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Global optimisation is proper 
optimisation.
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Relative to local optimisation, 
global optimisation:

1. is less amenable to theory;

2. requires higher overhead; and

3. overhead costs scale more 
poorly in dimension.
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Global optimisation is widely used.

Source: Rainforth, Le, van de Meent, Osborne, & Wood (2016); Calandra, Gopalan, Seyfarth, Peters, Deisenroth (2014). 6/68



Machine learning treats 
algorithms as agents.

Probabilistic numerics treats 
numeric algorithms as agents.
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An agent
receives data,
predicts, & then
makes decisions.
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In global optimisation:
data = ?;
predictand = ?; &
decisions = ?.
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Figure 1.1: A global optimisation prob-
lem. We are given an objective function
f (x), which can be evaluated (possibly
corrupted by observation noise) for any
chosen location x. The objective may be
expensive to evaluate, limiting the num-
ber of such evaluations: in the figure, only
three evaluations have been gathered thus
far. We must chose future evaluation lo-
cations so as to determine the objective’s
minimiser and/or minimum.

mental monitoring�, and software engineering�, amongst many

5 R. Marchant and F. Ramos. “Bayesian
Optimisation for Intelligent Environmen-
tal Monitoring”. In: NIPS workshop on

Bayesian Optimization and Decision Mak-

ing. 2012
6 H. H. Hoos. “Programming by optimiza-
tion”. In: Communications of the ACM 55.2
(2012)

more. The real world is very often more complex than convex.
To address non-convex problems, a zoo of competing global opti-
misation techniques have been developed. Popular approaches
include evolutionary methods, branch-and-bound methods and
Monte-Carlo-based algorithms.� 7 T. Weise. “Global optimization

algorithms-theory and application”. In:
Self-Published, (2009).

Bayesian optimisation is a probabilistic framework for global
optimisation. It is somewhat of an exception to other probabilistic
numerics approaches: it was directly conceived from a proba-
bilistic viewpoint, with no direct non-probabilistic predecessor
(although there is, of course, a rich literature on non-probabilistic
global optimisation). Although still a young area by the standards
of applied mathematics,� compared to other areas discussed in 8 Bayesian optimisation’s history, detailed

in Shahriari et al. (2016), be traced back
to Thompson (1933), although many of
the ideas we discuss in this section, along
with the term Bayesian optimisation itself,
first appeared in the work of Močkus
(1975).

this book, Bayesian optimisation is already a surprisingly ma-
ture, developed field, with sizeable annual meetings� and a rich

9 Bayesian optimisation workshops are,
at time of writing, listed at https://
bayesopt.github.io/past.html.

set of algorithms. In this chapter, our ambition is to provide
a compact take on Bayesian optimisation from a probabilistic
numeric perspective: more comprehensive overviews of Bayesian
optimisation exist elsewhere.��

10 E. Brochu, V. M. Cora, and N. De Freitas.
“A tutorial on Bayesian optimization of
expensive cost functions, with applica-
tion to active user modeling and hierar-
chical reinforcement learning”. In: arXiv

preprint arXiv:1012.2599 (2010); B. Shahri-
ari et al. “Taking the human out of the
loop: A review of bayesian optimization”.
In: Proceedings of the IEEE 104.1 (2016).

I 1.1 Bayesian optimisation

As for any probabilistic numeric procedure, it is important to
distinguish the two components of a Bayesian optimisation
algorithm: its prior and its loss function. Its prior must provide
a model for the objective function, p( f ), (and hence also for its
minimum, p

�
f (x?)

�
), where the loss function specifies the goals
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In global optimisation:
data = evaluations;
predictand = minimiser; &
decisions = locations.
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Bayesian optimisation is probabilistic 
numerics for global optimisation.
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An agent is defined by

its prior and
loss function.
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The surrogate is the prior for the 
objective: options include

Gaussian processes,

random forests,

tree-structured Parzen (density) 
estimators and

Bayesian neural networks.
@maosbot 14/68



The hyperparameter priors can have a 
significant influence on our inference. Prior A 
favours small input scale, prior C favours large 
input scale and prior B is uninformative.  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TO IMPROVE
OPTIMISATION,
IMPROVE YOUR
SURROGATE.
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Figure 1.1: A global optimisation prob-
lem. We are given an objective function
f (x), which can be evaluated (possibly
corrupted by observation noise) for any
chosen location x. The objective may be
expensive to evaluate, limiting the num-
ber of such evaluations: in the figure, only
three evaluations have been gathered thus
far. We must chose future evaluation lo-
cations so as to determine the objective’s
minimiser and/or minimum.
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(2012)

more. The real world is very often more complex than convex.
To address non-convex problems, a zoo of competing global opti-
misation techniques have been developed. Popular approaches
include evolutionary methods, branch-and-bound methods and
Monte-Carlo-based algorithms.� 7 T. Weise. “Global optimization

algorithms-theory and application”. In:
Self-Published, (2009).

Bayesian optimisation is a probabilistic framework for global
optimisation. It is somewhat of an exception to other probabilistic
numerics approaches: it was directly conceived from a proba-
bilistic viewpoint, with no direct non-probabilistic predecessor
(although there is, of course, a rich literature on non-probabilistic
global optimisation). Although still a young area by the standards
of applied mathematics,� compared to other areas discussed in 8 Bayesian optimisation’s history, detailed

in Shahriari et al. (2016), be traced back
to Thompson (1933), although many of
the ideas we discuss in this section, along
with the term Bayesian optimisation itself,
first appeared in the work of Močkus
(1975).

this book, Bayesian optimisation is already a surprisingly ma-
ture, developed field, with sizeable annual meetings� and a rich

9 Bayesian optimisation workshops are,
at time of writing, listed at https://
bayesopt.github.io/past.html.

set of algorithms. In this chapter, our ambition is to provide
a compact take on Bayesian optimisation from a probabilistic
numeric perspective: more comprehensive overviews of Bayesian
optimisation exist elsewhere.��

10 E. Brochu, V. M. Cora, and N. De Freitas.
“A tutorial on Bayesian optimization of
expensive cost functions, with applica-
tion to active user modeling and hierar-
chical reinforcement learning”. In: arXiv

preprint arXiv:1012.2599 (2010); B. Shahri-
ari et al. “Taking the human out of the
loop: A review of bayesian optimization”.
In: Proceedings of the IEEE 104.1 (2016).

