

The causal effect of X on Y is defined as $p(y \mid \operatorname{do}(X=x))$.

Special cases:

- X binary: $\mathbb{E}(Y \mid \operatorname{do}(X=1))-\mathbb{E}(Y \mid \operatorname{do}(X=0))$
- X, Y linearly related: $\frac{\partial}{\partial x} \mathbb{E}(Y \mid \operatorname{do}(X=x))$

Causal Inference: Predicting Causal Effects

One important task ("causal inference") is the prediction of causal effects.

Definition

The causal effect of X on Y is defined as $p(y \mid \operatorname{do}(X=x))$.

Special cases:

- X binary: $\mathbb{E}(Y \mid \operatorname{do}(X=1))-\mathbb{E}(Y \mid \operatorname{do}(X=0))$
- X, Y linearly related: $\frac{\partial}{\partial x} \mathbb{E}(Y \mid \operatorname{do}(X=x))$

Note: In general, since $p(y \mid \operatorname{do}(X=x)) \neq p(y \mid X=x)$, we cannot use standard supervised learning (regression, classification) for this task.

Two approaches can be used:

- Experimentation (Randomized Controlled Trials, A/B-testing)
- Apply the Back-door Criterion (if causal graph is known)

Causal discovery by experimentation

Experimentation (e.g., Randomized Controlled Trials, A/B-testing, ...) provides the gold standard for causal effect estimation.

Identifiability: Example

If we cannot do experiments... Can we express $p(y \mid \operatorname{do}(X=x))$ in terms of the observational distribution?

Example

$$
\begin{gathered}
X \longrightarrow \\
p(y \mid \operatorname{do}(X=x)) \\
= \\
p(y \mid X=x)
\end{gathered}
$$

Yes!

Identifiability: Example

If we cannot do experiments... Can we express $p(y \mid \operatorname{do}(X=x))$ in terms of the observational distribution?

Example

$$
\begin{gathered}
p(y \mid \operatorname{do}(X=x)) \\
= \\
p(y \mid X=x) \\
\text { Pes! } \\
p(y \mid X=x)=\int p(h \mid x) p(y \mid x, h) d h \\
\text { No! }
\end{gathered}
$$

Adjustment for covariates

We have seen that for the following causal graph,

adjusting for the confounder H, yields the causal effect of X on Y :

$$
\int p(h) p(y \mid x, h) d h=p(y \mid \operatorname{do}(X=x))
$$

More generally, given a causal graph: which covariates \boldsymbol{H} could we adjust for in order to express the causal effect of X on Y in terms of the observational distribution?

A sufficient condition is given by the Back-door Criterion.

The Back-Door Criterion

Theorem (Back-Door Criterion [Pearl, 2000])

For an acyclic SCM, nodes X, Y and set of nodes \boldsymbol{H} : if
(1) $X, Y \notin \boldsymbol{H}$;
(2) X is not an ancestor of any node in \boldsymbol{H} in $\mathcal{G}(\mathcal{M})$;
(3) \boldsymbol{H} blocks all back-door paths $X \leftarrow \ldots Y$ and $X \leftrightarrow \ldots Y$ in $\mathcal{G}(\mathcal{M})$
(i.e., all paths between X and Y that start with an arrowhead at X). then the causal effect of X on Y can be obtained by adjusting for H :

$$
p(y \mid \operatorname{do}(X=x))=\int p(y \mid x, \boldsymbol{h}) p(\boldsymbol{h}) d \boldsymbol{h}\left(=\sum_{\boldsymbol{h}} p(y \mid x, \boldsymbol{h}) p(\boldsymbol{h})\right) .
$$

For the special case $\boldsymbol{H}=\emptyset$, this should be read as:

$$
p(y \mid \operatorname{do}(X=x))=p(y \mid x)
$$

The Back-door Criterion: Example

Example

The sets of variables that are admissible for adjustment to get the causal effect of X_{2} on X_{5} are: $\left\{X_{1}\right\},\left\{X_{1}, X_{4}\right\}$. Therefore:

$$
\begin{aligned}
p\left(x_{5} \mid \operatorname{do}\left(X_{2}=x_{2}\right)\right) & =\int p\left(x_{5} \mid x_{1}, x_{2}\right) p\left(x_{1}\right) d x_{1} \\
& =\int p\left(x_{5} \mid x_{1}, x_{2}, x_{4}\right) p\left(x_{1}, x_{4}\right) d x_{1} d x_{4}
\end{aligned}
$$

Some sets of variables that are not admissible for adjustment to get the causal effect of X_{2} on X_{5} are: $\left\{X_{3}\right\},\left\{X_{1}, X_{3}\right\}$.

Exercise 3

Please make Exercise 3

Simpson's Paradox

Remember Simpson's paradox:

Example (Simpson's paradox)

We collect electronic patient records to investigate the effectiveness of a new drug against a certain disease. We find that:
(1) The probability of recovery is higher for patients that took the drug:

$$
p(\text { recovery } \mid \text { drug })>p(\text { recovery } \mid \text { no drug })
$$

(2) For both male and female patients, the relation is opposite:

$$
\begin{gathered}
p(\text { recovery } \mid \text { drug }, \text { male })<p(\text { recovery } \mid \text { no drug, male }) \\
p(\text { recovery } \mid \text { drug, female })<p(\text { recovery } \mid \text { no drug, female })
\end{gathered}
$$

Does the drug cause recovery? I.e., would you use this drug if you are ill?

The answer depends on the causal relationships between the variables!

Resolving Simpson's paradox

The crux to resolving Simpson's paradox is to realize:

Seeing \neq doing

- $p(R=1 \mid D=1)$: the probability that somebody recovers, given the observation that the person took the drug.
- $p(R=1 \mid \mathrm{do}(D=1))$: the probability that somebody recovers, if we force the person to take the drug.

