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Introduction

* Predictive analysis is the dominant analysis paradigm in
machine learning and used within many decision-making
applications.

* Movie Recommendation system: |s this viewer likely
to want to watch this movie”

* Advertising: |s this site visitor likely to want to
purchase this item?

* Churn: |s this member likely to unsubscribe from my
service?

* Personalized Medicine: Is this patient likely to be high
risk and should be prescribed aggressive treatment?

* Social Justice: Is this individual likely to have
committed a crime?



Introduction

* Predictive analysis is the dominant analysis paradigm in
machine learning and used within many decision-making
applications.

* Movie Recommendation system: |s this viewer likely
N want 1o watch this movie”?

Human-Centered Al or Augmented Intelligence:
How can we use data-driven tools to augment
human decision-making?

=1aIToI=X

* Personalized Medicine: Is this patient likely to be high
risk and should be prescribed aggressive treatment?

* Social Justice: Is this individual likely to have
committed a crime?



Introduction

Algorithmic fairness
 Goal:
* Jo make predictions about whether an applicant Is
suitable for a job.

* Why current approaches for predictive analysis fail:
* Retrospective data is effected by societal biases that
we would like to remove from the decision making
Process.
* Predictions should not depend on certain variables
(e.qg. race, gender, income).
 Example: Women may have been less likely to be

CEQOs

- Unintended consequence: Enforcing historical bias



Introduction

Recommendation systems

* Goal:
* Predict how a user will rate an item (e.g. a movie).

* Naive approach: Use retrospective data of items this
user has rated to predict rating.

* Why current approaches for predictive analysis fail:
* Retrospective data is biased by which user was

shown which item, what they tend to rate and so on.

* Users are more likely to rate items they like.

| Average Rating

- Unintended consequence: Certain users are never
exposed to certain movies



Introduction

Medical prognostication
* Goal:
* To predict future outcomes tor a patient given their
medical history.
* Why current approaches for predictive analysis fail:



Use supervised learning for distinguishing patients with AE from those without

Using Adverse Event
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But, inferventions censor the true label.

Using Adverse
Presence of Event Onset
AE as /
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http://link.springer.com/article/10.1007/s10994-015-5527-7

Bias Due to Interventional Confounds

Vary provider practice patterns between train and test:

Scenario || ptan | plram o plest | plest T ogistic Regression

#1 0 0 0 0 0.974

#2 0.1 0 0.1 0 0.978

#3 0.1 0 0 0 0.963

w4 0.3 0 0 0 0.769

#5 0.3 0 0 0.3 0.510 |

/ \ Increasing discrepancy in

Increase probability physician prescription behavior
of treating for rising In train vs. test environment
temperature

Learned risk scores are high sensitive to choice of
treatment practices in the training dataset

Dyagilev et al., Machine Learning 2015


http://link.springer.com/article/10.1007/s10994-015-5527-7

Naive application of predictive tools can give

counterintuitive results

Example: (Caruana et al., KDD, 2015)

e ML method learned that patients with pneumonia with asthma
history have lower mortality risk than the general population.

e This is counterintuitive — patients with asthma history have much
nigher risk if not hospitalized

e Pneumonia patients with asthma history were admitted to the
CU, and the intensive care lowered their risk of dying

If applied naively and without considering clinical context, machine
learning methods may yield counterintuitive predictions and models
with unintended consequences.

Caruana et al., KDD 2015


http://people.dbmi.columbia.edu/noemie/papers/15kdd.pdf
http://people.dbmi.columbia.edu/noemie/papers/15kdd.pdf

Introduction

Medical prognostication
* Goal:
* To predict future outcomes tor a patient given their
medical history.
* Why current approaches for predictive analysis fail:
 Qutcomes In retrospective data are affected by
existing treatment policies and other environmental
characteristics.

E[Y () | H = b

E[Y(R) [ H = h]

E[Y(N) | H = h]

Ol I I == == = = @& = = == = = = =

10
Years Since First Symptom

Unintended consequence: High-risk patients maybe
considered low-risk and miss receiving necessary treatment.



“Causal Predictions”

* Recasting the problem as answering “what if” questions.

 “What it" we gave this patient aggressive treatment versus
not?

* “What it” exposed this user to this movie”

* “What if” we gave this candidate the job?

* How is the above difterent from how we were previously

approaching the problem?

* EXisting predictive analysis techniques are good for
detecting associations.

* “Correlation is not causation”

 “What it" formulation requires more discipline when
learning models —> explicitly reason about factors that
do not generalize from train to deployment.

See for further discussion/motivation: &Y« 1V ETa s =14 1 | 3 11 ] v/



https://arxiv.org/abs/1703.10651

Goals of this tutorial

¢ See example applications to develop a deeper
appreciation for the challenge at hand.

* |ntroduce concepts from causal inference that we will
use as building blocks tor developing solutions

 Describe example approaches that address this
challenge of lack of reliability.

* Revisit applications to illustrate the idea in practice.



Day 1



Formalizing “what if...” - Potential outcomes

* SUPPOSE you are concerned about your blood pressure.
And, you are interested in asking whether to start
exercising so as to manage your blood pressure.

 Formulation 1: “What if” | were to exercise, would it help

manage my blood pressure?
e Formulation 2: What is the effect of exercise on the blood

poressure of individuals like myselt?
e Formulation 3: What is the effect of exercise on blood

pressure’?

Question: Can learning a predictive model from
retrospective data to determine whether to exercise give
the right answer?



Formalizing “what if...” - Potential outcomes

* SUPPOSE you are concerned about your blood pressure.
And, you are interested in asking whether to start
exercising so as to manage your blood pressure.

 Formulation 1: “What if” | were to exercise, would it help

manage my blood pressure?
e Formulation 2: What is the effect of exercise on the blood

poressure of individuals like myselt?
e Formulation 3: What is the effect of exercise on blood

pressure’?

Question: Can learning a predictive model from
retrospective data to determine whether to exercise give
the right answer?

Answer: Depends...



Formalizing “what if...” - Potential outcomes

o Formulation 3: What is the effect of exercise on blood pressure?

 The causal effect of exercise on blood pressure (BP).
o Exercise Is called our treatment and denoted as A

e BP Is called our outcome and denoted as Y

 Qur goal is to estimate effect from a retrospective dataset. In
causal inference, retrospective data are also called observational
data because the learner only gets to observe but cannot control
the data collection protocol. Analysis from retrospective data is
significantly more challenging than a prospectively collected
dataset because one cannot proactively design the collection
protocol to remove biases that complicate the analyses.



Example: Exercise and Blood Pressure

- A = EXxercise

-+ Y = Blood pressure (BP)
- X = Body mass index (BMI)
- Question: What is the effect of exercise on BP?

- Approach: Grab an existing dataset and average the BP among
people who exercise and those who don’t to estimate effect

- |Is the resulting effect correct?

- Depends... requires understanding the data generating
mechanism.



Scenario #1: Observational Data w/ selection bias

- Dataset generative model:

1
Exerc ~ Bern ( )
1+ e—QwBMI

rmr ~ N(0,1) @.@ YBP NN (xBmr, 0.4) — 0.8 - Exerc




Scenario #1: Observational Data w/ selection bias

If we estimate the causal effect of exercise on BP by
simply averaging (i.e. ignoring BMI) BP in both
treatment groups, we get the wrong answer! Why?

1
Exerc ~ Bern ( )
1+ e—QwBMI

zpmr ~ N (0, 1) @.@ ysp ~ N (xBmr, 0.4)(—

Effect Estimate: 0 29

N——"

8 Exercz

3S7v4

Exercise

aNdl



Scenario #2: Randomized Controlled Trial (RCT)

* \What happens if we assigned subjects randomly
to the exercise and non-exercise arm.

Dataset generative model:

@ Exerc ~ Bern(0.5)
TBMI N(O, 1) @ @ ypp ~~ N(QZBMI, 0.4) — 0.8 - Exerc



Scenario #2: Randomized Controlled Trial (RCT)

- Dataset generative model:

@ Exerc ~ Bern(0.5)
rpmr ~ N (0, 1) @ @ yep ~ N (zpwm1, 0.4) 0.8 - Exerc)

Exercise
© FALSE

¢ TRUE




Scenario #2: Randomized Controlled Trial (RCT)

- Dataset generative model:

@ Exerc ~ Bern(0.5)
rem1 ~ N(0,1) @ @ yep ~ N (zpwm1, 0.4) 0.8 - Exerc)

- Now computing simple averages will work! Why?