I 1.1 Bayesian optimisation

As for any probabilistic numeric procedure, it is important to
distinguish the two components of a Bayesian optimisation
algorithm: its prior and its loss function. Its prior must provide
a model for the objective function, p( f ), (and hence also for its
minimum, p

�
f (x?)

�
), where the loss function specifies the goals
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Figure 1.2: A Bayesian answer to the
global optimisation problem is to assign
a �� prior to the latent function. This par-
ticular �� prior arises from a zero prior
mean and rational quadratic kernel with
unit length scale and degree of freedom
a = 0.5. Given the three observations
from Figure 1.1, we plot: the �� posterior
mean as a dark line; the posterior mean
plus or minus two standard deviation (��)s
as light lines; marginal densities as shad-
ing; three sample functions as dashed
lines; and the location of each sample’s
minimum as squares. This �� gives rise to
an (intractable) probability density function

(���) over the location, x?, of the func-
tion’s minimum. This is plotted along the
bottom of the figure: for this univariate
problem, and given sufficient computa-
tional resources, we can represent this ���
as a histogram from exhaustive sampling.
Note that there is a finite probability for
the minimum to lie exactly at the domain
boundary (one of the samples is an exam-
ple case).

encoded in at least several distinct but plausible ways.

1. Firstly, our loss might be the lowest function value evaluated,
such that our goal is to uncover as low a function value as
possible: we will call this the value loss (��).

2. Alternatively, our loss might be the entropy in the location of
the minimum, x?, which we will call the location-information

loss (���). Figure 1.2 depicts a posterior for the minimiser x?,
whose entropy would serve as the ���.

3. Another competing possibility is the value-information loss

(���), equal to the entropy in the value of the minimum, f (x?).

Nor are these the only plausible candidate losses; we will
meet alternatives below. Crucial to distinguishing these losses
is a careful treatment of the end-point of the optimisation. The
loss function must make precise what is to happen to the set
of obtained objective evaluations once the procedure ends, and
how valuable this outcome truly is. One crucial question is that
of when our algorithm must terminate. Termination might be
upon the exhaustion of an a-priori fixed budget of evaluations,
or, alternatively, when a particular criterion of performance or
convergence is reached. The former assumption of a fixed budget
(of N evaluations) is the default within Bayesian optimisation,
and will be taken henceforth.

We present in Figure 1.3 an illustration of the decision prob-
lem for Bayesian optimisation. The terminating condition for
optimisation will often require us to select a single point�� in 15 We will regard this final point as ad-

ditional to our permitted budget of N
evaluations.



Improving calibration is as 
important as improving 
accuracy.
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1.1. BAYESIAN OPTIMISATION 15

Dn Dn+1 · · · DN

xn xn+1 xN

yn yn+1 · · · yN

Figure 1.3: Graphical model (Bayesian net-
work) for the Bayesian optimisation deci-
sion problem. Given the current dataset,
Dn, we must decide upon the decision
variable (diamond node) xn. All variables
along the dark line are dependent.

the domain to be returned: we will denote this point as xN . At
the termination of the algorithm, we will define the full set of
evaluation pairs gathered as DN :=

�
(xi, yi) | i = 0, . . . , N � 1

 
.

Here the ith evaluation is yi = f (xi). The returned point will
often be limited to the set of evaluation locations, xN 2 DN ,
but this need not necessarily be so��. With our notation, the loss 16 In the absence of noise, limiting to

the set of evaluation locations enforces
the constraint that the returned function
value (the putative minimum) is known
with complete confidence. This is not un-
reasonable; however, in some settings, the
user may be satisfied with a more diffuse
probability distribution over the returned
value: such considerations, of course, mo-
tivate the broader probabilistic numeric
vision. It’s worth noting that the limita-
tion to the set of evaluation locations does
not permit returning unevaluated points,
even if their values are known exactly.
As an example where this is important,
consider knowing that a univariate objec-
tive is linear: then, any pair of evaluations
would specify exactly the minimum, on
one of the two edges of a bounded inter-
val. In such a case, would we really want
to require that this minimum could not
be returned until it had been evaluated?

functions can be defined as follows:

l��(xN , yN ,DN) = yN (1.1)
l���(xN , yN ,DN) = H(x? | xN , yN ,DN) (1.2)
l���(xN , yN ,DN) = H

�
f (x?) | xN , yN ,DN

�
. (1.3)

It’s not difficult to find an application demanding each of these
three losses. The value loss would be appropriate if the evaluation
provided a persistent object with worth equal to the objective
value. An example might be optimising the activity of a drug
molecule: after the budget of expensive trials (evaluations) has
been exhausted, the best of the trialled molecules is chosen
for further development. The location-information loss would
be appropriate if, at the end-point of the optimisation process,
it were possible to slightly vary the location of the obtained
minimum. For instance, in the drilling of an oil well, after drilling
a certain number of test wells down into a plane, it might be
possible to drill a small distance sideways from the best well until
an even better location were found. The location-information loss
is also appropriate if the selected location for the minimum, xN ,
were corrupted by a noise contribution, e, before the ultimate
value, yN = f (xN + e), was realised. The value-information loss
might be appropriate if the minimum were a quantity of scientific
interest, as is the equilibrium state in an economic model of loss-
minimising consumers. Here it is not the minimum itself that
has value, but what its determination reveals about the world
around us.