Simpson's paradox only manifests itself if we misinterpret correlation as causation by identifying $p(r \mid D=d)$ with $p(r \mid \operatorname{do}(D=d))$.
We should prescribe the drug if

$$
p(R=1 \mid \operatorname{do}(D=1))>p(R=1 \mid \operatorname{do}(\mathrm{D}=0)) .
$$

How to find the causal effect of the drug on recovery?
(1) Randomized Controlled Trials
(2) Back-Door Criterion (requires knowledge of causal graph)

Exercise 4

Please make Exercise 4

Back-Door Criterion for Simpson's paradox

Example (Scenario 1)

R : Recovery
 D : Took drug
 H: Gender

- There is one back-door path: $D \leftarrow H \rightarrow R$, which is blocked by $\{H\}$.
- D is not an ancestor of H.
- Therefore, adjust for $\{H\}$ to obtain causal effect of drug on recovery:

$$
p(r \mid \operatorname{do}(D=d))=\sum_{h} p(r \mid D=d, H=h) p(h)
$$

- So in scenario I, you should not take the drug: for both males and females, taking the drug lowers the probability of recovery.

Back-Door Criterion for Simpson's paradox

Example (Scenario 2)

R: Recovery
 D: Took drug
 H: Gender

- There are no back-door paths.
- D is an ancestor of H.
- Do not adjust for $\{H\}$ to obtain causal effect of drug on recovery:

$$
p(r \mid \operatorname{do}(D=d))=p(r \mid D=d)
$$

- So in scenario II, you should take the drug: in the general population, taking the drug increases the probability of recovery.
(If you think gender-changing drugs are unlikely, replace "gender" by "high/low blood pressure", for example).

Mutilated graphs

Definition

Given a DMG \mathcal{G} and a subset \boldsymbol{X} of nodes in \mathcal{G}, we define

- $\mathcal{G}_{\overline{\boldsymbol{X}}}$ to be \mathcal{G} without the incoming edges on nodes in \boldsymbol{X};
- $\mathcal{G}_{\boldsymbol{X}}$ to be \mathcal{G} without the outgoing edges from nodes in \boldsymbol{X}.

Example

$$
\mathcal{G}:
$$

$\mathcal{G}_{\overline{X_{3}}}:$
$\mathcal{G}_{\underline{X_{3}}}:$

Do-calculus [Pearl, 2000]

Pearl formulated three rules (the "do-calculus") that can be used in addition to the usual rules for probabilistic reasoning:
(1) Ignoring observations:

$$
p(\boldsymbol{y} \mid \operatorname{do}(\boldsymbol{x}), \boldsymbol{w}, \boldsymbol{z})=p(\boldsymbol{y} \mid \operatorname{do}(\boldsymbol{x}), \boldsymbol{w}) \quad \text { if } \boldsymbol{Y} \underset{\mathcal{G}_{\boldsymbol{X}}}{\perp} \boldsymbol{Z} \mid \boldsymbol{X}, \boldsymbol{W}
$$

(2) Action/observation exchange:

$$
p(\boldsymbol{y} \mid \operatorname{do}(\boldsymbol{x}), \operatorname{do}(\boldsymbol{z}), \boldsymbol{w})=p(\boldsymbol{y} \mid \operatorname{do}(\boldsymbol{x}), \boldsymbol{z}, \boldsymbol{w}) \quad \text { if } \boldsymbol{Y} \underset{\mathcal{G}_{\boldsymbol{X}, \underline{Z}}}{\perp} \boldsymbol{Z} \mid \boldsymbol{X}, \boldsymbol{W}
$$

- Ignoring actions:

$$
p(\boldsymbol{y} \mid \operatorname{do}(\boldsymbol{x}), \operatorname{do}(\boldsymbol{z}), \boldsymbol{w})=p(\boldsymbol{y} \mid \operatorname{do}(\boldsymbol{x}), \boldsymbol{w}) \quad \text { if } \boldsymbol{Y}_{\mathcal{G}_{\overline{\boldsymbol{X}}, \overline{\boldsymbol{Z}}(\boldsymbol{W})}}^{\perp} \boldsymbol{Z} \mid \boldsymbol{X}, \boldsymbol{W}
$$

where $\boldsymbol{Z}(\boldsymbol{W})=\boldsymbol{Z} \backslash A n_{\mathcal{G}_{\overline{\boldsymbol{X}}}}(\boldsymbol{W})$.
The do-calculus allows us to reason with (probabilistic) causal statements, given (partial) knowledge of the causal structure. These rules are more powerful than the Back-door Criterion for causal prediction purposes.

Contents

(1) Qualitative Causality: Causal Graphs
(2) Quantifying Causality: Structural Causal Models
(3) Markov Properties: From Graph to Conditional Independences
(4) Causal Inference: Predicting Causal Effects
(5) Causal Discovery: From Data to Causal Graph

- Causal Discovery by Experimentation
- Causal Discovery from Observational Data
- Causal Discovery from Multiple Contexts
(6) Dealing with Cycles
(7) Large-Scale Validation of Causal Discovery

Causal Discovery

We have seen how to perform causal reasoning, given the causal model. But how do we get the causal model in the first place?

Establishing causal relations from data ("causal discovery") is one of the fundamental tasks in science.

Causal Discovery

We have seen how to perform causal reasoning, given the causal model. But how do we get the causal model in the first place?
Establishing causal relations from data ("causal discovery") is one of the fundamental tasks in science.

Since the pioneering work by Peirce and Fisher, the gold standard for causal discovery is a randomized, controlled experiment.