- Effect Estimate: -0.79

3S7v4

Exercise

aNdLl




What is a confounder?
A confounder is any covariate that has a causal effect
on both the treatment and outcome.

In scenario #1, BMI serves as a confounder.
Individuals assigned to the exercise vs not-exercise

arm are not similar: individuals in the exercise arm tend
to have higher BMI. This needs to be adjusted for.

1
Exerc ~ Bern ( )
1+ e 2%ZBMI

M1 ~ N (0, 1) @.@ ygp ~ N (xMmr, 0.4) — 0.8 - Exerc

Data Generating Model for Scenario #1



Core assumptions: No unobserved confounders

* |n order to correctly infer causal effect from an
observational dataset, we must assume that all
confounders are observed i.e. there should be no
unobserved confounding.
 \We need to adjust for observed confounders (we will

discuss shortly).
e |f there are unobserved confounders, it may not be
possible to estimate the correct ettect using the

orovided retrospective dataset alone. That is, the effect
'S not identifiable.

 Another presentation commonly used: each potential
outcome is independent of treatment assignment given
the features (revisit using SWIGs time-permitting):

a
Y¢ L A|X
Rubin, 1974 @ Neyman et al., 1923 @ Rubin, 2005



http://psycnet.apa.org/journals/edu/66/5/688/
http://projecteuclid.org/euclid.ss/1177012031
http://amstat.tandfonline.com/doi/abs/10.1198/016214504000001880

Other assumptions for identifiability: Positivity

* Every subject has non-zero probability of
recelving every treatment:

PA=a|X=x)>0forall xand a

 Example: It people above or be
BMI never exercise, then we ca

about the effect of exerci

Rubin, 1974 @ Neyman et al., 1923 @ Rubin, 2005

Se ont
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http://psycnet.apa.org/journals/edu/66/5/688/
http://projecteuclid.org/euclid.ss/1177012031
http://amstat.tandfonline.com/doi/abs/10.1198/016214504000001880

Other assumptions for identifiability: Consistency

e |f the observed treatment Is a, then the
observed outcome Y Is equal to the potential
outcome for treatment a:

fA=athenY¢=Y

* |n other words, had you intervened and administered A=a,
the outcome observed In the data is what you would have
observed.

e Common-senselssues to consider: It there are multiple ways
to deliver treatment (e.g. running, weight lifting, or multiple
doses or administration modalities), we need a clear definition
for what it means to administer treatment. Further, the
outcome of interest is being recorded correctly in the data.

Rubin, 1974 @ Neyman et al., 1923 @ Rubin, 2005



http://psycnet.apa.org/journals/edu/66/5/688/
http://projecteuclid.org/euclid.ss/1177012031
http://amstat.tandfonline.com/doi/abs/10.1198/016214504000001880

Randomized trials - Assumptions

* Let's recap how the RCT satisfies our assumptions

 Consistency: treatment must be well defined since it is
being administered

* Positivity: Each subject has non-zero probability of being
assigned to each treatment arm by construction

 No unobserved confounders: The choice of which arm

the individual is assigned to—e.g., treatment vs no

treatment—iIs randomized and independent of covariates

that affect the potential outcome. Therefore, there are no

paths from treatment to the potential outcome via

confounders. In other words,

Y¢ 1 A|X




Observational Data vs. RCT

 Randomized trials may be impossible for many reasons:

e Ethical e.g. high risk of harm

e Hard/impossible to intervene e.g. genetics

* Impractical size requirements e.g. rare side effects

* |n many cases we can collect observational data easily.

But can we infer the desired causal effects”

* Yes, only when certain assumptions about the data
hold (e.qg, positivity, no unmeasured confounding
(NUQ)).

 Assumptions are not always testable from data

 No escape: Must rely on domain knowledge




Exercise: Movie recommendation

* You're netflix. Your goal is to determine: it you recommend a
movie to a user, does that influence their probability of
watching the movie.

e Extract retrospective data of individuals. Collect those to
whom movie M was recommended versus those without.
Compute differences in viewing rates.

« Will this analysis produce the right answer?



Causal inference in observational data

 Coming back to our exercise example:

1
Exerc ~ Bern ( )
1+ @—QZIJBMI

reyvr ~ N(0,1) @.@ yBPNNxBMI 0.4) — 0.8 - Exerc

 \We assume that BMI is our only confounder, but how
do we account for it in our effect estimates?
 Many candidate methods, we will talk about three:
* Matching/stratification
* Weighting
« Standardization/Potential Outcomes




Observed confounders: Matching

NoO exercise Exercise

Throughout, slides borrowed from or -
inspired by are denoted with this ref BalkatbCiUleCIMELEEARL)

Stuart (2010)


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943670/pdf/nihms200640.pdf
https://causalinference.gitlab.io/kdd-tutorial/

Observed confounders: Matching

L) R:R
O

=B
=i

Sharma and Kiciman (2018)

Stuart (2010)


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943670/pdf/nihms200640.pdf
https://causalinference.gitlab.io/kdd-tutorial/

Observed confounders: Matching

e |dentity pairs of treated and ® o

untreated individuals who are
very similar or even identical to y
each other:

Very similar ::= Distance(x;, x;) < €

* Paired individuals provide the counterfactual estimate

for each other.
* Average the difference in outcomes within pairs to
estimate the additive treatment effect.

Sharma and Kiciman (2018)

Stuart (2010)



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943670/pdf/nihms200640.pdf
https://causalinference.gitlab.io/kdd-tutorial/

Observed confounders: Matching

Exact matching:

0 Ly — Ly

Distance(x;,x;) = {
00 T F T,

e Use in low dimensional cases with discrete features

e [ails in high dimensions

Sharma and Kiciman (2018)

Stuart (2010)


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943670/pdf/nihms200640.pdf
https://causalinference.gitlab.io/kdd-tutorial/

Observed confounders: Matching

Mahalanobis distance: *—

Distance(x,-, XJ) — \/ (Xi — Xj)TS _1(xi - xj)

* Sis the feature covariance matrix

* Accounts for unit differences by
normalizing each dimension by
its standard deviation

Sharma and Kiciman (2018)

Stuart (2010)


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943670/pdf/nihms200640.pdf
https://causalinference.gitlab.io/kdd-tutorial/

Observed confounders: Matching

* Question: What happens if we include features that
have little effect on the treatment”

 Answer: We may include or exclude pairs based on
irrelevant information. Incomplete covariate set will
produce incorrect results.

* Propensity score matching allows us to focus on the
features that determine treatment assignment

* A propensity score is an individuals probability of
freatment:

e(x) =PA=1|X=x)
Stuart (2010)

Stuart (2010)



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943670/pdf/nihms200640.pdf
https://causalinference.gitlab.io/kdd-tutorial/

Observed confounders: Matching

* Propensity scores break the path between features and
treatment. That Is,

A 1 X|e(X)
o Graphically,

(4
By F

e EXceptin rare cases, propensity scores are modeled or

estimated

Stuart (2010)


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943670/pdf/nihms200640.pdf
https://causalinference.gitlab.io/kdd-tutorial/

Observed confounders: Matching

Propensity score matching:
1. Estimate e(X) using supervised learning
* Conventionally, logistic regression is used, but other

models are fine...

 But, the score must be well-calibrated. That is, it is

more important to correctly estimate the probability of
treatment than to achieve the highest possible
accuracy.

2. Distance is the difference between the propensity

SCOres:

Distance(x;, x;) = | e(x;) — e(x;) |

Sharma and Kiciman (2018)

Stuart (2010)



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943670/pdf/nihms200640.pdf
https://causalinference.gitlab.io/kdd-tutorial/

Observed confounders: Matching

* Question: What is my propensity scores are not
accurate” (i.e. we can't distinguish treated and
untreated)

* Answer: That's ok. The role of the propensity score is to
balance covariates, not predict treatment.

* Question: What is my propensity scores are very
accurate” (i.e. we can distinguish treated and untreated)
* Answer: This implies a potential positivity violation. Any
effect we observe could be due to either the treatment or
the correlated covariates.
* Don’t dumb down your model or exclude features.

Sharma and Kiciman (2018)

Stuart (2010)



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943670/pdf/nihms200640.pdf
https://causalinference.gitlab.io/kdd-tutorial/

Observed confounders: Matching

 Feature matching vs propensity score matching:
* Feature matching requires specifying a distance,
while propensity score matching requires a model.
 Both may introduce bias.

