
1

Reinforcement Learning: A Tutorial

Jan Peters

Supervised/Unsupervised Learning

2

ModelapproxData

Motivation for optimal decision making in robotics

Typically, supervised learning is not enough

Imperfect demonstrations

We cannot demonstrate everything!

ML systems need self-improvment!

The system explores by trial and error

We give evaluative feedback reward

Today, we are going to look at the problem of how to derive optimal
actions that maximize long-term reward

3

-1!

Exploration Reward

Note:
reward = - cost
Max(reward) = Min(cost)

Reinforcement Learning

4

Modelapprox

Data

Part 1. Optimal Control (with learned models)
Value

Function
Policy

Part 2. Value Function Methods
Value

FunctionData Policyapprox

Part 3. Policy Search

PolicyData approx

Reinforcement Learning

ModelData

Part 1. Optimal Control (with learned models)
Value

Function
Policy

Part 2. Value Function Methods
Value

FunctionData Policy

Part 3. Policy Search

PolicyData approx

6

Illustration of basic idea…

You have won
a Best-Paper

Award in
Madrid!

What is the
Optimal
Policy to

Collect it?

-$5

-$95

-$15
-$80

-$10

-$4

-$35
-$30

+$1000

1

34

2
5

7

Dynamic Programming

“An	 optimal	 sequence	 of	 controls	 in	 a	

multistage	 	 optimization	 problem	 has	 the	

property	 that	 whatever	 the	 initial	 stage,	

state	 and	 controls	 are,	 the	 remaining	

controls	 must	 constitute	 an	 optimal	

sequence	 of	 decisions	 for	 the	 remaining	

problem with	 stage	 and	 state	 resulting	

from	 previous	 controls	 considered	 as	

initial	 conditions.”

Richard Bellman, Dynamic Programming, 1957

8

T-4 T-3 T-2 T-1 T

970 970 965 965 0

990 990 990 990 0

985 985 985 0 0

996 996 996 996 0

1000 1000 1000 1000 1000

Let’s Try this Example!

1

2

3

4

5

9

Markov Decision Problems (MDP)

A stationary MDP is defined by:
• its state space

• its action space

• its transition dynamics

• its reward function

• and its initial state probabilities

Markov property:

• Transition dynamics depends on only on the current time step

10

Basics & Notation

Policy

Next State Action

Basic Reinforcement Learning Loop:

Goal: Maximize the expected long-term reward

discount factor
Rich Sutton & Andy Barto, Reinforcement Learning, 1998

Algorithmic Description of Value Iteration

Init:

Repeat

Compute Q-Function for time step t (for each state action pair)

Compute V-Function for time step t (for each state)

Until t = 1

Return: Optimal policy for each time step

11Howard, Value Iteration, 1958

„Bellman Equation“ (Bellman Principle of Optimality)

Iterating the Bellman Equation converges to the stationary value
function

Alternatively, we can write this in Q-Functions

12

What if you

Richard Bellman, Dynamic Programming, 1957

If your life is infinite: Stationary value functions

An Illustration…
Policy always goes directly to the star
Going through puddles is punished

13
Dann, et al: Policy Evaluation with Temporal Differences: A survey and comparison, JMLR, 2014

What if the max is expensive?

14

Typically done iteratively:

• Policy Evaluation:

Estimate quality of states (and actions) with current policy

• Policy Improvement:

Improve policy by taking actions with the highest quality

Such iterations are called Policy Iteration.

Dann, et al: Policy Evaluation with Temporal Differences: A survey and comparison, JMLR, 2014

15

A Special MDP:
Linear Quadratic Gaussian Systems

An LQR system is defined as
• its state space (note: same as)

• its action space (note: same as)

• its (possibly time-dependent) linear transition dynamics with
Gaussian noise

• its quadratic reward function

• and its initial state density

Rudollf Emil Kalman, Optimal Control, 1959

A Special MDP:
Linear Quadratic Gaussian Systems

16

Stefan Schaal & Christopher G. Atkeson, 1998

17

What’s wrong with LQR?
Value function for the inverted pendulum (on costs = negative rewards)

Highly non-linear function (certainly not quadratic)

Deisenroth et al., „Gaussian Process Dynamic Programming“, Neurocomputing 2009

18

Possible: Learn Solutions only where needed!

If you know places
where we start...