As in any application of decision theory, the quantity that
most directly determines our actions is not the loss, but the ex-
pected loss. In Bayesian optimisation, the term acquisition function
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What should we pick as the

loss function
for optimisation?
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The loss for optimisation could be:

1. the lowest evaluation (value); or

2. the uncertainty in the minimiser 
(location-information); or

3. the uncertainty in the minimum (value-
information).
@maosbot 22/68



1.1. BAYESIAN OPTIMISATION 15
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Figure 1.3: Graphical model (Bayesian net-
work) for the Bayesian optimisation deci-
sion problem. Given the current dataset,
Dn, we must decide upon the decision
variable (diamond node) xn. All variables
along the dark line are dependent.

the domain to be returned: we will denote this point as xN . At
the termination of the algorithm, we will define the full set of
evaluation pairs gathered as DN :=

�
(xi, yi) | i = 0, . . . , N � 1

 
.

Here the ith evaluation is yi = f (xi). The returned point will
often be limited to the set of evaluation locations, xN 2 DN ,
but this need not necessarily be so��. With our notation, the loss 16 In the absence of noise, limiting to

the set of evaluation locations enforces
the constraint that the returned function
value (the putative minimum) is known
with complete confidence. This is not un-
reasonable; however, in some settings, the
user may be satisfied with a more diffuse
probability distribution over the returned
value: such considerations, of course, mo-
tivate the broader probabilistic numeric
vision. It’s worth noting that the limita-
tion to the set of evaluation locations does
not permit returning unevaluated points,
even if their values are known exactly.
As an example where this is important,
consider knowing that a univariate objec-
tive is linear: then, any pair of evaluations
would specify exactly the minimum, on
one of the two edges of a bounded inter-
val. In such a case, would we really want
to require that this minimum could not
be returned until it had been evaluated?

functions can be defined as follows:

l��(xN , yN ,DN) = yN (1.1)
l���(xN , yN ,DN) = H(x? | xN , yN ,DN) (1.2)
l���(xN , yN ,DN) = H

�
f (x?) | xN , yN ,DN

�
. (1.3)

It’s not difficult to find an application demanding each of these
three losses. The value loss would be appropriate if the evaluation
provided a persistent object with worth equal to the objective
value. An example might be optimising the activity of a drug
molecule: after the budget of expensive trials (evaluations) has
been exhausted, the best of the trialled molecules is chosen
for further development. The location-information loss would
be appropriate if, at the end-point of the optimisation process,
it were possible to slightly vary the location of the obtained
minimum. For instance, in the drilling of an oil well, after drilling
a certain number of test wells down into a plane, it might be
possible to drill a small distance sideways from the best well until
an even better location were found. The location-information loss
is also appropriate if the selected location for the minimum, xN ,
were corrupted by a noise contribution, e, before the ultimate
value, yN = f (xN + e), was realised. The value-information loss
might be appropriate if the minimum were a quantity of scientific
interest, as is the equilibrium state in an economic model of loss-
minimising consumers. Here it is not the minimum itself that
has value, but what its determination reveals about the world
around us.

As in any application of decision theory, the quantity that
most directly determines our actions is not the loss, but the ex-
pected loss. In Bayesian optimisation, the term acquisition function

1. Value: ≔

2. Location-information: 
≔

2. Value-information: 
≔

The minimiser is  and the minimum .
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An acquisition function
is an expected
loss function.
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Most Bayesian optimisation is 
myopic, in ignoring all but the 
next evaluation.
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Myopia can lead to insufficient 
exploration.

1.2. VALUE LOSS 23

Figure 1.6: Imagine that we can afford two
evaluations of a function on the domain
indicated by the line segment. The best
first evaluation location (dot), according
to any ignorant prior and myopic acqui-
sition function, will be the mid-point of
the domain (the left plot). However, this
choice means that the second and final
evaluation, which will fall in one or the
other halves of the domain, will leave the
other half entirely unexplored (the center
plot). If a non-myopic strategy were used,
the two evaluations could be more sen-
sibly (and, in this case, more uniformly)
distributed across the domain (the right
plot).

to exploitative over the course of optimisation. That is, early
on, with a large budget of evaluations in hand, exploration is
more attractive than later on. However, a myopic optimisation
strategy cannot be influenced by the true number of evaluations
remaining: it is static, where we would prefer dynamism.

What would it take to abandon the myopia of �� and ��
and move towards a better approximation of the value loss?
The challenge to be overcome is captured by Figure 1.3. Our
goal is to compute the expected loss of evaluating next at x0,
E(l��). If N evaluations remain, we must marginalise N + 1
values, y0, . . . , yN , (recall that we’re assuming that the final
returned value is ‘free’, additional to our budget) and N locations,
x1, . . . , xN . The latter random variables emerge from a decision
process: xi will be the optimiser of the ith acquisition function.
That is,

p(xi | Di) = d
⇣

xi � arg min
x

E
�
l��(x) | Di

�⌘
. (1.11)

This means that the thorny problem to be solved is an inter-
leaved sequence of numerically integrating over yi variables
and numerically optimising over xi variables. This is a dynamic
programming problem, and shares with such problems a cost
that is exponential in the horizon, (N � n).