Sharma and Kiciman (2018)

Stuart (2010)


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943670/pdf/nihms200640.pdf
https://causalinference.gitlab.io/kdd-tutorial/

Observed confounders: Stratification

NoO exercise Exercise

Sharma and Kiciman (2018)


https://causalinference.gitlab.io/kdd-tutorial/

Observed confounders: Stratification

XXX YIS X °% |

?

fAR AR

NoO exercise Exercise

Sharma and Kiciman (2018)


https://causalinference.gitlab.io/kdd-tutorial/

Observed confounders: Stratification

 Matching individuals generalizes into matching
subpopulations

o Stratification identifies subpopulations with similar
covariate distributions

e Question: How do we pick strata”?

e Strata shou
e Fach stratu

d have equal sizes
M should contain enough examples to

reliably estl

mate treatment effect within it

Sharma and Kiciman (2018)


https://causalinference.gitlab.io/kdd-tutorial/

Observed confounders: Stratification

Propensity score stratification:

1. Estimate propensity score
2. Split sample into equal-sized groups based on

propensity scores
3. Calculate treatment effect as the average of within strata

treatment effects Propensity = 0.0

FEPFFEFEF 2 54

LXK X X SE S 5N N |

a 4
- v -

iid Ad.RoRofoR

Sharma and Kiciman (2018) Propensity = 1.0



https://causalinference.gitlab.io/kdd-tutorial/

Observed confounders: Weighting

* Intuition: Count an individual more if she was unlikely to
receive treatment (probabillity is low —> weight is high)
and vice versa

* Use case: \When we know (or can estimate) the
probability of treatment P(A|X)

- Inverse Probability Weighted Estimator (IPWE):

l[Cl _a]yl
P(A =a;| X = x))

//t weight —

 Assumption: The estimated treatment model is correct
* Warning: Has high variance when probability of
treatment estimates are close to zero or one

Hernan and Robins (2018)


https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/

Observed confounders: Weighting

Exercise example:

1
Exerc ~ Bern ( >
1+ e—2TBMI

@‘@

N——"

Exerc

Effect Estimate: 0.29

eighted Effect Estimate: -0.90 |

60 -
40 ' ; E

w 0

m m
20-

Exercise
0 . FALSE

60 - . TRUE
40~ = =

2 2

m m

20 -




Observed confounders: Potential Outcomes

- To formalize, define two distinct random variables:
- Y(a) : blood pressure with exercise
+ Y(b) : blood pressure without exercise

-+ More generally, we can index a set of random variables
using a set of actions/treatments:

{Y(a):ae€ A}
- Offers a way to reason about counterfactuals.

-+ Goal: learn statistical models to estimate potential
outcomes



Potential Outcomes: Use models to adjust for
bias

+ Assume models of potential outcomes given covariates

{P(Y(a) | X=x):a € A}
- We can use them to adjust for bias in observational data

- Key idea: use models to “simulate” an RCT

Rubin 1977 gl Robins 1986


http://jeb.sagepub.com/content/2/1/1.short
http://www.sciencedirect.com/science/article/pii/0270025586900886

Recall: Critical Assumptions

+ To learn the potential outcome models, we will use three
important assumptions:

+ (1) Consistency

- Links observed outcomes to potential outcomes
+ (2) Treatment Positivity

-+ Ensures that we can learn potential outcome models
- (3) No unmeasured confounders (NUC)

- Ensures that we do not learn biased models



Potential Outcomes: Learning models from data

- To simulate data from a new policy, we need to learn the
potential outcome models

- |f we have an observational dataset where
assumptions 1-3 hold, then this is possible!

+  Assumptions allow estimation of potential outcomes from
(observational) data:

PY(a)| X=x)=PY(a) | X=x,A=a) (A3)
=P(Y | X=x,A=a) | (A1)

/

Estimation requires a statistical model for estimating conditionals




Exercise and Blood Pressure

- Returning to our exercise and blood pressure example

- We fit a model for blood pressure given exercise and BMI

- With estimated models, treatment effects are estimated

as.

Effect Estimate: 0.29

60 -

40 -

20-

60 -

40-

3S1v4

andL

“Simulated Effect Estimate: -0.87

3S7vA
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Choosing a method

* Question: All three methods allow us to account for
the effect of observed confounders, so which one
should you use”

- Answer: Depends on the problem.

- Assuming correct models all three are equivalent, but
models are always wrong.

If you have more confidence in one model over
another, then you should use the corresponding
method.



Choosing a method

e Question: But what if I'm not sure which model is
best”

 Answer: Use all three and compare the results. It all
three methods result in similar effect estimates, then
this gives you further evidence that your models are
(approximately) correct.

e |f the methods disagree, then you have bias
somewhere and need to think more carefully about
your models.

* Thisis an example of sensitivity analysis (more on
this later).

Hernan and Robins (2018)


https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/

Doubly robust estimation

 Both IPWE and standardization require specitying
models and both methods can fail if the models are
misspecified.

 Doubly robust (DR) methods combine both

approaches.
* |f either the propensity score model or the outcome

model are correct, DR will be correct.




Doubly robust estimation

1. Estimate a propensity model:  €(x)
2. Estimate an outcome model: E[Y\A, X]

3. Combine as:

1 1 . — . 1 . = — e(x. A
//th=;2( [az a]yz [az CZ] e(XZ)E[Y‘A=Cl,X=Xi]>

e(x;) e(x;)

e |f either model is correct, then DR Is correct

* |f both models are wrong, then DR may be more

biased than either individually



https://www4.stat.ncsu.edu/~davidian/double.pdf

Doubly robust estimation

 Why does it work?
* By the law of large numbers, 7, estimates:

E

« S0, if the term on the right goes to zero, then ppy is a
consistent (correct in expectation) estimator.

 We will show this for both cases: when the propensity
model Is correct or the outcome model is correct.

Davidian (2017)


https://www4.stat.ncsu.edu/~davidian/double.pdf

Doubly robust estimation
e First, assume e(x) =P(T'=al|X =x), then:

1[A = a] — &(X)

(X

1[A = a]|Y®, X]| — &(X)
e(X)

— e(X)

(Y* — E[Y|A = q, X])_

(Y* — E[Y|A = q, X])_

(Y¢ — E[Y|A = q, X])_

— F (Xé_ (X)(Y“—E[Y\A:a,X])_ = ()

Davidian (2017)


https://www4.stat.ncsu.edu/~davidian/double.pdf

Doubly robust estimation

« Next, assume E[Y|A = a,X] = E[Y|A = q, X], then:

1[A=a]—-e(X) ., 7 . )
E| s (V" = E[Y|A = o, X]) |
_p A :ég(_ “X) Bivaia, x| - BIY|A = a. X))
A =d—éX), ol o
— F (X (ElY*|X]|—FEY |X])_ =0

e S0, the DR estimator is correct if either the treatment or
outcome model IS correct.

Davidian (2017)


https://www4.stat.ncsu.edu/~davidian/double.pdf

Cond

e SO
of

itional causal inference

metimes we want to reason about the causal effect

treatment A on outcome Y within a subpopulation

defined by X.

e Ex
for

LBMI

ample: Does exercise have a ditferent effect on BP
people with high BMI versus people with low BMI?

@ Exerc ~ Bern(0.5)
~ N(0,1) @ @ YBP ™~ N(xBMI, 0.4) — 0.8 - Exerc

True




Conditional causal inference

Qur primary quantities of interest generalize to the case
where we want to condition on a subset of features X°:

» Conditional expected outcome;: Hernan and Robins (2018)
E[Y?|X]
« Conditional additive treatment effect:
/
d C d C
E|Y'|X| - E|Y"|X°
« Conditional relative treatment effect:

E|[Y*|X|/E|Y"|X¢]



https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/

Conditional causal inference

Example: Does exercise have a different effect on BP
for people with high BMI versus people with low BMI?
* Data generated by an RCT

@ Exerc ~ Bern(0.5)
rpmr ~ N(0,1) @ @ yp ~ N (zBMI,0.4) — 0.8 - Exerc \

* Conditional expected outcomes are functions of X

0.5 - Exerc - QBBMI

True
False




Conditional causal inference

o Similarly, the methods for handling observed
confounders also generalize.

 Example: Standardization / Marginalizing w.r.t. inputs
INnto the potential outcome model.

ue =;;E[Y‘A=G,X =x°, X =xl.]

stand

* X" Is the vector of features we are not conditioning on.
e All methods may now require an outcome model:

E [Y\A =a, X" = xc]

Hernan and Robins (2018)


https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/

Example Machine Learning applications...