Causal Discovery

We have seen how to perform causal reasoning, given the causal model. But how do we get the causal model in the first place?
Establishing causal relations from data ("causal discovery") is one of the fundamental tasks in science.

Since the pioneering work by Peirce and Fisher, the gold standard for causal discovery is a randomized, controlled experiment.

More recently, causal discovery methods from purely observational data have been developed, starting with the work of Spirtes, Gleimour, Scheines, Pearl and others.

Causal Discovery

We have seen how to perform causal reasoning, given the causal model. But how do we get the causal model in the first place?
Establishing causal relations from data ("causal discovery") is one of the fundamental tasks in science.

Since the pioneering work by Peirce and Fisher, the gold standard for causal discovery is a randomized, controlled experiment.

More recently, causal discovery methods from purely observational data have been developed, starting with the work of Spirtes, Gleimour, Scheines, Pearl and others.

These ideas have inspired causal discovery methods that combine observational and interventional data in various ways.

Contents

(1) Qualitative Causality: Causal Graphs
(2) Quantifying Causality: Structural Causal Models
(3) Markov Properties: From Graph to Conditional Independences

4 Causal Inference: Predicting Causal Effects
(5) Causal Discovery: From Data to Causal Graph

- Causal Discovery by Experimentation
- Causal Discovery from Observational Data
- Causal Discovery from Multiple Contexts
(6) Dealing with Cycles
(7) Large-Scale Validation of Causal Discovery

Randomized Controlled Trials [Fisher, 1935]

\mathcal{G} :

R : Recovery, D : Drug, \boldsymbol{Z} : latent confounders (e.g., genetics), C : coin flip.

- Divide patients into two groups: treatment and control randomly (e.g., by a coin flip).
- Patients in the treatment group are forced to take a drug, and patients in the control group are forced to not take the drug (but to take a placebo instead): $D=C$.
- Estimating the causal effect of the drug now becomes a standard statistical exercise, as $p(R \mid D=C)=p(R \mid \operatorname{do}(D=C))$.
- The RCT intervention breaks any back-door paths, if existent.

All evidence-based medicine is based on this idea.

Causal Discovery by Experimentation: Example

- Each dot is a measurement in a single human immune system cell
- Raf: abundance of phosphorylized Raf
- Mek: abundance of phosphorylized Mek
- blue = baseline, red $=$ reagent U0126 added

Question: What is the causal relation between Raf and Mek?

Causal Discovery by Experimentation: Example

- Each dot is a measurement in a single human immune system cell
- Raf: abundance of phosphorylized Raf
- Mek: abundance of phosphorylized Mek
- blue = baseline, red $=$ reagent U0126 added

Question: What is the causal relation between Raf and Mek? Hint: U0126 inhibits Mek.

Causal Discovery by Experimentation: Example

- Each dot is a measurement in a single human immune system cell
- Raf: abundance of phosphorylized Raf
- Mek: abundance of phosphorylized Mek
- blue = baseline, red $=$ reagent U0126 added

Question: What is the causal relation between Raf and Mek? Hint: U0126 inhibits Mek.

Answer: Mek causes Raf

(Changing activity of Mek changes abundance of Raf.)

Causal Discovery by Experimentation: Example

- Each dot is a measurement in a single human immune system cell
- Raf: abundance of phosphorylized Raf
- Mek: abundance of phosphorylized Mek
- blue = baseline, red $=$ reagent U0126 added

Question: What is the causal relation between Raf and Mek? Hint: U0126 inhibits Mek.

Answer: Mek causes Raf

(Changing activity of Mek changes abundance of Raf.)
Note: How did we know that "U0126 inhibits Mek" in the first place?

Contents

(1) Qualitative Causality: Causal Graphs
(2) Quantifying Causality: Structural Causal Models
(3) Markov Properties: From Graph to Conditional Independences

4 Causal Inference: Predicting Causal Effects
(5) Causal Discovery: From Data to Causal Graph

- Causal Discovery by Experimentation
- Causal Discovery from Observational Data
- Causal Discovery from Multiple Contexts
(6) Dealing with Cycles
(7) Large-Scale Validation of Causal Discovery

Causal Discovery from Observational Data

Experiments can be expensive, time-consuming, unethical, impractical or even infeasible.

Intriguing alternative: causal discovery from purely observational data [Spirtes et al., 2000, Pearl, 2000]!

Disclaimer: Works only under strong assumptions and with (possibly very) large sample sizes.

Approaches to Causal Discovery from Observational Data I

Conditional-independence constraint-based

Independence patterns in the data constrain the possible causal graphs.

- LCD (Cooper, 1997)
- Y-Structures (Mani \& Cooper, 2004)
- PC (Spirtes \& Gleimour \& Scheines, 2000), IC (Pearl, 2000)
- FCI (Spirtes \& Meek \& Richardson, 1995; Zhang, 2008)
- ...

General constraint-based

Similar, but exploiting more general types of constraints in the data.

- Verma constraints (Robins (1986), Verma \& Pearl (1990), Tian \& Pearl (2002))
- Nested Markov Models (Richardson, Evans, Robins, Shpitser (2017))
- Algebraic Constraints (Van Ommen \& Mooij (2017))

Approaches to Causal Discovery from Observational Data II

Likelihood-based approaches

Score penalized likelihoods of possible causal graphs and select the best one(s).

- Bayesian Network Learning (Heckerman, Geiger, Chickering, 1995)
- Greedy Equivalence Search (Chickering, 2002)

Restrictions on functional causal relations and noise distributions
Minimize the "complexity" of causal models.

- LINGAM (Kano, Shimizu, 2003; Shimizu et al., 2006)
- Additive Noise Models (Hoyer et al., 2006)
- Post-Nonlinear Model (Zhang \& Hyvärinen, 2009)

Constraint-based Causal Discovery

From the pattern of conditional independences in the data we can reconstruct a set of possible underlying causal graphs, even when allowing for latent confounders [Spirtes et al., 2000].

