


Outline of the tutorial

An Introduction to GPs
I Mathematical foundations
I Hyper-parameter learning
I Covariance functions
I Multi-dimensional inputs

Using GPs: Models, Applications and Connections
I Models and more on covariance functions
I Applications
I Connections

GPs for large data and non-linear models
I Scaling through pseudo-data
I Variational Inference
I General Approximate inference



Models and Covariance Functions



Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

1. Addition of two GPs

2. Random linear model

3. Random sinusoid model
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Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

1. Addition of two GPs

Gaussians are closed under addition: so are GPs

addition of functions   <=> addition of mean and covariance

                  GP multiplied by a deterministic function = GP, 
                  derivatives of GP = GP, integral of a GP = GP, 
                  convolution of a GP by a deterministic function = GP

More generally: GPs closed under linear transformation / combination:
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2. Random linear model

Which are GPs? Compute the GPs mean and covariance functions.
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Big fat covariance function quiz

2. Random linear model

GPs encompass Bayesian linear regression
Not all GPs are non-parametric (infinite numbers of parameters)

Which are GPs? Compute the GPs mean and covariance functions.

Gaussians are closed under linear transformations: so are GPs
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Big fat covariance function quiz

3. Random sinusoid model

Bochner's theorem: Any stationary covariance function can be written as: 

GPs can model periodic structure
Sums of sinusoidal basis functions connects GPs to 
                      Fourier series and Fourier transforms

roughly, the function comprises "an uncountably infinite sum of random sins and cosines"

Which are GPs? Compute the GPs mean and covariance functions.

Gaussians are closed under linear transformations: so are GPs
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Applications



What are Gaussian Processes good for?

Strengths

interpretable machine learning (covariance functions specify easy-to-explain high-level
properties of functions)
data-efficient machine learning (non-parametric + Bayesian =⇒ lots of flexibility +
avoid overfitting)
decision making (well-calibrated uncertainties: knows when it does not know)
automated machine learning including probabilistic numerics (regression and
classification are rock-solid)

Weaknesses
Large numbers of datapoints (N ≤ 105 unless there is special structure, due to
covariance matrix inversion & storage)
High-dimensional inputs spaces (D ≤ 102 unless there is special structure, due to need
to compute pair-wise elements of covariance function)
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y



Interpretable auto-ML: the automatic statistician

posterior of component 1

posterior of component 2 posterior of component 1+2



Data-efficient reinforcement learning: PILCO



Data-efficient reinforcement learning: PILCO



Data-efficient reinforcement learning: PILCO



Deep Gaussian Processes

input



Deep Gaussian Processes

input



Deep Gaussian Processes

}
input

input



Deep Gaussian Processes

}
input

input

long short



Deep Gaussian Processes

}
input

input

long short

Deep GP perform 
automatic kernel design



Experiment: Comparison to Bayesian neural networks [Best results]

boston
N = 506
D = 13

−2.5

−2.4

−2.3

−2.2

−2.1

−2.0

av
er

ag
e

te
st

lo
g-

lik
el

ih
oo

d/
na

ts

concrete
N = 1030

D = 8

−3.2

−3.0

−2.8

−2.6

−2.4

−2.2

−2.0

−1.8

energy
N = 768
D = 8

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

kin8nm
N = 8192

D = 8

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

naval
N = 11934

D = 16

5.0

5.5

6.0

6.5

7.0

7.5

power
N = 9568

D = 4

−2.65

−2.60

−2.55

−2.50

−2.45

−2.40

−2.35

−2.30

−2.25

protein
N = 45730

D = 9

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

red wine
N = 1588
D = 11

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

yacht
N = 308
D = 6

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

year
N = 515345

D = 90

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

BNN-deterministic BNN-sampling GP DGP



Experiment: Comparison to Bayesian neural networks [Best results]

boston
N = 506
D = 13

−2.5

−2.4

−2.3

−2.2

−2.1

−2.0

av
er

ag
e

te
st

lo
g-

lik
el

ih
oo

d/
na

ts

concrete
N = 1030

D = 8

−3.2

−3.0

−2.8

−2.6

−2.4

−2.2

−2.0

−1.8

energy
N = 768
D = 8

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

kin8nm
N = 8192

D = 8

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

naval
N = 11934

D = 16

5.0

5.5

6.0

6.5

7.0

7.5

power
N = 9568

D = 4

−2.65

−2.60

−2.55

−2.50

−2.45

−2.40

−2.35

−2.30

−2.25

protein
N = 45730

D = 9

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

red wine
N = 1588
D = 11

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

yacht
N = 308
D = 6

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

year
N = 515345

D = 90

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

BNN-deterministic BNN-sampling GP DGP



Experiment: Comparison to Bayesian neural networks [Best results]