... we can just look
ahead and

approximate the
solution locally
around an initial

trajectory

Christopher G. Atkeson, 1996

19

Local Solutions by Linearizations

Every smooth function can be modeled with a Taylor expansion

Hence, we can also approximate the (learned) forward dynamics by
linearizing at the point

and approximate the (learned) reward function by a second order
approximation

Dyer & McReynolds, Jacobson & Maine, 1969

20

Local Solutions by Linearizations

So we are back to the full linear optimal control case with…

that we know how to solve…

Hence our algorithm for solving non-linear optimal control is…

1. Backward Solution: Compute optimal control law (i.e. Gains and
offsets

2. Forward Propagation: Run simulator with optimal control law to
obtain linearization points

1.If not converged, go to 1.

Dyer & McReynolds, Jacobson & Maine, 1969

Application to the Swing-Up

21

Christopher G. Atkeson & Stefan Schaal, 1997

22

Some interesting results (only in simulation)

Work by Emo Todorov
and Yuval Tassa
(They call basically the
same algorithm
incremential LQG, iLQG).

Note: iLQG is just a
simplification of Differential
Dynamic Programming
(Dyer & McReynolds, 1969)

We now know how to compute optimal policies

Cool, thats all we need. Lets go home…

Wait, there is a catch! Unfortunately, we can only do this in 2.5 cases
• Discrete Systems

Easy: integrals turn into sums
…but the world is not discrete!

• Linear Systems, Quadratic Reward, Gaussian Noise (LQR)
… but the world is not linear!

• Along an optimal trajectory – finding it is really hard!

Otherwise, we need to approximate!

23

Wrap-Up: Optimal Control

Reinforcement Learning

ModelData

Part 1. Optimal Control (with learned models)
Value

Function
Policy

Part 2. Value Function Methods
Value

Function

Part 3. Policy Search

Data Policy

PolicyData

25

CHRIS
ATKESON

Humanoids 2016

26

Purpose of this Lecture

Often, learning a good model is too hard

The optimization inherent in optimal control is prone to model errors,
as the controller may achieve the objective only because model errors
get exploited

Optimal control methods based on linearization of the dynamics work
only for moderately non-linear tasks

(Ideally model-free) Approaches are needed that do not make any
assumption on the structure of the model

Classical Reinforcement Learning:

Solve the optimal control problem by learning the value function, not
the model!

27

Markov Decision Processes (MDP)

Classical reinforcement learning is typically formulated for the
infinite horizon objective
Infinite Horizon: maximize discounted accumulated reward

… discount factor (note change!)
Trades-off long term vs. immediate reward

Rich Sutton & Andy Barto, Reinforcement Learning, 1998

Value functions of a policy

Value function and state-action value function of a policy can be
computed iteratively

28 Rich Sutton & Andy Barto, Reinforcement Learning, 1998

Classical Reinforcement Learning

Updates the value function based on samples

We do not have a model and we do not want to learn it

Use the samples to update Q-function (or V-function)

Lets start simple:

Discrete states/actions Tabular Q-function

29

Value-based Reinforcement Learning

Temporal difference learning

30

Given a transition , we want to update the V-function

• Use the estimate of the current value:

• 1-step prediction of the current value:

• 1-step prediction error (called temporal difference (TD) error)

Update current value with the temporal difference error

Rich Sutton & Andy Barto, Reinforcement Learning, 1998

Temporal difference learning

31

The TD error

compares the one-time step lookahead prediction

with the current estimate of the value function

if than is increased

if than is decreased

Rich Sutton & Andy Barto, Reinforcement Learning, 1998

Algorithmic Description of TD Learning

Init:

Repeat

Observe transition

Compute TD error

Update V-Function

until convergence of V

Used to compute Value function of behavior policy

Sample-based version of policy evaluation

32Rich Sutton & Andy Barto, Reinforcement Learning, 1998

Temporal difference learning for control

33

So far: Policy evaluation with TD methods

Can we also do the policy improvement step with samples?

Yes, but we need to enforce exploration!

Epsilon-Greedy Policy:

Soft-Max Policy:

Do not always take greedy action

Rich Sutton & Andy Barto, Reinforcement Learning, 1998

Temporal difference learning for control

34

Update equations for learning the Q-function

Two different methods to estimate

Q-learning:

Estimates Q-function of optimal policy

Off-policy samples:

SARSA: , where

Estimates Q-function of exploration policy

On-policy samples

Note: The policy for generating the actions depends on the Q-
function non-stationary policy

Rich Sutton & Andy Barto, Reinforcement Learning, 1998

35

Approximating the Value Function

In the continuous case, we need to approximate the V-function (except
for LQR)

Lets keep it simple, we use a linear model to represent the V-function

How can we find the parameters ?