Data

X_{1}	X_{2}	X_{3}	X_{4}
2	0.1	0.2	0.5
2	0.13	0.21	0.49
2	0.23	0.21	0.51
5	0.5	0.19	0.52
5	0.6	0.18	0.51
2	0.2	0.22	0.92
2	0.23	0.21	0.99
5	0.53	1.2	0.95
5	0.55	1.19	0.97

Possible Causal Graphs

Causal Discovery from Observational Data: V-Structure

$$
\begin{aligned}
& X \Perp Y, X \nVdash Y \mid Z, \\
& X \nVdash Z, X \nVdash Z \mid Y, \\
& Y \Perp Z, Y \nVdash Z \mid X .
\end{aligned}
$$

blue: $Z=0$, red: $Z=1$
Question: What is the causal relation between X, Y and Z ?

Causal Discovery from Observational Data: V-Structure

$$
\begin{aligned}
& X \Perp Y, X \nVdash Y \mid Z, \\
& X \nVdash Z, X \nVdash Z \mid Y, \\
& Y \Perp Z, Y \nVdash Z \mid X .
\end{aligned}
$$

blue: $Z=0$, red: $Z=1$
Question: What is the causal relation between X, Y and Z ? Hint: Assume an acyclic, faithful SCM without latent confounders generated the data, and assume no selection bias or measurement error

Causal Discovery from Observational Data: V-Structure

$$
\begin{aligned}
& X \Perp Y, X \nVdash Y \mid Z, \\
& X \nVdash Z, X \nVdash Z \mid Y, \\
& Y \Perp Z, Y \nVdash Z \mid X .
\end{aligned}
$$

blue: $Z=0$, red: $Z=1$
Question: What is the causal relation between X, Y and Z ? Hint: Assume an acyclic, faithful SCM without latent confounders generated the data, and assume no selection bias or measurement error

Answer: X causes Z; Y causes $Z ; X$ and Y causally unrelated
Note: Strong assumptions, but no experiments needed!

Exercise 5

Please make Exercise 5

Causal Discovery from Observational Data: Y-Structure

$$
X_{1} \nVdash X_{4}
$$

$$
X_{2} \not \Perp X_{4}
$$

$X_{1} \notin X_{2} \mid X_{3}$

$$
X_{1} \Perp X_{4} \mid X_{3}
$$

$$
X_{2} \Perp X_{4} \mid X_{3}
$$

black: $X_{3}=0$, red: $X_{3}=1$

Question: What is the causal relation between X_{3} and X_{4} ? Hint: Assume an acyclic, faithful SCM generated the data, and assume no selection bias or measurement error.

Causal Discovery from Observational Data: Y-Structure

Question: What is the causal relation between X_{3} and X_{4} ? Hint: Assume an acyclic, faithful SCM generated the data, and assume no selection bias or measurement error.

Answer: X_{3} causes X_{4} and they are not confounded. Hence, the causal effect of X_{3} on X_{4} satisfies $p\left(x_{4} \mid \operatorname{do}\left(X_{3}=x_{3}\right)\right)=p\left(x_{4} \mid x_{3}\right)$.

Y-structures: Empirical Performance I

Precision of prediction X causes Y :

Baseline: random guessing

Y-structures: Empirical Performance II

Causal prediction error for $\mathbb{E}(Y \mid \operatorname{do}(X=x))$:

Baseline 1: $p(y \mid \operatorname{do}(X=x))=p(y)$, Baseline 2: $p(y \mid \operatorname{do}(X=x))=p(y \mid x)$

d	Number of DAGs with d nodes
1	1
2	3
3	25
4	543
5	29281
6	3781503
7	1138779265
8	783702329343
9	1213442454842881
10	4175098976430598143
11	31603459396418917607425
12	521939651343829405020504063
13	18676600744432035186664816926721
14	1439428141044398334941790719839535103
15	237725265553410354992180218286376719253505
16	83756670773733320287699303047996412235223138303
17	62707921196923889899446452602494921906963551482675201
18	99421195322159515895228914592354524516555026878588305014783
19	332771901227107591736177573311261125883583076258421902583546773505

Table B.1: The number of DAGs depending on the number d of nodes, taken from http: //oeis.org/A003024 [OEIS Foundation Inc., 2017]. The length of the numbers grows faster than any linear term.

Source: [Peters et al., 2017]

(Augmented) FCl

[Spirtes et al., 2000, Spirtes et al., 1999, Ali et al., 2005, Zhang, 2008]