The difficulty of this problem has meant that progress has
been largely limited to various specialisations or relations of
the generic Bayesian optimisation problem. As examples, non-
myopic results have been presented for: independent, discrete-
valued, evaluations��; finding a level-set of a one-dimensional

28 gittins1979bandit (gittins1979bandit)

and Markov objective��; and active search��. Those approaches��

29 cashore_multi-step_2015
(cashore_multi-step_2015)

30 jiang_efficient_2017
(jiang_efficient_2017)

31 streltsov_non-myopic_1999;
osborne2009gaussian;
marchant_sequential_2014;
gonzalez_glasses:_2016

that introduce approximations to tackle the full multi-step prob-
lem have managed to consider no more than around twenty
future steps. To give a flavour of how such approaches pro-
ceed, gonzalez_glasses:_2016�� propose a scheme in which the 32 gonzalez_glasses:_2016.

Dn

xn xn+1 · · · xN

yn yn+1 · · · yN

Figure 1.7: Approximate graphical model
(Bayesian network) for the Bayesian opti-
misation decision problem. Given the cur-
rent dataset,Dn, we must decide upon the
decision variable (diamond node) xn: un-
like in the true problem (Figure 1.3), how-
ever, the sequential nature of the problem
is ignored. All variables along the dark
line are dependent.

On the other hand, any flaws of a 
surrogate are magnified by non-myopia.
@maosbot 26/68
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Gonzalez, Osborne, & Lawrence (2016). GLASSES: Relieving The Myopia Of Bayesian Optimisation. AISTATS. 27/68



 With a myopic strategy, the acquisition function is

The next evaluation location will be
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We have succeeded
in turning optimisation
into optimisation.
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The acquisition function:

is less expensive than the 
objective;

gives us gradients and Hessians; 
and

need not be optimised exactly.
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Expected improvement

is a myopic approximation to the value 
loss:

≔

Defining the lowest function value 
available at the th step as

≔  

we can simply rewrite the loss as 



If we have a Gaussian posterior for the next evaluation, 

≔

the expected improvement acquisition function is

≔

Source: Močkus, Tiesis, and Žilinskas. "The Application of Bayesian Methods for Seeking the Extremum". 1978. 32/68



@maosbot 33/68



18 ������ ������������

�4 �2 0 2 4
�3

�2

�1

0

1

2

x

f

Figure 1.4: Preparation for Expected Im-
provement.

Such considerations are common in numerics: it is common
for one numerical problem to require the solution of another.
There is a roughly perceived hierarchy of algorithms, with more
important algorithms (like quadrature) permitted to call less
important algorithms (like linear solvers). One ultimate goal of
probabilistic numerics is to formalise this hierarchy, by designing
numeric algorithms that universally communicate probability
distributions, and propagate uncertainty throughout a pipeline
of algorithms. In such a setting, it is not impossible to imagine
that rules hitherto underpinned only by intuition, such as the
rule that the optimisation of the acquisition function is relatively
unimportant for performance, might be a naturally emergent
result.

I 1.2 Value loss

The �� is perhaps the most intuitive of the loss functions described
above, and has been developed through a number of avenues
within Bayesian optimisation.

B 1.2.1 Expected improvement

Let us begin a tour through the canonical combination of prior
and loss function for Bayesian optimisation: a �� prior (see §??)
with the expected improvement (��) acquisition function.�� The 20 J. Močkus, V. Tiesis, and A. Žilinskas.

“The Application of Bayesian Methods for
Seeking the Extremum”. 1978.

latter is best seen as an approximation to the value loss. Figure
1.5 provides an illustration of the combination of �� and a ��.

Let us place ourselves at the nth step in the optimisation

@maosbot 34/68



1.2. VALUE LOSS 19
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Figure 1.5: The expected improvement (��)
acquisition function at x is the expected
amount that f (x) improves upon the cur-
rent lowest evaluation, h (marked by a
circle). Naturally, the expected improve-
ment can’t be worse than zero. The light
grey curves at integer values of x are the
integrands

�
f (x)� h

�
p
�

f (x) | Dn�1
�

of
(??), whose integral is the acquisition func-
tion, a��(x), at those values of x. On a grid
of example locations, the plot shows as a
dark, thick, line the resulting negative ac-
quisition function �a��(x).Its maximiser,
marked with a square, gives the best pos-
sible location for the next evaluation, xn.
Note that this plot considers noisy evalu-
ations, tackled more fully in 1.2.3.

procedure, such that the optimiser has gathered a set of evalua-
tion pairs, Dn =

��
xi, f (xi)

�
| i = 0, . . . , n � 1

 
(where n < N,

the total budget of evaluations). The �� posterior for the ob-
jective, p( f | Dn) = GP( f ; m, V), has posterior mean function
m(x) and posterior covariance function V(x). We now make the
approximation�� 21 Note that, under this approximation,

the loss is not a function of xN .Just as promised by its name, this expected loss does indeed
consider the expected improvement over the current best point,
h. Given that h is “in the bag”, so to speak, (??) expresses that the
overall outcome can’t be worse (higher) than h. The expected loss
will be determined by the probability mass that p

�
f (xn) | Dn

�

assigns to the fortunate outcomes in which f (xn) improves upon
h, and the magnitude of those improvements.