Again with Temporal Difference Learning

Rich Sutton & Andy Barto, Reinforcement Learning, 1998

TD-learning with Function Approximation

Derivation:

Use the recursive definition of V-function:

with

Bootstrapping (BS): Use the old approximation to get the target
values for a new approximation

How can we minimize this function ?

Lets use stochastic gradient descent

36
Dann, et al: Policy Evaluation with Temporal Differences: A survey and comparison, JMLR, 2014

Temporal difference learning
Stochastic gradient descent on our error function MSEBS

Update rule (for current time step t,)

with
Dann, et al: Policy Evaluation with Temporal Differences: A survey and comparison, JMLR, 2014

Temporal difference learning

38

TD with function approximation

Difference to discrete algorithm:

TD-error is correlated with the feature vector

Equivalent if tabular feature coding is used, i.e.,

Similar update rules can be obtained for SARSA and Q-learning

where

Dann, et al: Policy Evaluation with Temporal Differences: A survey and comparison, JMLR, 2014

Temporal difference learning

39

Some remarks on temporal difference learning:

Its not a proper stochastic gradient descent!!

Why? Target values change after each parameter update!

We ignore the fact that also depends on

Side note: This „ignorance“ actually introduces a bias in our
optimization, such that we are optimizing a different objective
than the MSE

In certain cases, we also get divergence (e.g. off-policy samples)

TD-learning is very fast in terms of computation time O(#features),
but not data-efficient each sample is just used once!

Dann, et al: Policy Evaluation with Temporal Differences: A survey and comparison, JMLR, 2014

Sucessful examples

40

Linear function approximation

Tetris, Go

Non-linear function approximation

TD Gammon (Worldchampion level)

Atari Games (learning from raw pixel
input)

Batch-Mode Reinforcement Learning

Online methods are typically data-inefficient as they use each data point
only once

Can we re-use the whole „batch“ of data to increase data-efficiency?

• Least-Squares Temporal Difference (LSTD) Learning

• Fitted Q-Iteration

Computationally much more expensive then TD-learning!

41

42

Fitted Q-iteration

In Batch-Mode RL it is also much easier to use non-linear function
approximators

• Many of them only exists in the batch setup, e.g. regression trees

• No catastrophic forgetting, e.g., for neural networks.

• Strong divergence problems, fixed for Neural Networks by ensuring
that there is a goal state where the Q-Function value is always zero
(see Lange et al. below).

Fitted Q-iteration uses non-linear function approximators for approximate
value iteration.

Ernst, Geurts and Wehenkel, Tree-Based Batch Mode Reinforcement Learning, JMLR 2005
Lange, Gabel and Riedmiller. Batch Reinforcement Learning, Reinforcement Learning: State of the Art

43

Fitted Q-iteration

Given: Dataset

Algorithm:

Initialize , input data:

for k = 1 to L

Generate target values:

Learn new Q-function:

end

Like Value-Iteration, but we use supervised learning methods to approximate
the Q-function at each iteration k

Ernst, Geurts and Wehenkel, Tree-Based Batch Mode Reinforcement Learning, JMLR 2005
Lange, Gabel and Riedmiller. Batch Reinforcement Learning, Reinforcement Learning: State of the Art

44

Learning Robot Soccer

Riedmiller et al., Reinforcement Learning in Robot Soccer, 2009

45

Value Function Methods

... have been the driving reinforcement learning approach in the 1990s.

You can do loads of cool things with them: Learn Chess at professional
level, learn Backgammon and Checkers at Grandmaster-Level ... and
winning the Robot Soccer Cup with a minimum of man power.

So, why are they not always the method of choice?

You need to fill-up you state-action space up with sufficient samples.

Another curse of dimensionality with an exponential explosion.

Errors in the Value function approximation might have a catastrophic
effect on the policy, can be very hard to control

However, it scales better as we only need samples at relevant
locations.

Reinforcement Learning

ModelData

Part 1. Optimal Control (with learned models)
Value

Function
Policy

Part 2. Value Function Methods
Value

Function

Part 3. Policy Search

Data Policy

PolicyData

47

Greedy vs Incremental

Large
change

Large
change

Large
change

Small
change

Small
change

Small
change

Small
change

potentially
unstable learning
process with large

policy jumps

stable learning
process with

smooth policy
improvement

Greedy Updates:

Policy Gradient Updates:

Peters & Schaal, Reinforcement Learning of Motor Skills with Policy Gradients, 2008

48

Black-Box Approaches, e.g., Finite Differences

1. Perturb the parameters of your policy:

2. Approximate J by first orderTaylor approximation

3. Solve for in a least squares sense (linear regression):

A large class of algorithms includes Kiefer-Wolfowitz procedure, Robbins-
Monroe, Simultaneous Perturbation Stochastic Approximation SPSA, ...