R0a	
b	If $X *-* Z \circ-* Y$ and $X \not X Y$, then $Z \notin \operatorname{Sep}(X, Y)$, then $X * \rightarrow Z \leftarrow * Y$.
R1	If $X * \rightarrow Z \circ-* Y$, and $X * Y$, then $Z \rightarrow Y$
R2a	If $Z \rightarrow X * \rightarrow Y$ and $Z *-\bigcirc Y$, then $Z * \rightarrow Y$.
R2b	If $Z * \rightarrow X \rightarrow Y$ and $Z *-0 Y$, then $Z * \rightarrow Y$
R3	If $X * \rightarrow Z \leftarrow * Y, X *-\circ W \circ-* Y, X \nsim Y$, and $W *-\circ Z$, then $W * \rightarrow Z$.
4 a	If $u=\left\langle X, \ldots, Z_{k}, Z, Y\right\rangle$ is a discriminating path between X and Y for Z, and $Z \circ-* Y$, then if $Z \in \operatorname{Sep}(X, Y)$, then $Z \longrightarrow Y$.
R4b	Idem, if $Z \notin \operatorname{Sep}(X, Y)$ then $Z_{k} \leftrightarrow Z \leftrightarrow Y$
$\mathcal{R} 5$	If $u=\langle Z, X, . ., W, Y, Z, X\rangle$ is an uncov. circle path, then $Z-Y$ (idem for all edges on u).
	If $X--Z \circ-* Y$, then orient as $Z-* Y$.
	If $X \multimap Z \circ-* Y$, and $X \nsim Y$, then $Z-$
8 a	If $Z \rightarrow X \rightarrow Y$ and $Z \circ \rightarrow Y$, then Z
R8b	If $Z \longrightarrow X \longrightarrow Y$ and $Z \circ \rightarrow$, then $Z \longrightarrow Y$.
$\mathcal{R} 9$	If $Z \circ \rightarrow Y, u=\langle Z, X, W, . ., Y\rangle$ is an uncov p.d. path, and $X \nsucc Y$, then $Z \longrightarrow Y$.
$\mathcal{R} 10$	If $Z \circ \rightarrow Y, X \longrightarrow Y \leftarrow W, u_{1}=\langle Z, S, \ldots, X\rangle$ and $u_{2}=\langle Z, V, . ., W\rangle$ are uncov. p.d. paths (possibly with $S=X$ and/or $V=W$), then if $S * V$, then $Z \longrightarrow Y$.

```
Input : independence oracle for V
Output: complete PAG P}\mathrm{ over V
P}\leftarrow\mathrm{ fully o-० connected graph over V
for all {X,Y}\in\mathbf{V}\mathrm{ do}
    search in some clever way for a }X\PerpY|\mathbf{Z
        \mathcal { P } \leftarrow \mathcal { R } 0 \text { a (eliminate } X * Y )
        record Sep (X,Y)\leftarrow\mathbf{Z}
end for
P}\leftarrow\mathcal{R}0\textrm{b}\mathrm{ (unshielded colliders)
repeat }\mathcal{P}\leftarrow\mathcal{R}1-\mathcal{R}4\textrm{b}\mathrm{ until finished
P}\leftarrow\mathcal{R}5\mathrm{ (uncovered circle paths)
repeat }\mathcal{P}\leftarrow\mathcal{R}6-\mathcal{R}7\mathrm{ until finished
repeat }\mathcal{P}\leftarrow\mathcal{R}8a-\mathcal{R}10\mathrm{ until finished
```

Algorithm 1: Augmented FCI algorithm

Source: [Claassen \& Heskes, 2011]

FCI: Example ("Extended Y-structure")

$$
\text { Independences: } \quad Z \Perp U, Z \Perp Y \mid X
$$

FCI: Example ("Extended Y-structure")
Independences: $\quad Z \Perp U, Z \Perp Y \mid X$

FCI: Example ("Extended Y-structure")

$$
\text { Independences: } \quad Z \Perp U, Z \Perp Y \mid X
$$

FCI: Example ("Extended Y-structure")

$$
\text { Independences: } \quad Z \Perp U, Z \Perp Y \mid X
$$

FCI: Example ("Extended Y-structure")

$$
\text { Independences: } \quad Z \Perp U, Z \Perp Y \mid X
$$

FCI: Example ("Extended Y-structure")

Independences: $\quad Z \Perp U, Z \Perp Y \mid X$

Local Causal Discovery (LCD)

Local Causal Discovery: simple causal discovery algorithm (Cooper, 1997).

Definition

If for three variables X, Y, Z :

$$
Y \notin \operatorname{an}(X) \wedge Z \notin \operatorname{an}(X) \wedge X \nVdash Y \wedge Y \nVdash Z \wedge X \Perp Z \mid Y
$$ then (X, Y, Z) is an LCD triplet.

Theorem

If an acyclic, faithful SCM generated the data without selection bias or measurement error, the only causal graphs that yield an LCD triplet are:

Therefore, $Y \in \operatorname{an}(Z)$ and $p(Z \mid \operatorname{do}(Y=y))=p(Z \mid Y=y)$.

LCD: Example

- pErk: abundance of phosphorylized Erk in each cell
- pS6: abundance of phosphorylized S6 in cell
- I : green $=$ baseline, red $=$ PMA-IONO activator added

$$
\begin{aligned}
& (X, Y, Z) \text { is } \\
& \text { LCD triplet iff: } \\
& Y \notin \operatorname{an}(X) \\
& Z \notin \operatorname{an}(X) \\
& X \not \Perp Y \\
& Y \not \Perp Z \\
& X \Perp Z \mid Y
\end{aligned}
$$

What is the causal relation?

LCD: Example

- pErk: abundance of phosphorylized Erk in each cell
- pS6: abundance of phosphorylized S6 in cell
- I: green = baseline, red $=$ PMA-IONO activator added

$$
\begin{aligned}
& (X, Y, Z) \text { is } \\
& \text { LCD triplet iff: } \\
& Y \notin \operatorname{an}(X) \\
& Z \notin \operatorname{an}(X) \\
& X \not \Perp Y \\
& Y \not \Perp Z \\
& X \Perp Z \mid Y
\end{aligned}
$$

What is the causal relation? LCD triplet (I, pS6, pErk), so pS6 \rightarrow pErk.
Note: no prior knowledge on the effects of PMA-IONO needed!