* A few examples of applying the above methods to
challenging decision-making applications...



Example Machine Learning applications...

* Application: Recommendation systems
 Treatment: Recommending a specific item.
 Outcome: If a user click on or buys the item.
« Why is it complex?
« Recommendation typically performed using matrix
factorization.
 [he data is generated using an existing
recommendation algorithm.

Causal Inference for Recommendation

Dawen Liang Laurent Charlin David M. Blei
Columbia University HEC Montréal Columbia University
dliang@ee.columbia.edu laurent.charlin@hec.ca david.blei@columbia.edu



Example Machine Learning applications...

* Application: Selecting and placing ads.
 Treatment: Ad choice and placement.
e Outcome: Whether a user clicks an ad.
« Why is it complex?
* [reatment involves
e Covariates include complex structures such as
search histories, text from emails/social media, etc.
* Decision making context evolves over time.

Counterfactual Reasoning and Learning Systems

Léon Bottou
LEON@BOTTOU.ORG
Microsoft Research, Redmond, WA.

Jonas Peters'
JONAS.PETERSQTUEBINGEN.MPG.DE
Maz Planck Institute, Tiubingen.

Joaquin Quinonero-Candela,*! Denis X. Charles,” D. Max Chickering,’
Elon Portugaly,” Dipankar Ray,® Patrice Simard,’ Ed Snelson®

“ Microsoft Cambridge, UK.

b Microsoft Research, Redmond, WA.

1CT0S0 nline Services Division ellevue .
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Example Machine Learning applications...

 Application: Making medical treatment decisions.
 Treatment: Type and timing of medications.
 Outcome: Physiologic state.
« Why is it complex?
* Both the timing and type of treatment matters.
 The data is generated under a specific treatment
plan, but inferences should generalize.

Reliable Decision Support using
Counterfactual Models

Peter Schulam Suchi Saria
Department of Computer Science Department of Computer Science
Johns Hopkins University Johns Hopkins University
Baltimore, MD 21211 Baltimore, MD 21211

pschulam@cs. jhu.edu ssaria@cs. jhu.edu



Testing your assumptions: Sensitivity analysis

Remember, we can use the previous methods on any
data.

Only our assumptions allow us to interpret the results as
causal effects.

It is critical to verity our assumptions.

Sensitivity analysis allows us to falsity our assumptions.
Basic idea: Modity the data in a way that should have
poredictable eftects, then test whether the results match
our expectations.




Testing your assumptions: Sensitivity analysis

* Potential problem: Overfitting our features
e Test: Add in random observed features.

Assumption Reality

(X, ©
(W W—®

- What assumption is wrong?
e That X is a confounder
- What do we expect?
* Our effect estimates should not change significantly.
It It does, we are overtfitting to the data.

Sharma and Kiciman (2018)


https://causalinference.gitlab.io/kdd-tutorial/

Testing your assumptions: Sensitivity analysis

* Potential problem: Overfitting to variation in the outcome
* Test: Replace the outcome with a placebo.

Assumption Reality

- What assumption is being violated?
 That 4 has a causal effecton Y
- What do we expect?

* No causal effect detected. If we did detect an effect,

the result suggests that we are overfitting to variation in
the outcome.

Sharma and Kiciman (2018)


https://causalinference.gitlab.io/kdd-tutorial/

Testing your assumptions: Sensitivity analysis

* Potential problem: Sensitivity to the particular
sample.

 Test: Re-run analysis on random bootstrap samples
of the data

* [his Is a change in the sample, not the underlying
model

- What do we expect?
 Small changes to the effect estimate. Large

variation implies wide confidence intervals.

Sharma and Kiciman (2018)


https://causalinference.gitlab.io/kdd-tutorial/

Testing your assumptions: Sensitivity analysis

* Potential problem: Unobserved confounder
 Test: Add synthetic unobserved confounders and
vary their causal effect on A and Y.

Assumption Reality

~ .
-~ -
T

Q e : :" @

- What assumption is wrong?
e No unobserved confounders

Rosenbaum (2002) Carnegie, Harada, and Hill (2016)


https://www.tandfonline.com/doi/pdf/10.1080/19345747.2015.1078862

Testing your assumptions: Sensitivity analysis
e | et r4 be a measure of the effect size of U on A.
e | et ry be a measure of the effect size of U on Y.

e 74 and ty will often be regression coefficients.

e Basic idea:
e For different values of 4 and ry:

1. Simulate a confounder with these effect sizes.
2. Rerun your analysis, now including U as a
confounder in the model.
3. Check if A still has a causal effecton Y.
* Qutput: Minimum possible effect sizes for U that lead
to no causal effectofAon Y
* The specitics of simulating U will depend on the form of
the outcome model, E[Y | A, X].

Rosenbaum (2002)

Carnegie, Harada, and Hill (2016)


https://www.tandfonline.com/doi/pdf/10.1080/19345747.2015.1078862

Testing your assumptions: Sensitivity analysis

Example:

Demographics
-~

Cornwell (1959) showed that the effect of Genes had
to be 8 tlmes that of any known confounder for the
effect to go to zero.

------------
e” ~

Cornwell (1959)

Sharma and Kiciman (2018)


https://causalinference.gitlab.io/kdd-tutorial/

Natural experiments

 What can we do it we can’t run a trial and we can't
assume NUC?
e Sometimes, we can find observational data that
approximates an experiment. This is called a natural
experiment.
 Example: The Oregon insurance experiment
* Oregon’s Medicaid expansion was administered by
lottery

 Equivalent to a RCT for the effects of receiving
Medicaid

* Perfect natural randomization like this is uncommon

Baiker et al. (2013)


https://www.nejm.org/doi/full/10.1056/nejmsa1212321

Natural experiments: Instrumental variables

* This idea can be formalized using instrumental
variables (IVs)

e |[\Vs have a causal effect on the treatment that allows us
to emulate an RCT
* |\V/s must satisty two assumptions:

1. As-if-random: the IV must not be effected by
unobserved confounders

2. Exclusion: the IV cannot effect the outcome except
through the treatment

As-if-random

Exclusion

Sharma and Kiciman (2018)


https://causalinference.gitlab.io/kdd-tutorial/
http://ftp.cs.ucla.edu/pub/stat_ser/r350.pdf

Natural experiments: Instrumental variables

 Example: The Oregon insurance experiment
* |n this case, assignment in the lottery Is the
iInstrumental variable.
e [t trivially satisfies both as-if-random and exclusion
assumptions because it was completely random.

As-if-random — x

Exclusion

\ Baiker et al. (2013)


https://www.nejm.org/doi/full/10.1056/nejmsa1212321

Natural experiments: Regression discontinuity

* One particularly common kind type of |V is called a
regression discontinuity.

 Regression discontinuities happen when an arbitrary
threshold is used to determine the treatment variable.

o Samples just above and just below the threshold are
assumed to be equivalent, except for the treatment.

« Example: Families above a certain iIncome receive
health insurance.

e [he difference between being above vs. below the
threshold is assumed to be so small that it Is caused by
natural variation (as-if-random) and it does not effect the
outcome (exclusion).

Sharma and Kiciman (2018)


https://causalinference.gitlab.io/kdd-tutorial/

Takeaways

 Many decision support applications employ predictive
ﬂodelmg but we're currently ignoring fundamental
ISsues assoclated with undesirable biases in the
earned models—> this leads to poor decisions
 Reformulate as “what-if” questions

» Challenges associated w/ answering “what-if” questions
from retrospective data
* A tew simple methods for estimating causal effects
o A tfew simple tricks for testing whether your estimates
are good and understand conditions under which you
can estimate causal effect
 Understand what a potential outcome model is
 Next: we will use these principles to tackle machine
learning applications of prediction and decision support



Day 2



Takeaways from Day 1

Many decision support applications employ predictive
modeling but we're currently ignoring fundamental
ISsues assoclated with undesirable biases in the
earned models—> this leads to poor decisions
Reformulate as “what-it” guestions

Challenges associated w/ answering “what-if” questions

from retrospective data

* A tew simple methods for estimating causal effects

o A tfew simple tricks for testing whether your estimates
are good and understand conditions under which you
can estimate causal effect

 Understand what a potential outcome model is

Next: we will use these principles to tackle machine

learning applications of prediction and decision support



 When learning from retrospective datasets, models may encode unintended dataset-
specific biases that hurts quality of decision-making at test time. For example, the model
may learn relationships that are unstable—associations that exist in the training data but
do not hold and change at test time.

e See examples (e.q., policy creep, domain-dependent confounding, selection bias)

* See how knowledge of the data generating process (i.e. causal DAG) allows
us to explicitly reason about scenarios under which we can learn stable
models. Can we identify relationships that are stable and only learn these”

* Deep dive: Potential outcome models for what-if reasoning over temporal
trajectories —> learns relationships between predictors and outcome that are
stable across environments. Requires certain assumptions to hold.