To fulfil its purpose as an acquisition function, we usually
rewrite this expected loss as a function of the next evaluation
location, so that

E
�
l��

�
= E

�
l��

�
(xn). (1.5)

For convenience, our notation no longer reflects the real de-
pendence of l�� on Dn+1. To be explicit, we will pick the next
evaluation location as the minimiser of E

�
l��

�
(xn), which is

identical to the minimiser of a��(xn) := E
�
l��

�
(xn)� h,

a��(xn) =
Z h

�•

�
f (xn)� h

�
p
�

f (xn) | Dn
�

d f (xn). (1.6)

Now, given p
�

f (xn) | Dn
�
= N

�
f (xn); m(xn), V(xn)

�
, letting

F(x; a, b2) be the cumulative distribution function of the Gaussian
distribution N (x; a, b2),

Exercise 1. Given (1.6), derive (1.7).
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If our evaluations are noisy, the best evaluation ( ) 
is also probably the most noise-corrupted.
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Probability of improvement

defines (for  the indicator function) the myopic loss 

≔

The probability of improvement acquisition function is hence

≔

Source: H. J. Kushner. “A new method of locat- ing the maximum point of an arbitrary multipeak curve in the presence of noise” (1964). 46/68



Probability of improvement

defines a myopic loss (for  the indicator function)

≔

The probability of improvement acquisition function is hence

≔

PI values incremental improvement every step.
@maosbot 47/68
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Figure 1.8: Preparation for Probability of
Improvement.

González, Osborne, and Lawrence�� propose a scheme in which 32 J. González, M. A. Osborne, and N.
Lawrence. “GLASSES: Relieving The My-
opia Of Bayesian Optimisation”. 2016.

the strong knowledge of the sequential selection of observations,
as in (1.11), is set aside in favour of a model which assumes that
all locations are chosen at once, as in a batch (batch Bayesian
optimisation will be described in §1.4). This approximate model
is depicted in Figure 1.7. This coupling of locations and removal
of nesting provides a substantially simpler numerics problem,
one solvable using batch Bayesian optimisation techniques (for
the optimisation of locations) and expectation propagation�� (for 33 J. Cunningham, P. Hennig, and S.

Lacoste-Julien. “Gaussian Probabilities
and Expectation Propagation” (2011).

the marginalisation of their values).

I 1.3 Other acquisition functions

Acquisition functions (beyond those derived from the ��) remain
an active area of research within Bayesian optimisation, and
the field has produced a diverse range of proposals. Below, we
will review a few of the most prominent, and discuss their
probabilistic numeric interpretation. Note that all are squarely
myopic.

B 1.3.1 Probability of improvement

One of the earliest acquisition functions to be proposed�� is �� 34 H. J. Kushner. “A new method of locat-
ing the maximum point of an arbitrary
multipeak curve in the presence of noise”
(1964).

(also known as maximum probability of improvement (���)). PI
is myopic, and, as with ��, defines the lowest function value
available at the nth step as

hn := min
i2{0, ..., n�1}

f (xi). (1.12)
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Figure 1.9: The probability of improvement
(��) acquisition function at x is the prob-
ability that f (x) improves upon the cur-
rent lowest evaluation, h (marked by a cir-
cle). The light grey curves at half-integer
values of x describe p

�
f (x) | Dn

�
for

f (x) < h. On a grid of example locations,
the plot shows as a dark, thick, line the
resulting negative acquisition function
�a��(x) (the integral of the grey curves),
affinely rescaled for visualisation. Its max-
imiser, marked with a square, gives the
best possible location for the next evalua-
tion, xn. The plot is analagous to that for ��
in Figure 1.5. Note the subtle differences
between the two acquisition functions: in
particular, �� is the more exploitative of
the two.

Now let us define a loss function specific to the nth step:

ln,��(Dn+1) := I
�

f (xn) � hn
�
. (1.13)

Here I is the indicator function, so that the loss is 0 when
f (xn) < h and 1 otherwise (expressing that the former is the
preferred outcome). With that, the �� expected loss, and hence
acquisition function, has the simple form

an,��(xn) := E
�
ln,��(Dn+1)

�
= P

�
f (xn) � hn | Dn

�
. (1.14)

As such, this acquisition function does not distinguish between
improvements of different magnitudes: any improvement, how-
ever small, is equally valued. This means that the acquisition
function is deterred from gambling on exploration, and is hence
aggressively exploitative.�� The �� acquisition function is depicted 35 D. Jones. “A taxonomy of global op-

timization methods based on response
surfaces” (2001).

in Figure 1.9.
We could view the nth step loss function (1.13) as emerging

from an approximation to a single loss function applicable across
all steps,

l��(DN) = I
�

f (xn) � hn; n = 1, . . . , N
�
. (1.15)

From the decision-theoretic perspective, this reveals another
deficiency of ��: (1.15) stipulates an odd goal for optimisation:
incremental improvement at each step. Why should an optimiser
weight each step in the optimisation process equally? The loss
functions described in §1.1.2 instead put their emphasis on
uncovering a single, exceptional, function value. A probabilistic
numeric view would argue that these goals are more coherent
and hence are those most suitable for optimisation.
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Upper confidence bound

is the myopic acquisition function

≔

given a surrogate with mean  and variance .

It is difficult to reconcile UCB with a defensible loss 
function.

Source: N. Srinivas et al. “Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design”. 2010. 50/68
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Figure 1.10: The upper confidence bound
(���) acquisition function at x is a lin-
ear combination of the mean and �� of
the �� posterior. For the purposes of this
plot, b = 1.5. On a grid of example loca-
tions, the plot shows as a dark, thick, line
the resulting negative acquisition func-
tion �a���(x) affinely rescaled for visu-
alisation. Its maximiser, marked with a
square, gives the best possible location
for the next evaluation, xn. The plot is
analagous to that for �� in Figure 1.5 and
�� in Figure 1.9. Note the subtle differences
between the three acquisition functions:
in particular, ��� (for b = 1.5) is the most
explorative of the three.