Policy

System

Likelihood-Ratio Policy Gradient methods

Some more basic notation

Trajectory distribution:

Return for a single trajectory:

Expected long term reward can be written as expectation over
the trajectory distribution

49
Peters & Schaal, Reinforcement Learning of Motor Skills with Policy Gradients, 2008

50

Likelihood Ratio Gradient

Needs
only

samples!

The step-based policy gradient can be computed efficiently by
the likelihood-ratio trick

Applied to the policy gradient

Peters & Schaal, Reinforcement Learning of Motor Skills with Policy Gradients, 2008

51

Likelihood Ratio Gradient

How do we compute ?

The good old log again…

Derivative is now easy…

Peters & Schaal, Reinforcement Learning of Motor Skills with Policy Gradients, 2008

52

Lets plug it in…

Result:

This algorithm is called the REINFORCE Policy Gradient

Does this method work well?

No!
Peters & Schaal, Reinforcement Learning of Motor Skills with Policy Gradients, 2008

53

The Natural gradient is defined as the update
direction which is closest to the standard
gradient, but has limited distance to the old
distribution

The solution to this optimization problem is
given as:

As every parameter has the same influence, the
natural gradient is invariant to linear
transformations of the parameter space!

Kullback Leibler divergences

Kakade, 2002: Peters & Schaal, Natural-Actor Critic, 2003; Bagnell & Schneider, 2003

54

Are they useful?

Two-State
Problem

(Peters et al. 2003, 2005)

Linear
Quadratic
Regulation

55

Success Matching Principle

• Why? We still need to explore!

• Create policies such that

Only possible for non-negative reward functions

“When learning from a set of their own trials in iterated decision problems,
humans attempt to match not the best taken action but the reward-
weighted frequency of their actions and outcomes” (Arrow, 1958).

States

+ Succes (high reward) - Failure (low reward)

Policy

+ +
++ +++

-- -

- -Reward

+ +
++ +++

-- -

- - States

New Policy
Match

Successes

Basic Intuition

• Lower Bound on Expected Return

• reward is an improper probability distribution

• log-likelihood → log(expected return)
(Dayan & Hinton, Neural Computation 1997; Peters & Schaal, ICML 2007; Kober & Peters, NIPS 2008)

Second Policy
Third Policy

Policy Parameters

Ex
pe

ct
ed

 R
et

ur
n

Initial Policy

Expected Return
1st Lower Bound

2nd Lower Bound

!56

Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

EM-like Methods: maximize lower bound by expectation-maximization
policy parameters

ex
pe

ct
ed

 re
tu

rn

policy parameters

ex
pe

ct
ed

 re
tu

rn

57 Kober & Peters, NIPS 2009+Machine Learning (MLJ) 2011

5858

Ball in the Cup
Kober & Peters, NIPS 2009+Machine Learning (MLJ) 2011

Key Problems

1.no notion of data in the generic problem formulation

2.optimization bias problematic with data

3.role of features is unclear in most methods

What are the key problems?

Let’s introduce the observed data distribution .

Let’s bound our information loss .

Let’s introduce stationary features determined by

Relative Entropy Policy Search
Problem

Maximal expect reward

Probability distribution

Limit loss of Information

StationarityStationary Features

Peters et al., AAAI 2010

Solution
New Gibbs Policy given by

Value Function given by .

Advantage Function given as

Parameters from dual function

.

.

.

All direct results of the previous problem!

Peters et al., AAAI 2010

62

Wrap-Up

• Policy Search is a powerful and practical alternative to value function
and model-based methods.

• Policy gradients have dominated this area for a long time and solidly
working methods exist.

• Learning the exploration rate is still an open problem

• Newer methods focus on probabilistic policy search approaches.

• Relative Entropy Policy Search (and its simplifications like TRPO) would
be today’s choice!

Reinforcement Learning

63

ModelData

Part 1. Optimal Control (with learned models)
Value

Function
Policy

Part 2. Value Function Methods
Value

Function

Part 3. Policy Search

Data Policy

PolicyData