Contents

(1) Qualitative Causality: Causal Graphs
(2) Quantifying Causality: Structural Causal Models
(3) Markov Properties: From Graph to Conditional Independences

4 Causal Inference: Predicting Causal Effects
(5) Causal Discovery: From Data to Causal Graph

- Causal Discovery by Experimentation
- Causal Discovery from Observational Data
- Causal Discovery from Multiple Contexts
(6) Dealing with Cycles
(7) Large-Scale Validation of Causal Discovery

Causal Discovery: Example Application

Causal Graph:

("Signalling network")

Causal Discovery from Multiple Contexts

	0 0 0 0 0 0 0 0 0		$\begin{aligned} & \frac{\pi}{0} \\ & \stackrel{N}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$						$\begin{aligned} & \frac{0}{0} \\ & 0 \\ & \tilde{y y y} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			
(Fisher, 1935)	+	+	+	+	+	$+$	+	+	+	+	-	-	b
(Cooper and Yoo, 1999)	-	+	-	$+$	-	-	-	-	-	-	+	-	b
(Tian and Pearl, 2001)	-	+	-	-	+	-	-	+	-	-	+	-	b
(Sachs et al., 2005)	-	+	-	+	-	-	-	-	-	-	+	-	b
(Eaton and Murphy, 2007)	-	+	-	+	+	+	+	+	+	+	+	-	b
(Chen et al., 2007)	+	+	+	+	$+$	+	+	+	+	+	+	-	b
(Claassen and Heskes, 2010)	+	+	-	-	+	+	+	+	+	-	+	+	a
(Tillman and Spirtes, 2011)	+	+	-	-	+	+	+	+	+	-	+	+	a
(Hauser and Bühlmann, 2012)	-	+	-	+	-	-	-	-	-	-	+	-	b
(Hyttinen et al., 2012)	+	-	+	$+$	-	-	-	-	-	-	+	-	a
(Mooij and Heskes, 2013)	-	\pm	\pm	+	+	+	-	+	-	-	+	-	b
(Hyttinen et al., 2014)	+	+	\pm	+	-	-	-	-	-	-	+	+	a
(Triantafillou and Tsamardinos, 2015)	+	+	-	+	-	-	-	-	-	-	+	+	a
(Rothenhäusler et al., 2015)	+	-	\pm	-	-	-	-	+	+	+	+	-	a
(Peters et al., 2016)	\pm	\pm	\pm	+	+	+	+	+	+	-	+	-	b
(Oates et al., 2016a)	-	-	-	-	-	-	-	+	-	-	+	-	b
(Zhang et al., 2017)	-	+	-	+	+	+	+	+	+	+	+	-	b
JCI	+	+	+	+	+	+	+	+	+	+	+	\pm	b
JCI-LCD (Cooper, 1997)	+	+	+	+	+	+	+	+	+	+	$+$	-	b
JCI-HEJ	+	+	\pm	+	$+$	$+$	+	+	$+$	+	+	-	b
JCI-FCI	+	+	-	+	$+$	$+$	+	+	+	+	+	-	b

JCl : Combining the best of two worlds

Question

Can we combine the ideas of the "classical" approach to causal discovery based on experimentation with the "modern" approach based on conditional independences?

We hope to:

- obtain reliability of "classical" approach
- exploit conditional independences in the data to reduce the number of experiments necessary

Answer

We propose Joint Causal Inference, a framework for causal discovery, that achieves this.

Randomized Controlled Trials, or A/B-testing

Two variables: context variable C_{1}, system variable X_{1}
$C_{1}: \quad 0=$ control, $1=$ intervention
X_{1} : $\quad 0=$ looking for work, $1=$ found work
(a) Separate data sets

Two-sample test:
Is $p(x \mid \operatorname{do}(C=0))=p(x \mid \operatorname{do}(C=1))$?
(b) Pooled data

C	X
0	-0.2
0	0.6
0	-1.7
0	\ldots
1	-0.3
1	1.8
1	-0.1
1	\ldots

Independence test:
Is $X \Perp C$?

Proposition

Suppose C (treatment) and X (outcome) can be modeled with a Structural Causal Model. The Randomized Controlled Trial assumptions

- X does not cause C (because X happens after C)
- X and C are unconfounded (because of the randomization)
- no selection bias (measure and analyze all samples) imply that if $C \nVdash X$, then C causes X (correlation implies causation).

Causal Inference for Randomized Controlled Trial

Proposition

Suppose C (treatment) and X (outcome) can be modeled with a Structural Causal Model. The Randomized Controlled Trial assumptions

- X does not cause C (because X happens after C)
- X and C are unconfounded (because of the randomization)
- no selection bias (measure and analyze all samples) imply that if $C \nVdash X$, then C causes X (correlation implies causation).

Proof

$C \Perp X$

Definition

JCI generalizes the idea of RCTs to multiple context and system variables. Distinguish:

- Context variables $\left\{C_{i}\right\}_{i \in \mathcal{I}}$ that model the context of the system,
- System variables $\left\{X_{j}\right\}_{j \in \mathcal{J}}$ that model the system of interest.

Example

Data for 3 observed system variables in 4 experimental conditions:

System variables:
X_{1} : salary
X_{2} : drug abuse
X_{3} : depression

Context variables:
C_{1} : back-to-work program
C_{2} : psychotherapy
no interventions:

X_{1}	X_{2}	X_{3}
0.1	0.2	0.5
0.13	0.21	0.49
0.23	0.21	0.51

only psychotherapy:

X_{1}	X_{2}	X_{3}
0.5	0.19	0.52
0.6	0.18	0.51

only back-to-work program:

X_{1}	X_{2}	X_{3}
0.2	0.22	0.92
0.23	0.21	0.99

both interventions:

X_{1}	X_{2}	X_{3}
0.53	1.2	0.95
0.61	1.21	0.90
0.55	1.19	0.97

JCI : Pooling the data

After explicitly adding the context variables, we pool the data:

Example

no interventions:

X_{1}	X_{2}	X_{3}
0.1	0.2	0.5
0.13	0.21	0.49
0.23	0.21	0.51

only psychotherapy:

X_{1}	X_{2}	X_{3}
0.5	0.19	0.52
0.6	0.18	0.51

only back-to-work program:

X_{1}	X_{2}	X_{3}
0.2	0.22	0.92
0.23	0.21	0.99

both interventions:

X_{1}	X_{2}	X_{3}
0.53	1.2	0.95
0.61	1.21	0.90
0.55	1.19	0.97

System variables: Context variables:
X_{1} : salary
C_{1} : back-to-work program
X_{2} : drug abuse
C_{2} : psychotherapy
X_{3} : depression

JCl: Assumptions

JCI Assumptions (Intuitive formulation)

We are modelling a generic setting in which the experimenter decides on the performed interventions before the measurements are performed, and this decision does not depend on anything else that might affect the system of interest.