B 1.3.2 Upper confidence bound

A popular acquisition function finds its roots in the multi-armed
bandit literature:�� the ���. Again, this acquisition function is 36 T. L. Lai and H. Robbins. “Asymptot-

ically efficient adaptive allocation rules”
(1985).

myopic in considering no further ahead than the next function
value. Rather than marginalising over that function value, yn,
this criterion adopts an optimistic approach: they assume that yn

will take the value that is better than its expectation according to
some fixed probability. Srinivas et al.�� framed the ���, given a 37 N. Srinivas et al. “Gaussian Process Op-

timization in the Bandit Setting: No Re-
gret and Experimental Design”. 2010.

�� surrogate posterior (with mean m(xn) and variance V(xn)) at
the proposed xn, as

a���(xn) := m(xn)� bnV(xn)
1
2 . (1.16)

The first term in (1.16), the posterior mean, m(xn), rewards
exploitation, by encouraging evaluation near to existing low
evaluations. The second term, proportional to the posterior stan-
dard deviation, V(xn)

1
2 , promotes exploration. The parameter

bn 2 R
+ explicitly specifies the exploration-exploitation tradeoff.

For an appropriately large choice of bn, ��� can be made more
explorative than ��; as you’ll recall from 1.7, the myopia of �� can
lead to insufficient exploration. As such, the greater explorative
nature of ��� has been observed to yield superior performance
to that of �� and ��.�� Figure 1.10 illustrates this ��� acquisition 38 R. Calandra et al. “An experimental

comparison of Bayesian optimization for
bipedal locomotion”. 2014.

function.
The severe assumption underpinning ��� is motivated by the

resulting simplicity of the acquisition function. This lends itself
to theoretical treatment, yielding, for instance, regret bounds.�� 39 N. Srinivas et al. “Gaussian Process Op-

timization in the Bandit Setting: No Re-
gret and Experimental Design”. 2010; N.
de Freitas, A. Smola, and M. Zoghi. “Ex-
ponential Regret Bounds for Gaussian
Process Bandits with Deterministic Ob-
servations”. 2012.

This theory also provides schedules for the adaptation of bn as
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Information-theoretic methods

give alternative myopic implementations of value-information and 
location-information losses:

≔
≔

These methods tend to be more exploratory, helping performance.

Source: Villemonteix, Vazquez, & Walter (2009); Hennig & Schuler (2012); Hernández-Lobato et al. (2015); Hoffman & Ghahramani (2015); Wang & Jegelka (2017); Ru et al. 
(2018). 52/68
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Figure 1.2: A Bayesian answer to the
global optimisation problem is to assign
a �� prior to the latent function. This par-
ticular �� prior arises from a zero prior
mean and rational quadratic kernel with
unit length scale and degree of freedom
a = 0.5. Given the three observations
from Figure 1.1, we plot: the �� posterior
mean as a dark line; the posterior mean
plus or minus two standard deviation (��)s
as light lines; marginal densities as shad-
ing; three sample functions as dashed
lines; and the location of each sample’s
minimum as squares. This �� gives rise to
an (intractable) probability density function

(���) over the location, x?, of the func-
tion’s minimum. This is plotted along the
bottom of the figure: for this univariate
problem, and given sufficient computa-
tional resources, we can represent this ���
as a histogram from exhaustive sampling.
Note that there is a finite probability for
the minimum to lie exactly at the domain
boundary (one of the samples is an exam-
ple case).

encoded in at least several distinct but plausible ways.

1. Firstly, our loss might be the lowest function value evaluated,
such that our goal is to uncover as low a function value as
possible: we will call this the value loss (��).

2. Alternatively, our loss might be the entropy in the location of
the minimum, x?, which we will call the location-information

loss (���). Figure 1.2 depicts a posterior for the minimiser x?,
whose entropy would serve as the ���.

3. Another competing possibility is the value-information loss

(���), equal to the entropy in the value of the minimum, f (x?).

Nor are these the only plausible candidate losses; we will
meet alternatives below. Crucial to distinguishing these losses
is a careful treatment of the end-point of the optimisation. The
loss function must make precise what is to happen to the set
of obtained objective evaluations once the procedure ends, and
how valuable this outcome truly is. One crucial question is that
of when our algorithm must terminate. Termination might be
upon the exhaustion of an a-priori fixed budget of evaluations,
or, alternatively, when a particular criterion of performance or
convergence is reached. The former assumption of a fixed budget
(of N evaluations) is the default within Bayesian optimisation,
and will be taken henceforth.

We present in Figure 1.3 an illustration of the decision prob-
lem for Bayesian optimisation. The terminating condition for
optimisation will often require us to select a single point�� in 15 We will regard this final point as ad-

ditional to our permitted budget of N
evaluations.
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Figure 1.11: Dummy

a function of n. Nonetheless, it is difficult to reconcile ��� with
a defensible loss function (see Exercise 3). As such, this class

Exercise 3. Derive a loss function for which
the ��� acquisition function (1.16) is the my-
opic expected loss, given that the posterior for
yn is that from a ��: N (yn; m(xn), V(xn)).

of approaches has no known (sensible) probabilistic numeric
interpretation��.

40 That said, interesting re-interpretations
of the ��� criterion is provided by Wang,
Zhou, and Jegelka (2016) and Wang and
Jegelka (2017).

B 1.3.3 Information-theoretic approaches

Let us now return to the two alternatives to the value loss (��)
developed in detail above: the location-information loss (���) and
value-information loss (���), which we collectively describe as
information-theoretic. For reasons similar to those discussed in
§1.1.2, implementing such loss functions exactly is computation-
ally infeasible: as such, existing information-theoretic approaches
are (like the other approaches above) myopic. Nonetheless, the
information-theoretic methods do tend to be more explorative
than �� and ��. This tends to improve performance: as discussed
above, the myopia underpinning alternative acquisition functions
leads to under-exploratory behaviour. Recall that, as mentioned
in §1.2.2, �� is local: it values improvements only at the location
of the next evaluation. �� and ��� are equally local. On the other
hand, even if treated myopically, the ��� and ��� are truly global:
they value information about the entire domain.

