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Numerics is important to 
machine learning.

Source: NIPS 2017 statistics; https://is.gd/Abw95A 2/56



Which numerics problems have you 
needed solved in the last month?

1. Linear algebra.

2. Optimisation.

3. Global optimisation.

4. Integration.

5. Ordinary differential equations.
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Public Domain, via Wikimedia Commons. 4/56

http://www.geographicus.com/mm5/cartographers/deveer.txt


Numerics allows
computation-fuelled
expeditions beyond the
analytic frontier.
Public Domain, via Wikimedia Commons. 5/56

http://www.geographicus.com/mm5/cartographers/deveer.txt
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The answer to a 
numeric problem can 
only be approximated,

e.g.

for
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Machine learning treats 
algorithms as agents.

Probabilistic numerics treats 
numeric algorithms as agents.
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As motivation:
1. numeric error is significant;

2. numeric methods are generic;

3. our numerics problems tax 
our computation.
By ESA/Hubble, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=8788068. 8/56

https://commons.wikimedia.org/w/index.php?curid=8788068


An agent
receives data,
predicts, & then
makes decisions.
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In integration:
data = ?;
predictand = ?; &
decisions = ?.
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In integration:
data = evaluations;
predictand = integral; &
decisions = locations.
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Bayesian 
quadrature is 
probabilistic 
numerics for 
integration.

Source: D. Duvenaud. 12/56



An agent is defined by

its prior and
loss function.
@maosbot 13/56



With a Gaussian process prior for the 
integrand, the integral is joint Gaussian.

@maosbot 14/56
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The trapezoidal rule is the posterior mean 
estimate for the integral 

 

under any centered Wiener process prior 

 

with 

 

for arbitrary  and . 
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Algorithm 1.1: The probabilistic trape-
zoidal rule formulated as a filter. The
algorithm takes a handle to the integrand
f , the integration limits, a, b, a budget of
N evaluations, and an externally set scale
q2 (see below for how to adapt this at
runtime).

1 procedure I��������(@ f , a, b, N, q)
2 d := (b � a)/(N � 1) � choose step size
3 x ^ a, y1 = f (a), m ^ 0, v ^ 0, � initialise

4 for i = 2, . . . , N do
5 x ^ x + d � step

6 yi ^ f (x) � evaluate
7 m ^ m + d/2(yi�1 + yi) � update estimate

8 v ^ v + d3/12 � update error estimate

9 end for
10 return E(F) = m, var(F) = q2

v � probabilistic output

11 end procedure

the filter at x1 = a is

m1 =

"
0

f (a)

#
, P1 =

"
0 0
0 0

#
. (1.41)

The filter thus takes the straightforward form of Algorithm 1.1.

Exercise 3 (easy). Convince yourself that
Equations (1.39) & (1.40) indeed arise as the
updates in Algorithm ?? from the choices or
A, Q, H, R made above. Then show that the
resulting mean estimate mN at x = b indeed
amounts to the trapezoidal rule (e.g. by a
telescoping sum). That is,

E(F) =
N�1

Â
i=1

di

2
( fi+1 + fi),

var(F) =
q2

12

N�1

Â
i=1

d3
i
.

(1.42)

In practice, the algorithm could thus be im-
plemented in this simpler (and parallelizable)
form. Note again, however, that this algorithm
is not a good practical integration routine,
only a didactic exercise. See §1.12 below and
in the literature cited above for more practical
algorithms.

This algorithm is so simple that it barely makes sense to spell
it out. The significance of this result is that Bayesian inference
on an integral, from a nonparametric Gaussian process prior
and N evaluations of the integrand can be performed in O(N)

operations.

I 1.7 Uncertainty Associated with the Trapezoidal Rule

Formulating univariate integration as inference—as the construc-
tion of a posterior distribution over a latent quantity, under
certain prior assumptions—we have “re-discovered” an old and
well-trusted method for this numerical task. Though simplistic,
this is an encouraging result for probabilistic numerics: Evidently,
probabilistic numerical algorithms do not have to be abstract and
involved, but can be quite simple indeed.

But the probabilistic formulation not only yielded a new way
to derive the well-known trapezoidal rule, but something new:
An estimator for the error of the trapezoidal estimate, in the form
of the posterior variance vX in Eq. (1.14). For the concrete choice
of the Wiener process prior (1.29), we saw that this expression
simply evaluates to

v(X) = varp( f |Y,X)[F] =
ZZ

b

a

V(x, x
0) dx dx

0 =
q2

12

N�1

Â
i=1

d3
i
.

(1.43)

We will have to ask whether this value—which, again, clearly
does not depend on the collected values yi at all—has any sensible



The trapezoid rule is Bayesian 
quadrature.
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Quiz: The convergence rate of the trapezoid rule is 
: what is the rate of Monte Carlo?

1.

2.

3.

4.
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Quiz: The convergence rate of the trapezoid rule is 
: what is the rate of Monte Carlo?

1.

2.

3.

4.  – arguably the worst possible rate.

@maosbot 21/56



Monte Carlo is also Bayesian quadrature.