Formal JCI Assumptions

The causal graph \mathcal{G} that includes both system variables $\left\{X_{1}, \ldots, X_{p}\right\}$ and context variables $\left\{C_{1}, \ldots, C_{d}\right\}$, which jointly models the experimental design and the system in all experimental conditions, satisfies:

- no variable directly causes any context variable C_{i}, and
- none of the pairs $\left\{X_{k}, C_{i}\right\}$ of system and context variables is confounded, and
- each pair of context variables $\left\{C_{i}, C_{j}\right\}$ is confounded.

Furthermore, we assume the absence of selection bias.

Joint Causal Inference

Question: How can we discover

Answer: Simply apply a standard constraint-based causal discovery method (designed for purely observational data) on the pooled data, and incorporate the JCl assumptions as background knowledge.

(4 system variables, 500 samples in each data set)

Evaluation on simulated data II

ROC curves for direct causal relations (hej-jci)

- 0 context vars
- 1 context vars
- 2 context vars
- 3 context vars 4 context vars
(4 system variables, 500 samples in each data set)

(4 system variables, 500 samples in each data set)

Evaluation on real-world flow cytometry data

Only observational data:

All (observational+interventional) data:

Contents

(1) Qualitative Causality: Causal Graphs
(2) Quantifying Causality: Structural Causal Models
(3) Markov Properties: From Graph to Conditional Independences

- Causal' 'nference: Predicting Causal Erfects
(5) Causal Discovery: From Data to Causal Graph
- Causal Discovery by Experimentation
- Causal Discovery from Observational Data
- Causal Discovery from Multiple Contexts
(6) Dealing with Cycles
(7) Large-Scale Validation of Causal Discovery

The generalized directed global Markov property

Given the importance of the Markov property, the first thing we need is a Markov property for cyclic SCMs.
We introduce a notion σ-separation that generalizes d -separation:

- σ-separation implies d-separation.
- For acyclic graph, σ-separation is equivalent to d-separation.

Inspired by ideas by [Spirtes, 1996], we show:

Theorem ([Forré and Mooij, 2017])

If an SCM \mathcal{M} is uniquely solvable w.r.t. every strongly connected component in $\mathcal{G}(\mathcal{M})$, then the generalized directed global Markov property holds for any solution \boldsymbol{X} of \mathcal{M} with respect to the functional $\operatorname{graph} \mathcal{G}(\mathcal{M})$:

$$
A_{\mathcal{G}(\mathcal{M})}^{\stackrel{\sigma}{\perp}} B\left|Z \Longrightarrow \boldsymbol{X}_{A} \frac{\|}{\mathbb{P} \boldsymbol{X}} \boldsymbol{X}_{B}\right| \boldsymbol{X}_{Z} \quad A, B, Z \subseteq \mathcal{I} .
$$

Markov properties: σ-separation

Definition (σ-separation, [Forré and Mooij, 2017])

In a DMG \mathcal{G}, a path

$$
i_{1} \underset{\underset{\leftrightarrow}{\leftrightarrows}}{\stackrel{\leftrightarrows}{\leftrightarrows}} \cdots \underset{\underset{\leftrightarrow}{\leftrightarrows}}{\stackrel{\leftrightarrows}{\leftrightarrows}} i_{n}
$$

is called σ-blocked by a set of nodes Z iff

- one or both end nodes i_{1}, i_{n} are in Z, or
- it contains a collider $i_{k-1} \overleftrightarrow{\leftrightarrow} i_{k} \overleftarrow{\leftrightarrow} i_{k+1}$ with $i_{k} \notin \operatorname{an}_{\mathcal{G}}(Z)$, or
- it contains a non-collider with $i_{k} \in Z$:

$$
i_{k-1} \underset{\leftrightarrows}{\stackrel{\leftrightarrows}{\leftrightarrows}} i_{k} \rightarrow i_{k+1}, \quad i_{k-1} \leftarrow i_{k} \underset{\leftrightarrows}{\underset{\leftrightarrow}{\leftrightarrows}} i_{k+1}
$$

where the child $i_{k+1}\left(\right.$ resp. $\left.i_{k-1}\right)$ is not in $\operatorname{sc}_{\mathcal{G}}\left(i_{k}\right)$.
We say that A is σ-separated from B by Z, denoted $A \perp^{\sigma} B \mid Z$, if every path with one end node in A and one end node in B is σ-blocked by Z.

Markov properties: Example

Example

$\operatorname{SCM} \mathcal{M}: \quad$ Functional graph $\mathcal{G}(\mathcal{M}):$

$$
\begin{aligned}
& X_{1}=f_{1}\left(X_{4}, E_{1}\right)=X_{4}+E_{1} \\
& X_{2}=f_{2}\left(X_{1}, E_{2}\right)=X_{1} \cdot E_{2} \\
& X_{3}=f_{3}\left(X_{2}, E_{3}\right)=X_{2}+E_{3} \\
& X_{4}=f_{4}\left(X_{3}, E_{4}\right)=X_{3} \cdot E_{4}
\end{aligned}
$$

So for any solution \boldsymbol{X} of the $\operatorname{SCM} \mathcal{M}$, in general we do not have that $X_{1} \Perp X_{3} \mid X_{2}, X_{4}$.