 Deep dive: Feature augmentation procedure that identifies and learns
relationships that are stable. Applicable in settings with unmeasured
confounding. Requires certain other assumptions to hold.

* Broadly, frame generalization in terms of differences in the data generating
process across environments.

Subbaswamy and Saria, UAI 2018


https://arxiv.org/pdf/1808.03253.pdf

Example Machine Learning applications...

* A few examples of applying the above methods to
challenging decision-making applications...



Example Machine Learning applications...

* Application: Recommendation systems
 Treatment: Recommending a specific item.
 Outcome: If a user click on or buys the item.
« Why is it complex?
« Recommendation typically performed using matrix
factorization.
 [he data is generated using an existing
recommendation algorithm.

Causal Inference for Recommendation

Dawen Liang Laurent Charlin David M. Blei
Columbia University HEC Montréal Columbia University
dliang@ee.columbia.edu laurent.charlin@hec.ca david.blei@columbia.edu



Example Machine Learning applications...

* Application: Selecting and placing ads.
 Treatment: Ad choice and placement.
e Outcome: Whether a user clicks an ad.
« Why is it complex?
* [reatment involves
e Covariates include complex structures such as
search histories, text from emails/social media, etc.
* Decision making context evolves over time.

Counterfactual Reasoning and Learning Systems
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Example Machine Learning applications...

 Application: Making medical treatment decisions.
 Treatment: Type and timing of medications.
 Outcome: Physiologic state.
« Why is it complex?
* Both the timing and type of treatment matters.
 The data is generated under a specific treatment
plan, but inferences should generalize.

Reliable Decision Support using
Counterfactual Models

Peter Schulam Suchi Saria
Department of Computer Science Department of Computer Science
Johns Hopkins University Johns Hopkins University
Baltimore, MD 21211 Baltimore, MD 21211

pschulam@cs. jhu.edu ssaria@cs. jhu.edu



Deep Dive: Risk Prediction
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Mortality Risk Prediction as a Supervised
Learning Task:

24 hour 24 hour

HeartRate\‘ GCS Respiratory Rate HeartRate\‘ GCS Respiratory Rate
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« Unreliable risk estimates leading to patient harm



|s this patient at risk?
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|s this patient at risk?

- -

Temperature
Heart Rate

Models trained on two different datasets, gives different
contradicting risk estimates for the same patient.

Dataset D A Dataset D B

3 3



|s this patient at risk?
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Models trained on two different datasets, gives different
contradicting risk estimates for the same patient.
- Are the populations different? No.
- Maybe overfitting? No.
- Do the features make sense? Yes.

3 \3




Mortality Risk Prediction as a Supervised
Learning Task:

QOutcome influenced by factors that
varies across data and are currently
not controlled for

24 hour




|s this patient at risk?
i B o

Naive approach suffers from “Policy
Creep”: learns policy-dependent
relationships between variables that do
not generalize when the policy changes.

v

Unsafe & Unreliable Decisions

A ( ) Schulam and Saria, NIPS 2017

Dyagilev and Saria, Machine Learning 2015


https://arxiv.org/abs/1703.10651v3
http://link.springer.com/article/10.1007/s10994-015-5527-7

Potential Outcomes:
Simulating an experiment

Random variable

:
[P(Y(a)| X):ac A

Create a model of the target outcome
for each possible action



Learning from data w/ non-
random action assignment

@ Exerc ~ Bern < ! )
1 + e—27BMI
LBMI "~ N(O, 1) @ @ Yypp ~~ N(xBMI, 0.4) — 0.8 - Exerc

e (Goal: Learn outcome under exercise / no-exercise.

e EXxplicitly understand and state your sources of
confounding and see if these can be adjusted for



Review: Assumptions

- To learn potential outcome models, recall that we will use
three important assumptions:

+ (1) Consistency

- Links observed outcomes to potential outcomes
+ (2) Treatment Positivity

-+ Ensures that we can learn potential outcome models
- (3) No unmeasured confounders (NUC)

- Ensures that we do not learn biased models

Rubin, 1974 g Neyman et al., 1923 g Rubin, 2005



http://psycnet.apa.org/journals/edu/66/5/688/
http://projecteuclid.org/euclid.ss/1177012031
http://amstat.tandfonline.com/doi/abs/10.1198/016214504000001880

(1) Consistency

- Consider a dataset containing observed outcomes,
observed treatments, and covariates:

(4’
{?/7;7 Uiy Xjpi—1
- E.g.: blood pressure, exercise, BMI

- Consistency allows us to replace the observed response
with the potential outcome of the observed treatment

Y2Y(a)| A=a

- Under consistency our dataset satisfies

{yiaaiaxi}?:1 = {yi(az),&z‘,Xi ?’:1



(2) Positivity

- When working with observational data, for any set of
covariates X we need to assume a non-zero
probability of seeing each treatment

-+ Otherwise, in general, cannot learn a conditional model
of the potential outcomes given those covariates

-+ Formally, we assume that

Pops(A=a | X =x)>0 Vaec A, Vxe X



(3) No Unmeasured Confounders (NUC)

- Formally, NUC is an statistical independence assertion:
Y(a) LA| X=x : Vae A, Vxe X




Potential Outcomes: Learning models from data

- To simulate data from a new policy, we need to learn the
potential outcome models

- |f we have an observational dataset where
assumptions 1-3 hold, then this is possible!

+  Assumptions allow estimation of potential outcomes from
(observational) data:

PY(a)| X=x)=PY(a) | X=x,A=a) (A3)
=P(Y | X=x,A=a) | (A1)

/

Estimation requires a statistical model for estimating conditionals




Using Potential Outcomes Framework to

Simulate RCT (e.g., 1-time step)

- Our observational data is drawn from

Q = P(X)Pops(A | x)P(Y | a,x) = P(X)Pobs(A4 | x}P(Y (a) | x)

- We want experimental data drawn from

P £ P(X)Prxp(A)P(Y | a,x) = P(X)Ppxp(A)P(Y(a) | x)
- If we know potential outcome models:

- Draw from empirical covariate distribution: X ~ {x;}>* ,

- Flip fair coin to assign treatment: A ~ Bern(0.5)

- Simulate outcome from model: P(Y (a) | X = x)



Potential Outcomes in
Sequential Setting

T @ @
@

green = generalizes across datasets
red = changes across data

Can you extend idea on previous slide to this sequential setting”

Robins 1986 f Robins and Hernan 1990



http://www.sciencedirect.com/science/article/pii/0270025586900886
https://cdn1.sph.harvard.edu/wp-content/uploads/sites/1268/2013/01/RobinsHernan_Chapter_23.pdf

Returning to our example: Mortality Risk Prediction

P({Y328>t}‘7'[t)

24 hour

Schulam and Saria, NIPS 2017



https://arxiv.org/abs/1703.10651v3

Related Work

Potential outcomes
framework

ads; single intervention

epidemiology; multiple sequential
- -
Interventions

sparse, irregularly sampled
longitudinal data; functional outcomes

Off-policy evaluation: Re-weighting to evaluate reward
for a policy when learning from offline data.

e_g B Dudik et al., 201 | Jiang and Li, 2016 Paduraru et al. 2013

For detailed discussion of related work, see


https://arxiv.org/abs/1103.4601
http://proceedings.mlr.press/v24/paduraru12a/paduraru12a.pdf
http://jmlr.org/proceedings/papers/v48/jiang16.pdf
http://biomet.oxfordjournals.org/content/70/1/41.short
https://arxiv.org/abs/1209.2355
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786249/
https://arxiv.org/abs/1608.05182
https://arxiv.org/pdf/1703.10651.pdf
http://www.sciencedirect.com/science/article/pii/0270025586900886
https://channel9.msdn.com/Events/Neural-Information-Processing-Systems-Conference/Neural-Information-Processing-Systems-Conference-NIPS-2016/ML-Foundations-and-Methods-for-Precision-Medicine-and-Healthcare
https://cdn1.sph.harvard.edu/wp-content/uploads/sites/1268/2013/01/RobinsHernan_Chapter_23.pdf
http://amstat.tandfonline.com/doi/abs/10.1198/016214504000001880