Several myopic acquisition functions based on the ��� have
been proposed, differing only in implementation details. An
illustration of such approaches is given by Figure 1.17. Recall
that the ��� demands minimisation of the entropy of x⇤. More
precisely, under the myopic approximation, which considers only
the impact of the next, (n + 1)th, step, we must consider the loss
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Figure 1.12: Dummy

function

l���(Dn+1) = H(x⇤ | Dn+1). (1.17)

This loss, of course, depends on the yn, unobserved at the current
(nth) step.

Typically, x⇤ is continuous, an element of R
d. Given the com-

putational challenges of inferring a full density on a continuous
x⇤, all implementations of the ��� to date discretise x⇤: this then
requires only the maintenance of a (discrete) probability distribu-
tion. The approximation of x⇤ as discrete also enables its entropy
to be more easily computed,

H(x⇤ | Dn+1) = �Â
i

P(x⇤,i | Dn+1) log P(x⇤,i | Dn+1). (1.18)

If x⇤ is (correctly) treated as continuous, we must resort to the
use of a differential entropy, which suffers from two significant
drawbacks: it is not invariant to changes of variables;�� and it is 41 D. MacKay. Information Theory, Inference,

and Learning Algorithms. 2003.difficult to compute.
The first acquisition functions built on the ��� are named

informational approach to global optimisation (����)�� and entropy 42 J. Villemonteix, E. Vazquez, and E.
Walter. “An informational approach to
the global optimization of expensive-to-
evaluate functions” (2009).

search (��).�� They differ in implementation details: while these

43 P. Hennig and C. J. Schuler. “Entropy
search for information-efficient global op-
timization” (2012).

differences are of practical significance, they will not concern us
here. Both consider an acquisition function that is the myopic
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Figure 1.13: Dummy

expected loss

a����(xn) = a��(xn)

= E
�
l���(Dn+1)

�

=
Z

H(x⇤ | Dn+1)p(yn | xn,Dn) dyn

=: Eyn H(x⇤ | yn, xn,Dn). (1.19)

Eyn H(x⇤ | yn, xn,Dn) is a conditional entropy, the expected en-
tropy in x⇤ after an observation yn whose value is currently
unknown.

Predictive entropy search (���)�� is an alternative acquisition 44 J. M. Hernández-Lobato et al. “Pre-
dictive Entropy Search for Bayesian Op-
timization with Unknown Constraints”
(2015).

function derived from the ���. It firstly notes that

arg min
xn

Eyn H(x⇤ | yn, xn,Dn)

= arg max
xn

H(x⇤ | Dn)� Eyn H(x⇤ | yn, xn,Dn), (1.20)

as the prior entropy of the minimiser is independent of the next
measurement. ��� then makes use of the identity

I(x⇤ ; yn) = H(x⇤ | Dn)� Eyn H(x⇤ | yn, xn,Dn)

= H(yn | xn,Dn)� Ex⇤ H(yn | x⇤, xn,Dn), (1.21)

where I(· ; ·) is the mutual information between two random
variables, and Ex⇤ H(yn | x⇤, xn,Dn) is the conditional entropy
of yn given the random variable x⇤. (1.21) yields the acquisition
function

a��� = �H(yn | xn,Dn) + Ex⇤ H(yn | x⇤, xn,Dn). (1.22)
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Figure 1.14: Dummy

This acquisition function will select identical evaluations to those
of �� and ����. Nonetheless, the rearrangement is well-motivated,
following the arguments of the Bayesian active learning by dis-
agreement (����) algorithm.�� Firstly, H(yn | xn,Dn) is straight-

45 N. Houlsby et al. “Bayesian Active
Learning for Classification and Prefer-
ence Learning” (2011)

forward to calculate: it is the entropy of a univariate Gaussian.
The second term requires the computation of another univariate
Gaussian’s entropy: H(yn | x⇤, xn,Dn). This is complicated by
having to condition on x⇤ being a minimiser, achieved readily in
practice through heuristics like ensuring that the objective at x⇤
has zero gradient and positive curvature. The term must also be
marginalised over the posterior over the minimiser, P(x⇤ | Dn);
a task whose central difficulty is constructing that posterior. In
comparison, ��/���� require P(x⇤ | yn, xn,Dn) (so as to compute
its entropy). The principal difference between ��/���� and ���
is that P(x⇤ | yn, xn,Dn) must be constructed afresh for each
proposed sampling location, xn, whereas P(x⇤ | Dn) need only
be constructed once per step n.

The ��� was first proposed by Hoffman and Ghahramani,��

46 M. W. Hoffman and Z. Ghahramani.
“Output-Space Predictive Entropy Search
for Flexible Global Optimization”. 2015

giving an acquisition function known as output-space entropy
search (����). Follow-on work�� produced an acquisition func- 47 Z. Wang and S. Jegelka. “Max-value

Entropy Search for Efficient Bayesian Op-
timization” (2017).

tion known as max-value entropy search (���) that provided some
improvements in implementation (but should otherwise be identi-
cal). These acquisition functions both modify ��� only in replacing
the minimiser, x⇤, with the minimum, y⇤,

a���� = a���

= �H(yn | xn,Dn) + Ey⇤ H(yn | y⇤, xn,Dn). (1.23)
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Figure 1.15: Dummy

As discussed in §1.1.2, the ��� may be preferred to the ��� for
some applications. Moreover, ���� and ��� have advantages
in implementation over ���. For instance, the posterior for the
minimum, p(y⇤ | Dn), is univariate, whereas the posterior for
the minimiser, P(x⇤ | Dn), has dimension equal to that of the
search domain.