In general: No σ-separations between nodes within the same strongly connected component.

Directed global Markov property

Stronger statements can be derived for special cases:

Theorem ([Forré and Mooij, 2017])

If an SCM \mathcal{M} satisfies at least one of the following three conditions:
(1) \mathcal{M} is linear, its exogenous variables have a density with respect to Lebesgue measure, and \mathcal{M} is solvable w.r.t. \mathcal{I};
(2) all endogenous variables are discrete-valued, \mathcal{M} is uniquely solvable w.r.t. each ancestral subgraph of $\mathcal{G}(\mathcal{M})$;
(3) \mathcal{M} is acyclic;
then the directed global Markov property holds for any solution \boldsymbol{X} of \mathcal{M} with respect to the functional graph $\mathcal{G}(\mathcal{M})$:

$$
A_{\mathcal{G}(\mathcal{M})}^{\stackrel{d}{\perp}} B\left|Z \Longrightarrow \boldsymbol{X}_{A} \underset{\mathbb{P}^{\boldsymbol{X}}}{\Perp} \boldsymbol{X}_{B}\right| \boldsymbol{X}_{Z} \quad A, B, Z \subseteq \mathcal{I} .
$$

Results on Synthetic Data [Forré and Mooij, 2018]

[Forré and Mooij, 2018]: the first causal discovery algorithm that can handle cycles, nonlinear relationships, latent confounding variables and data from different (interventional) contexts.

ROC curves for direct causal relations

ROC curves for detecting direct causal relations from observational and interventional data, for varying numbers of interventional data sets.

Contents

(1) Qualitative Causality: Causal Graphs
(2) Quantifying Causality: Structural Causal Models
(3) Markov Properties: From Graph to Conditional Independences

- Causal Inference: Predicting Causal Effects
(5) Causal Discovery: From Data to Causal Graph
- Causal Discovery by Experimentation
- Causal Discovery from Observational Data
- Causal Discovery from Multiple Contexts
(6) Dealing with Cycles
(7) Large-Scale Validation of Causal Discovery

Example Gene Expression Data

YMR275C does not cause YPL142C:

Blue: observational; Red: interventional; Green: knockout of gene X.

Example Gene Expression Data

YMR276W causes YPR154W:

Blue: observational; Red: interventional; Green: knockout of gene X.

Causal Discovery from Large-Scale Micro-Array Data

Observational:
$\sim 6,000$ genes

Interventional:
$\sim 6,000$ genes

Large-scale Micro-Array Gene Expression Data (Kemmeren et al., 2014):

- Variables $i \in\{1, \ldots, p\}$ (population gene expression levels) $p=6170$
- Observational samples $X_{i n}, n=1 \ldots N_{\text {obs }}$ (wild-type vs. wild-type) $N_{\text {obs }}=262$
- Interventional samples $X_{i}^{k}, k=1 \ldots N_{\text {int }}$ (single-gene knockouts/knockdowns) $N_{\text {int }}=1462$ one sample for every knocked out gene

Task: Predict from the data which gene expression levels change when a certain gene is knocked out.

k-fold Cross-validation

Using 5-fold cross-validation, we split the data into a training set used to make predictions, and a test set used to define a ground truth for validating the predictions.

Observational:

Test:

Interventional:

ICP outperforms baselines (for the 0.61% strongest effects) for certain ground truth scores (absolute normalized, SIE)

Conclusion

Causality is clearly an important notion in daily life and in science, and yet underexplored in statistics and machine learning.

In this tutorial, you have learned how to:

- formalize the notion of causality;
- reason about causality;
- discover causal relations from data;
- make causal predictions
- that seeing is not the same as doing

This was just a sample of topics in an exciting research field. There is still much more to learn and to discover!

Bongers, S. and Mooij, J. M. (2018).
From random differential equations to structural causal models: the stochastic case.
arXiv.org preprint, arXiv:1803.08784 [cs.AI].
围 Bongers, S., Peters, J., Schölkopf, B., and Mooij, J. M. (2018).
Theoretical aspects of cyclic structural causal models.
arXiv.org preprint, arXiv:1611.06221v2 [stat.ME].
Forré, P. and Mooij, J. M. (2017).
Markov properties for graphical models with cycles and latent variables. arXiv.org preprint, arXiv:1710.08775 [math.ST].

Further reading II

围 Forré，P．and Mooij，J．M．（2018）．
Constraint－based causal discovery for non－linear structural causal models with cycles and latent confounders．
In Proceedings of the 34th Annual Conference on Uncertainty in Artificial Intelligence（UAI－18）．

國 Mooij，J．M．，Janzing，D．，and Schölkopf，B．（2013）．
From ordinary differential equations to structural causal models：the deterministic case．
In Nicholson，A．and Smyth，P．，editors，Proceedings of the 29th Annual Conference on Uncertainty in Artificial Intelligence（UAI－13），pages 440－448． AUAI Press．

图 Pearl，J．（2000）．
Causality：Models，Reasoning，and Inference．
Cambridge University Press．

嗇 Peters, J., Janzing, D., and Schölkopf, B. (2017).
Elements of Causal Inference: Foundations and Learning Algorithms.
The MIT Press.
Spirtes, P., Glymour, C., and Scheines, R. (2000).
Causation, Prediction, and Search.
The MIT Press.
(Wright, S. (1921).
Correlation and causation.
Journal of Agricultural Research, 20:557-585.

Thank you for your attention!

Randall Munroe, www.xkcd.org