Desiderata: Forecast “what-if” trajectories given
history for different candidate interventions
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https://arxiv.org/abs/1703.10651v3

Lung Capacity

Counterfactual GP
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https://arxiv.org/abs/1703.10651v3

Lung Capacity
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https://arxiv.org/abs/1703.10651v3

Develop potential outcome model tor

observational Longitudinal Traces

N
i

o e . ‘e
1 * 9 o
.\Mf’:cno

| Challenge: Timing betweer

measurements is
irregular and random

~ Creatinine is a test used to measure kidney function.

o

Creatinine Concentration
|

I

0 100 200 300 400 500

Hours
Schulam and Saria, NIPS 2017



https://arxiv.org/abs/1703.10651v3

Observational Longitudinal Traces
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Schulam and Saria, NIPS 2017



https://arxiv.org/abs/1703.10651v3

Observational Longitudinal Traces

N
i

(

In the discrete-time setting,
we did not treat the timing of

events as random
0 100 200 300 400 500

Hours
Schulam and Saria, NIPS 2017
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https://arxiv.org/abs/1703.10651v3

Observational Longitudinal Traces
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https://arxiv.org/abs/1703.10651v3

Learning Models from Olbservational Traces

D= {h’i — {(t?% Yigs a”ij)}?;1}

- (1) Posit probabilistic model of observational traces

Tre

1=1

Posit a model for when a measurement is made or
actions are taken and what the value of the
measurements and actions are.

+ (2) Derive maximum likelihood estimator

- (3) Establish assumptions that connect probabilistic of
observational traces to target counterfactual model

P({Ysla]: s >t} | Hy)

Schulam and Saria, NIPS 2017


https://arxiv.org/abs/1703.10651

Modeling Observational Traces

e We use a marked point process (MPP):
O
TG, X5) 2y
e Points model the event times: measurements or actions

e Mark models the type of event

X =(RuU{g}) x(Cu{g}) x{0,1} x{0,1}



Modeling Observational Traces

e We use a marked point process (MPP):
O
TG, X5) 2y
e Points model the event times: measurements or actions

e Mark models the type of event

X =(RuU{g}) x(Cu{g}) x{0,1} x{0,1}

/

Did we measure an outcome?



Modeling Observational Traces

e We use a marked point process (MPP):
O
TG, X5) 2y
e Points model the event times: measurements or actions

e Mark models the type of event

X =(RuU{g}) x(Cu{g}) x{0,1} x{0,1}

/

Did we take an action?



Modeling Observational Traces

e We use a marked point process (MPP):
O
TG, X5) 2y
e Points model the event times: measurements or actions

e Mark models the type of event

X =(RuU{g}) x(Cu{g}) x{0,1} x{0,1}

/y

What is the value of the outcome?



Modeling Observational Traces

e We use a marked point process (MPP):
O
TG, X5) 2y
e Points model the event times: measurements or actions

e Mark models the type of event

X =(RuU{g}) x(Cu{g}) x{0,1} x{0,1}
Yy /a <y Za

What action did we take?



Modeling Observational Traces

e Parameterize MPP using hazard and mark density:

N (t, ) = A" (t)p™(x | t)



Modeling Observational Traces

e Parameterize MPP using hazard and mark density:

N (t, ) = A" (t)p™(x | t)

Probability of event
happening at this time

Probability of mark
given event time



Modeling Observational Traces

e Parameterize MPP using hazard and mark density:
N (t,x) = A" ()p=(x | ¢)

Star denotes

Probability of event depen_dence on
happening at this time history

Probability of mark
given event time



Recovering the CGP

¢ \When does the MPP GP recover the CGP?

e |In addition to Consistency, we define two assumptions

Schulam and Saria, NIPS 2017


https://arxiv.org/abs/1703.10651v3

Recovering the CGP

When does the MPP GP recover the CGP?

In addition to Consistency, we define two assumptions
Continuous-time No Unmeasured Confounding (NUC)
 Analogue of NUC for MPP

Conditionally Non-informative measurement times

e Measurement and action times are conditionally
independent of potential outcomes

Schulam and Saria, NIPS 2017


https://arxiv.org/abs/1703.10651v3

Experiments



Simulated Data

Simulate observational traces from three regimes
Traces are treated by policies unknown to learners

In regimes A and B, policies satisfy our assumptions

In regime C,
Simulate three training sets (regimes A, B, and C)

Simulate one common test set (regime A)



Results

e Risk scores:
e Use Baseline and CGP to predict final severity marker

 Negate predictions and normalize to [0, 1]



Reliable Decisions with CGPs
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Counterfactual GP
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Classical Supervised Model
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Risk Score Stability

 Use Baseline and CGP to predict final severity marker

 Transform to risk score in [0, 1], where higher is riskier

Regime A Regime B
Baseline GP CGP | Baseline GP CGP
Risk Score A from A 0.000 0.000 0.083 0.001
Kendall’s 7 from A 1.000 1.000 0.857 0.998



Risk Score Stability

 Use Baseline and CGP to predict final severity marker

 Transform to risk score in [0, 1], where higher is riskier

Regime A Regime B
Baseline GP CGP | Baseline GP CGP
Risk Score A from A 0.000 0.000 0.083 ( 0.001
Kendall’s 7 from A 1.000 1.000 0.857 0.99%

Counterfactual GP scores are stable



Risk Score Stability

 Use Baseline and CGP to predict final severity marker

 Transform to risk score in [0, 1], where higher is riskier

Regime A Regime B
Baseline GP CGP | Baseline GP CGP
Risk Score A from A 0.000 0.000 0.083 ) 0.001
Kendall’s 7 from A 1.000 1.000 0.857 0.998

Baseline GP scores change



Risk Score Stability

 Use Baseline and CGP to predict final severity marker

 Transform to risk score in [0, 1], where higher is riskier

Regime A Regime B
Baseline GP CGP | Baseline GP CGP
Risk Score A from A 0.000 0.000 0.083 0.001
Kendall’s 7 from A 1.000 1.000 0.857 ) 0.998

Rank correlation shows considerable change in
relative risk



Risk Score Stability

 Use Baseline and CGP to predict final severity marker

 Transform to risk score in [0, 1], where higher is riskier

Regime A Regime B
Baseline GP CGP | Baseline GP CGP
Risk Score A from A 0.000 0.000 0.083 0.001
Kendall’s 7 from A 1.000 1.000 0.857 ( 0.998

CGP ranking is stable



Risk Score Stability

e Key takeaways

e Baseline GP risk depends on treatments were
given in the training data

e CGP is stable to this information
Regime A Regime B
Baseline GP CGP | Baseline GP CGP
Risk Score A from A 0.000 0.000 0.083 0.001
Kendall’s 7 from A 1.000 1.000 0.857 0.998




Risk Score Stability

Regime C
Baseline GP _CGP
Risk Score A from A 0.162/ 0.128
Kendall’s 7 from A 0.640\ 0.562

CGP is no longer stable if assumptions are violated



- Classical supervised learning algorithms yield models that are
not stable to shifts in policy changes —> as action selection
mechanism (policy) changes between train and deployment
environments, models fail to generalize.

* Propose learning using a different learning objective that
predicts potential outcomes.

- Develop a potential outcome model for forecasting
trajectories from longitudinal traces. (See next slide for
example with multiple longitudinal streams.)

- Under certain assumptions, the Counterfactual Gaussian
Process (CGP) makes predictions that are invariant to policy

changes in the training data.



https://arxiv.org/abs/1703.10651v3

Modeling multivariate data in the |ICU
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http://auai.org/uai2017/proceedings/papers/266.pdf

Some other examples: Intervening on

Coronary Heart Disease

Estimate the population risk of coronary heart disease (CHD) under interventions
such as quit smoking, maintain BMI < 25.
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https://academic.oup.com/ije/article/38/6/1599/669228/Intervening-on-risk-factors-for-coronary-heart

Potential Outcome Model for Estimating Effect of Ad Exposure

Google’s “Causal Impact”
- Target time series Y: receives intervention
Control time series X1, X2. (Do not receive intervention.)
- These are predictive of Y.
- The relation between Y and (X1, X2) remains the same pre and post intervention.
Predict the counterfactual of Y (under no treatment) using :
Intervention

X1 and X2.
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Brodersen et al. 2014



https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41854.pdf

Revisiting stability, robustness and bias

-+ More generally, given a problem, can we identify which
relationships generalize i.e. are stable across datasets, which
relationships change i.e. are unstable, and learn only the
former?