Returning to the discussion in §1.2.3, all the information-
theoretic acquisition functions described above are relatively
robust to noise in the objective function. Information-theoretic
acquisition functions reward the information yielded by an obser-
vation, rather than measuring characteristics of the observation
itself, as do ��, ��� and ��. In particular, all information-theoretic
acquisition functions are influenced by prospective observations
only through their impact on entropy terms. So long as posteriors
given the noisy observations can be obtained, such entropy terms
will naturally accommodate the noise.

Figure 1.18 depicts a comparison of the information-theoretic
acquisition functions from this section against those of previous
sections.

B 1.3.4 Portfolios of acquisition functions

One answer to the limitations of each of the acquisition functions
described above is to propose the use of a portfolio of multiple
acquisition functions.�� This approach requires, firstly, finding the 48 M. Hoffman, E. Brochu, and N. de Fre-

itas. “Portfolio allocation for Bayesian op-
timization”. 2011; B. Shahriari et al. “Tak-
ing the human out of the loop: A review
of bayesian optimization” (2016).

best candidate evaluation location according to each acquisition
function in the portfolio, forming a set of candidates. The actual
location chosen is then the element of that set that maximises an
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Figure 1.16: Dummy

independent meta-criterion.
Of course, any decision-theoretic problem requires a single loss

function to be chosen. Considering multiple acquisition functions
(which corresponding to distinct expected loss functions) is
inconsistent with this view. However, the portfolio Bayesian
optimisation approaches do, in fact, operate according to a single
loss function: that inherent in the meta-criterion. The acquisition
functions within the portfolio are typically computationally
cheap, such as ��, �� and ���. The meta-criterion, on the other
hand, is expensive but powerful: for instance, Shahriari et al.�� 49 B. Shahriari et al. “An Entropy Search

Portfolio for Bayesian Optimization”
(2014).

chooses the ��� loss function of §1.3.3. Portfolio approaches, then,
are useful in providing a cheap heuristic for the optimisation of
an expensive meta-criterion.

I 1.4 Batch evaluation

It is not uncommon in optimisation to be permitted many si-
multaneous evaluations of the objective: this is known as batch
optimisation. For instance:

⌦ several time-consuming drug trials might be run in parallel,
with the goal of determining the most effective drug molecule;

⌦ in optimising machine learning model architectures, many
such architectures might be simultaneously evaluated to ex-
ploit parallel computing resources; and

⌦ in searching for optimal policy parameters, one (or many)
agent-based simulations of an economic system may be able
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Figure 1.12: We plot a direct comparison
of many of the acquisition functions in
this chapter. Since each has its own units
of measure and given that only the loca-
tion of the extremum matters (indicated
by a dot and vertical line), each acqui-
sition function is plotted on a different
(arbitrary) scale. Recall that ����, �� and
��� are differing implementations of the
same underlying loss function, ���, with
���� and ��� likewise representing differ-
ent implementations of ���. We caution
that the exact locations of the acquisition
function optima, indicated by labelled
vertical bars, are not particularly general,
and can be changed significantly through
seemingly innocuous variations in the
data and the �� model.

itself, as do ��, ��� and ��. In particular, all information-theoretic
acquisition functions are influenced by prospective observations
only through their impact on entropy terms. So long as posteriors
given the noisy observations can be obtained, such entropy terms
will naturally accommodate the noise.

Figure 1.12 depicts a comparison of the information-theoretic
acquisition functions from this section against those of previous
sections.

B 1.3.4 Portfolios of acquisition functions

One answer to the limitations of each of the acquisition functions
described above is to propose the use of a portfolio of multiple
acquisition functions.�� This approach requires, firstly, finding the 48 M. Hoffman, E. Brochu, and N. de Fre-

itas. “Portfolio allocation for Bayesian op-
timization”. 2011; B. Shahriari et al. “Tak-
ing the human out of the loop: A review
of bayesian optimization” (2016).

best candidate evaluation location according to each acquisition
function in the portfolio, forming a set of candidates. The actual
location chosen is then the element of that set that maximises an
independent meta-criterion.

Of course, any decision-theoretic problem requires a single loss
function to be chosen. Considering multiple acquisition functions
(which corresponding to distinct expected loss functions) is
inconsistent with this view. However, the portfolio Bayesian
optimisation approaches do, in fact, operate according to a single
loss function: that inherent in the meta-criterion. The acquisition
functions within the portfolio are typically computationally
cheap, such as ��, �� and ���. The meta-criterion, on the other
hand, is expensive but powerful: for instance, Shahriari et al.�� 49 B. Shahriari et al. “An Entropy Search

Portfolio for Bayesian Optimization”
(2014).

chooses the ��� loss function of §1.3.3. Portfolio approaches, then,
are useful in providing a cheap heuristic for the optimisation of
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Bayesian optimisation of hyperparameters

is used in AutoML.
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Source: Snoek, Larochelle and Adams (2012), "Practical Bayesian optimization of machine learning algorithms". NIPS. 62/68



Batch Bayesian optimisation is run in parallel.

Rontsis, Osborne, and Goulart. “Distributionally Robust Optimization Techniques in Batch Bayesian Optimization” (2017). 63/68



Hyperparameter optimisation is 
often treated as a black-box 
optimisation problem.
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It is difficult to imagine a more 
white-box problem than one 
where you have full access to 
the problem's source code.
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Within high dimension can lurk a 
terrible number of different 
things, each needing its own 
model.

Photo © David Rogers (cc-by-sa/2.0)
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Hyperparameters should usually 
be marginalised, not optimised.
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