The Monte Carlo estimate

is maximum a-posteriori under the (improper) prior 

 

for  the indicator function and with arbitrary . The corresponding posterior standard deviation 
estimate on the integral, , matches the convergence rate of the Monte Carlo estimator. 
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⌦ The posterior variance v(X) from the N evaluations at the
nodes X of the N-th polynomial vanishes, although the pos-
terior on f arising from the kernel k

q=2N still assigns non-
vanishing marginal variance to function values at x /2 X

(cf. Figure 1.10). An intuitive explanation for this situation
involves noting that in a set of orthogonal polynomials, all but
the constant one have vanishing expectation under n. That is,
they satisfy

n(yi) = 0 8i > 0, (1.63)

because yi(x) = yi(x)y0(x)/
p
(c0). In the setting of Cor. 1,

those N evaluations exactly identify the value of the first
coefficient v0, but not necessarily those of the other coefficients.
So there is flexibility left in the function values, but only in
ways that do not contribute to the integral. In the posteriors
shown in Figure 1.10, all sampled hypotheses, and the posterior
means, share the same integral.

⌦ A related feature is that the prior of Eq. (1.61) must be paramet-
ric (of finite rank, degenerate) to yield Gaussian quadrature
rules. But of course, the number N of evaluations is meant to
grow as the algorithm runs. From the probabilistic perspective,
this means the prior constantly becomes more general, more
flexible, as N grows. The price to be paid for this is that it is
difficult to associate a meaningful notion of uncertainty with
the posterior in this simple form, because v(X) = 0. It remains
an open question at the time of writing, however, whether an
empirical Bayesian extension is possible.
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Figure 1.11: Error evolution for Gauss-
Legendre quadrature on the running
example of Eq. (1.1). In comparison to
the Monte Carlo and Trapezoidal esti-
mates introduced in previous sections,
which each exhibit polynomial conver-
gence rates as predicted by their corre-
sponding error analysis, the Gaussian
rule converges much faster. The curved
grey line is a suggestive exponential func-
tion.
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Quadrature is 
often required to 
manage model 
parameters.
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Managing parameters  requires the model evidence, 
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QUADRATURE
IS HARD.



Optimisation (maximum likelihood, training) is often used in 
the place of quadrature.



This approximates as . 



If optimising, flat optima are often a better representation of 
the integral than narrow optima. 
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Monte Carlo has revolutionised Bayesian inference.

@maosbot 30/56



Monte Carlo estimators, , 

ignore relevant information.

O’Hagan, A. (1987). Monte Carlo is Fundamentally Unsound. Journal of the Royal Statistical Society. Series D (The Statistician).
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We often have relevant prior 
knowledge: like the problem's 
source code.



The perfect prior
is intractable.



An agent is defined by

its prior and
loss function.
@maosbot 35/56



A natural loss 
function for 
quadrature is the 
uncertainty in 
the integral.

Source: D. Duvenaud. 36/56



Inte

Integrand

Sample
Number

WSABI uses a loss 
that is the 
uncertainty in 
the integrand.

Source: Gunter, Osborne, Garnett, Hennig, & Roberts (2014). Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature. NIPS. 37/56



Source: Gunter, Osborne, Garnett, Hennig, & Roberts (2014). Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature. NIPS. 38/56



Source: Gunter, Osborne, Garnett, Hennig, & Roberts (2014). Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature. NIPS. 39/56



Source: Gunter, Osborne, Garnett, Hennig, & Roberts (2014). Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature. NIPS. 40/56



Overhead
can set you

free.
By Paulhaberstroh [CC BY-SA 4.0], from Wikimedia Commons

https://creativecommons.org/licenses/by-sa/4.0


A RANDOM
NUMBER IS
A DECISION.

By MauricioEiji , Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. 42/56

https://www.deviantart.com/mauricioeiji
http://creativecommons.org/licenses/by-nc-nd/3.0/


A random number assumes a 
completely flat expected loss.
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A random number is a heuristic 
for a sequence of exploratory 
decisions: but why assume 
negligible memory?

By U. S. Army (Public Domain) 44/56



Using random numbers makes 
your algorithm unimprovable.

Source: By Jake Archibald from London, England - Sebastian Vettel - Ferrari - Halo, CC BY 2.0. References: Henderson et al. “Deep Reinforcement Learning that 
Matters” (2017); Islam et al. “Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for Continuous Control” (2017); Colas, Sigaud, and Oudeyer. “How Many 
Random Seeds? Statistical Power Analysis in Deep Reinforcement Learning Experiments” (2018); Mania, Guy, and Recht. “Simple random search provides a competitive 
approach to reinforcement learning” (2018). 45/56

https://commons.wikimedia.org/w/index.php?curid=60464785


A random number may be 
intended to be unbiased, but 
there are no adversaries in 
numerics.

Source: Brown, Mané, Roy, Abadi & Gilmer (2017) "Adversarial Patch". 46/56



Quiz: which of these sequences is random?

1. 6224441111111114444443333333

2. 1693993751058209749445923078 

3. 7129042634726105902083360448

4. 1000111111011111111001010000
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Quiz: which of these sequences is random?

1. 6224441111111114444443333333: seven d6 rolls with  repeats 
of the th roll.

2. 1693993751058209749445923078: the 41st to 70th digits of .

3. 7129042634726105902083360448: this sequence was 
generated by the von Neumann method with seed 908344.

4. 1000111111011111111001010000: digits taken from a CD-ROM 
published by George Marsaglia.

A finite string of random numbers is encoding some bias!
@maosbot 48/56



Recall:
1. numeric error is significant;

2. numeric methods are generic;

3. our numerics problems tax 
our computation.
By ESA/Hubble, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=8788068. 49/56

https://commons.wikimedia.org/w/index.php?curid=8788068


1. Probnum characterises

probable error.
@maosbot 50/56



2. Probnum tailors
procedures
to problems.
@maosbot 51/56



3. Probnum makes
better use of
computation.
@maosbot 52/56
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probnum.org
@maosbot 54/56
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Huge thanks to
Philipp
Hennig.
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