- The previous work relied on certain assumptions, specifically,
the no unobserved confounders assumption that may not hold
in practice. Can we relax these assumptions and if so, what can
we recover?

- Beyond confounding bias, other types of biases exist in practice
(e.g., selection bias).

- We use DAGS to reason about dependencies between
variables; see Joris Mooij’s tutorial (or any introductory primer
on causal graphs) if unfamiliar.



Diagnosis Example

Goal: predict T from available features.

o T": Meningitis
e o D: Smoking
(C: Beta-blockers

Y: Blood pressure

Some of these mechanisms will be stable across environments, others are
unstable and more likely to change

Ex: Effect of beta blockers and meningitis on blood pressure is likely stable.
Ex: Policy for prescribing beta blockers to smokers is unstable —will vary from
hospital to hospital.

A generalizable model should learn to predict using the stable
relationships.



Key idea: T|C,Y leads to an
unstable model

e Ideal: T|C,D,Y

Stable to changes in P(C|D)

Contains predictive information from D
Policy-dependent

e Naive: T|C, Y if D is unobserved
Not stable to changes in P(C|D)

Contains predictive information from D
This is an example with unobserved G a
domain-dependent confounding



Unstable Paths

- Consider naive discriminative model P(TIC,Y)

- Two active paths from C to T when conditioned on Y:
C+—D—T

C =Y T

Determine active paths using d-separation




Unstable Paths

- Consider naive discriminative model P(TIC,Y)

- Two active paths from C to T when conditioned on Y:

C <+ D — T Unstable path: encodes relationship
that changes across domains

C =Y T




Vulnerable Variables

Consider naive discriminative model P(TIC,Y)
C is vulnerable because it has an active unstable pathto T

Using C as a feature means we will learn relationship along both
the stable and unstable paths

Model will be unreliable and will not generalize

Subbaswamy and Saria, UAI 2018


https://arxiv.org/pdf/1808.03253.pdf

The Ideal Case

Suppose that we were able to observe D. Then we could model
P(TIC,Y,D).

- This model will be stable to changes in P(CID)
- Why? The unstable path is not active: C < D — T

- Whether or not a feature is vulnerable (e.g., C) depends on what
IS unstable about data generating process and what we can
condition upon.




Commentary: Tackling Dataset Shift

We have given two example causes of dataset shift: differences
in train and test distributions

Typical machine learning approaches are reactive: use
unlabeled samples from the test distribution to reweight training

o1l Storkey, 2009 ll Gretton et al., 2009

Similar problem and methods for transportability of causal effect
estimates from one environment to another. Pea"'AS;\ z?"zeo"l":mm:

“External validity”: Causal models should generalize

Proactive Methods which do not use test samples?

Subbaswamy and Saria, UAI 2018


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.1373&rep=rep1&type=pdf
http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/shift-book-for-LeEtAl-webversion_5376%5B0%5D.pdf
http://ftp.cs.ucla.edu/pub/stat_ser/r372-a.pdf
https://arxiv.org/pdf/1808.03253.pdf

Commentary: Addressing Dataset Shift

Distributional robustness

Intuition: train predictive models that are optimal on distributions “close”
to (empirical) training distribution

Takes the form of a regularizer in learning objective
Protects against perturbations of bounded strength (hyperparameter)

Guards against adversarial attacks and can improve generalization
Sinha et al., ICLR 2018 Rothenhausler et al., 2018

While these methods are general purpose and easy to use, can
be difficult to understand how they affect learned model.

We propose using graphical knowledge of causal mechanisms to
specify which changes to be invariant to.

Counterfactual Normalization

Subbaswamy and Saria, UAI 2018


https://arxiv.org/pdf/1710.10571.pdf
https://arxiv.org/pdf/1801.06229.pdf
https://arxiv.org/pdf/1808.03253.pdf

Intuition

Smoking

Meningitis Beta Blocker

Blood pressure

e |dentify vulnerable variables —> variables that contain an
active trail to T where one or more distributions along
path maybe perturbed across datasets (unstable paths).
Do not condition only vulnerable variables.

* More broadly, we want to only learn influence along stable
paths and remove influence via unstable paths. How?

Walk you through a sketch of an algorithm ...

Subbaswamy and Saria, UAI 2018


https://arxiv.org/pdf/1808.03253.pdf

Example Solution: Graph Pruning

- Given a graph we can determine which components are
stable and which are unstable.

- |ldea: Pick conditioning set (i.e., features in a discriminative
model) that prunes the graph of unstable paths

- However, this will also prune stable paths.
- Counterfactual Normalization: consider adding

counterfactual (potential outcome) features that retain
some of the stable paths we removed during pruning.



Step 1: Constructing a Stable Conditioning Set via

Graph Pruning

Goal: Find set of observed
variables that contains no
active unstable paths while
maximizing number of stable
paths.

First: Find a stable set Z

Start by conditioning on all
observed variables.

Consider active unstable paths
starting at T of increasing
length and remove ending
variable from conditioning set

Algorithm 1: Constructing a Stable Conditioning Set
Input: Graph G, number of variables .V, observed
variables O, target 7

Output: Stable conditioning sct Zi, Vulnerable sct V

Z=0 \\ T,

V=10

fork=1t0 N —1do

Conditioned on Z, find the set A of active paths
starting with 7" and ending at v © Z of length &;

for active path a € A do

v = last variable in a;

it a is unsiable then

Z— Z\ v,
V=-V{Ju;

Subbaswamy and Saria, UAI 2018


https://arxiv.org/pdf/1808.03253.pdf

Example: Graph Pruning

- Z={C Y}V ={

- Unstable path: T'«+— D — C

- Z={Y} V={C}
- Unstable path: 7"+ D - C — Y @
- Z={:; V={C, Y}

- Stable conditioning set is
empty!



Retaining Stable Paths

Can we expand the stable conditioning set?

Include some of the vulnerable variables (vars that were removed) that
may no longer have active unstable paths.

Or can we include adjusted versions of the vulnerable variables?

If a variable has both stable and
unstable paths to T, can we isolate its
stable paths from the unstable paths?

Y: Observed/factual blood pressure
C: Whether or not patient takes beta blockers

- Y (C = (): Patient’s blood pressure if we removed
the effects of beta blockers (i.e., untreated blood pressure)



Implications of Node-splitting

If a variable has an unstable path through its observed parent,
intervening on the parent results in a counterfactual without this

unstable path.
Factual version of variable acts as collider for unstable path

. T+ D —C—Y «+ Y(C=0) unstable path to
counterfactual is blocked if we do not condition on Y.



The Three Cases

e Ideal: T|C,D,Y

Stable to changes in P(C|D)

Contains predictive information from D
Policy-dependent

e Naive: T|C,Y /
Not stable to changes in P(C|D)
Contains predictive information from D

e Counterfactually Normalized (CN): G a
T|Z =Y(C=0)
Stable to changes in P(C|D)

Contains no information from D

Subbaswamy and Saria, UAI 2018


https://arxiv.org/pdf/1808.03253.pdf

Step 2: Node-splitting—Graphically Representing Counterfactuals

- Intermediate Counterfactual: parent of factual version

Generatively, represents value of variable before effects of “null”
parents occurred

Counterfactual takes parents that were not intervened upon
(including €4 ).

Algorithm 2: Node-splitting Operation

Input: Graph G, node Y, observed parents of ¥ to
intervene upon P

Output: Modilfied graph G*

. Insert counterfactual node Y (P = @)

2. Delete edges {x Y :x € pa(Y) \ P}

3. Insertedges {z — Y (P =0):z € pa(Y)\ P}

4. Insertedge Y(P=0) = Y




Counterfactual Normalization: Retaining Stable Paths

For each vulnerable variable, try adding variable or
counterfactual version to stable conditioning set.

- Z={;V={C, Y}

C has unstable path through (D)

unobserved parent.

(1) ©

- Y has unstable path through

observed parent! Node-split

and add counterfactual. @
+ Z={Y(C=0Q)};V={C. Y} ®

- Estimate Y(C= Q) and predict by modeling P(TIY(C= Q))



Linear Gaussian Example

DZED

T =wD + e

C =wyC + €

Y =w3T + wsC + ey

EDYETH,EC,EY 7 N(Oa 012)

-+ Changing w2 corresponds to changing P(CID)

- wy IS fixed in the training data, but in different target populations
(e.g., hospitals) value may change arbitrarly



Linear Gaussian Example: Node-splitting

Z=Y(C=0)

- These are equivalent models of the data generating process.
Z = w3l + ey
Y =27+ w4C'

- Y is now a deterministic function of C and Z.

- Can easily estimate counterfactualas 2 =Y —wyC



Three Ways of Predicting

e Ideal: T|C,D,Y

Stable to changes in P(C|D)
Contains predictive information from D

e Naive:T|C,Y

Not stable to changes in P(C|D)
Contains predictive information from D

e Counterfactually Normalized (CFN):
T|Z =Y(C=0)

Stable to changes in P(C|D)
Contains no information from D

Policy-dependent

(0.
O
O



Three Ways of Predicting

e |deal:

- Stable to changes in
T'=a1D+ a0+ a3Y ooaine oredictive information from D

* Naive:
- Not stable to changes In
T = 3,C+ BY Contains predictive information from D

* Counterfactually Normalized (CFN):

a a Stable to changes in
T = 71Z Contains no information from D



* Generate N=30000 training data points from SCM with wg=2
in training domain.

* Train Least Squares (LS) models for
E[T|Y,C), E[T|Z], E[T|Y,C, D]
e Generate 100 test datasets

e Vary w2 from -3 to 7 in test datasets

* Plot MSE of naive, counterfactually normalized, and ideal
cases for each test w»



0030 o _
® ® CFN: E[T]7]
% ® Ideal: E[T|C.Y,D)
0.025 \ ® Naive: E[T|C.Y]
‘\ —  Train w:
0,020 % f..
s “ o
":C.,
=
0.013
0.010

—

0.005

0 2 - b
Test w)

e CFN is stable to variations in P(C|D)

e Naive model that uses all observed features does not
have stable performance.



Beyond Confounding Bias

How else do unstable paths arise?

Selection bias: training data generated according to
some selection mechanism, P(Slpa(S))

Patients without meningitis (T=0) who take Q
beta blockers (C=1) for their chronic

condition may be underrepresented in the

hospital training data (S=1) because of a @

local chronic care clinic.

New unstable path in training data due to @
selection collider

C—-5«<T @



- How else do unstable paths arise?

. training data generated according to
SOl | ))

- Learned relationship between C and
T through S will not generalize when
the selection mechanism changes or
IS no longer present.

—~ INCW T g ddtd aue 1o N

C—>5«T @



CFN Takeaways

 When learning from retrospective datasets, models may encode unintended dataset-
specific biases that hurts quality of decision-making at test time. For example, the model
may learn relationships that are unstable—associations that exist in the training data but
do not hold or change at test time.
« Takeaway #1: Can we identify relationships that are stable and only learn these”
Yes.
« Takeaway #2: How do we identify these? Use knowledge of the causal DAG to
proactively identify and remove variables w/ unstable paths of influence.
* For example, when training a discriminative model, conditioning on a variable learns
influences via all active paths from that variable to the target outcome variable.
* Investigate paths b/w predictor and outcome in the causal DAG to identify paths
that are unstable.
* Mark predictors with unstable paths to outcome as vulnerable. Conditioning on
these will produce models that capture unstable relationships.
« Takeaway #3: Safe to condition on predictor variables with no unstable paths (non
vulnerable variables) —> resulting model will generalize across datasets. But, is not

optimal.

« Takeaway #4: For predictors w/ both stable and unstable paths, can we learn influence
only via stable paths?
* Yes, perhaps...augment conditioning set to add new counterfactual features.
« Takeaway #5: Above method for correction applicable in graphs where the no
unobserved confounding assumption is not satisfied.

Subbaswamy and Saria, UAI 2018


https://arxiv.org/pdf/1808.03253.pdf

Conclusions: Big Picture

We can frame generalization in terms of differences in the data generating process across
environments.

When learning from retrospective datasets, models may encode unintended dataset-specific
biases that hurts quality of decision-making at test time. For example, the model may learn
relationships that are unstable—associations that exist in the training data but do not hold o
r change at test time.

Knowledge of the data generating process (i.e. causal DAG) allows us to explicitly reason
about scenarios under which we can learn stable models.

Further, we can constrain learning so that the resulting models are invariant to unstable
relationships.

* Example: Discussed potential outcome models for what-if reasoning over temporal trajectories
—> |earns relationships between predictors and outcome that are stable across environments.
Requires certain assumptions to hold.

 Example: Discussed counterfactual normalization, feature augmentation procedure that only
learns relationships that are unstable. Applicable in settings with unmeasured confounding.
Requires certain other assumptions to hold.

e Contrast above ideas as proactive methods for adjusting for dataset-specific bias as opposed
to reactive methods that correct via reweighing when samples from the target distribution become
available.



Reading List

 Example papers on the use of counterfactual reasoning for
decision-making

Taubman et al. 2009 j§ Bottou et al., 2013
Brodersen et al. 2014 ll Schulam et al., NIPS 2017 @ Soleimani et al. UAI 2017

e Papers discussing the issue of lack of model reliability / need for
robustness to certain perturbations in prediction

Dyagilev et al., Machine Learning 2015 g Caruana et al., KDD 2015
Schulam et al., NIPS 2017

Sinha et al., ICLR 2018 j Rothenhausler et al., 2018

Subbaswamy and Saria, UAI 2018

e TJutorials on DAGs and assessing independence assertions on a graph

You will need to understand the following concepts: DAG, Bayes-ball theorem, D-separation. Coursera has multiple
classes that teaches these. Most will teach you a lot more. It is most beneficial is to learn how to construct a graph that

captures a given set of independence assertions for a given problem. | recommend taking this on as an exercise and
running your work by someone else who is familiar and can critique your graph.


https://arxiv.org/pdf/1808.03253.pdf
http://auai.org/uai2017/proceedings/papers/266.pdf
https://academic.oup.com/ije/article/38/6/1599/669228/Intervening-on-risk-factors-for-coronary-heart
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41854.pdf
https://arxiv.org/abs/1703.10651
http://link.springer.com/article/10.1007/s10994-015-5527-7
http://people.dbmi.columbia.edu/noemie/papers/15kdd.pdf
https://arxiv.org/abs/1703.10651
https://arxiv.org/pdf/1710.10571.pdf
https://arxiv.org/pdf/1801.06229.pdf
https://arxiv.org/abs/1209.2355

Thank you!

ssaria@cs.jhu.edu

%’ @suchisaria

All references throughout the slides are active links and clickable.
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Appendix



(3) No Unmeasured Confounders (NUC)

+ In our exercise example, BMI is a confounder

- BMI induces a statistical dependency between the
observed treatment and observed outcome

+ In general, unless we observe all confounders, we
cannot learn unbiased models of potential outcomes from
observational data

- Formally, NUC is an statistical independence assertion:

Y(a) LA X=x : Vae A, Vxe X



Making NUC intuitive using

Single-World Intervention Graphs

- SWIGs extend graphical models to explicitly
represent potential outcomes

- To obtain a SWIG, we define a causal graphical model
and specify the set of treatment variables

- We apply node-splitting operations to treatment variables
to represent interventions

- Useful tool to determine which conditional distributions
you need, and how to simulate trial

Richardson and Robins, 2014

NIPS tutorial : L3y el L ] P


https://www.csss.washington.edu/Papers/wp128.pdf
https://www.microsoft.com/en-us/research/video/tutorial-non-parametric-causal-models/

We apply node-splitting operations to treatment
variables to represent interventions

A simple “a” vs “b” example:

Causal DAG
Treatment variable .

V.'

oo

Richardson, 2014

P
-
-
-
-
-
L=

“
-
-
-
-

Richardson and Robins, 2014


https://www.csss.washington.edu/Papers/wp128.pdf
https://www.microsoft.com/en-us/research/video/tutorial-non-parametric-causal-models/

Interpreting SWIGs

- Treat SWIGs as standard causal graphs

-+ Semi-circle nodes are just reminders that we have
applied a node-splitting operation

+ From this graph, can read that Y(a) is independent of the
observed treatment A

Richardson, 2014 Richardson and Robins, 2014


https://www.csss.washington.edu/Papers/wp128.pdf
https://www.microsoft.com/en-us/research/video/tutorial-non-parametric-causal-models/

NUC in SWIG Language

- SWIGs make NUC assumption easy to express
Y(a) LA X=x : Vae A, Vxe X

+ Confounders X d-separate potential outcomes from
observed treatment random variable when intervening on

treatment

g

oBGIE

Richardson and Robins, 2014

Richardson, 2014


https://www.csss.washington.edu/Papers/wp128.pdf
https://www.microsoft.com/en-us/research/video/tutorial-non-parametric-causal-models/