boston
N = 506
D = 13

−2.5

−2.4

−2.3

−2.2

−2.1

−2.0

av
er

ag
e

te
st

lo
g-

lik
el

ih
oo

d/
na

ts

concrete
N = 1030

D = 8

−3.2

−3.0

−2.8

−2.6

−2.4

−2.2

−2.0

−1.8

energy
N = 768
D = 8

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

kin8nm
N = 8192

D = 8

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

naval
N = 11934

D = 16

5.0

5.5

6.0

6.5

7.0

7.5

power
N = 9568

D = 4

−2.65

−2.60

−2.55

−2.50

−2.45

−2.40

−2.35

−2.30

−2.25

protein
N = 45730

D = 9

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

red wine
N = 1588
D = 11

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

yacht
N = 308
D = 6

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

year
N = 515345

D = 90

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

BNN-deterministic BNN-sampling GP DGP



Experiment: Comparison to Bayesian neural networks [Best results]

boston
N = 506
D = 13

−2.5

−2.4

−2.3

−2.2

−2.1

−2.0

av
er

ag
e

te
st

lo
g-

lik
el

ih
oo

d/
na

ts

concrete
N = 1030

D = 8

−3.2

−3.0

−2.8

−2.6

−2.4

−2.2

−2.0

−1.8

energy
N = 768
D = 8

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

kin8nm
N = 8192

D = 8

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

naval
N = 11934

D = 16

5.0

5.5

6.0

6.5

7.0

7.5

power
N = 9568

D = 4

−2.65

−2.60

−2.55

−2.50

−2.45

−2.40

−2.35

−2.30

−2.25

protein
N = 45730

D = 9

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

red wine
N = 1588
D = 11

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

yacht
N = 308
D = 6

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

year
N = 515345

D = 90

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

BNN-deterministic BNN-sampling GP DGP



Experiment: Comparison to Bayesian neural networks [Best results]

boston
N = 506
D = 13

−2.5

−2.4

−2.3

−2.2

−2.1

−2.0

av
er

ag
e

te
st

lo
g-

lik
el

ih
oo

d/
na

ts

concrete
N = 1030

D = 8

−3.2

−3.0

−2.8

−2.6

−2.4

−2.2

−2.0

−1.8

energy
N = 768
D = 8

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

kin8nm
N = 8192

D = 8

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

naval
N = 11934

D = 16

5.0

5.5

6.0

6.5

7.0

7.5

power
N = 9568

D = 4

−2.65

−2.60

−2.55

−2.50

−2.45

−2.40

−2.35

−2.30

−2.25

protein
N = 45730

D = 9

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

red wine
N = 1588
D = 11

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

yacht
N = 308
D = 6

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

year
N = 515345

D = 90

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

BNN-deterministic BNN-sampling GP DGP



Connections



Infinitely wide neural nets as GPs

inputs activations activities outputs



Infinitely wide neural nets as GPs

inputs activations activities outputs



Infinitely wide neural nets as GPs

inputs

stops the variance 
of the output blowing
up (cf. initialisation of

neural nets)

activations activities outputs



Infinitely wide neural nets as GPs

inputs

stops the variance 
of the output blowing
up (cf. initialisation of

neural nets)

as

?

activations activities outputs



Infinitely wide neural nets as GPs

inputs

Neal, 1996

stops the variance 
of the output blowing
up (cf. initialisation of

neural nets)

central limit kicks in:
sum of independent

random variables

as

?

activations activities outputs



Infinitely wide neural nets as GPs

inputs

Neal, 1996

stops the variance 
of the output blowing
up (cf. initialisation of

neural nets)

central limit kicks in:
sum of independent

random variables

as

activations activities outputs



Infinitely wide neural nets as GPs

inputs activations activities activations activities outputs



Infinitely wide neural nets as GPs

inputs activations activities activations activities outputs



Infinitely wide neural nets as GPs

inputs activations activities activations activities outputs



Infinitely wide neural nets as GPs

inputs

Matthews et al.,2018

activations activities activations activities outputs



Gaussian Processes in Disguise

Wide neural networks (perhaps don’t need to be so wide) and CNNs with many
features

linear-in-the-parameters models with Gaussian priors: linear regression, RBF
networks, ...
Linear Gaussian State Space Model (Kalman Filter): xt = Axt−1 + Q1/2εt and
yt = Cxt + R1/2ηt

Linear stochastic differential equations: dXt = a(t)Xtdt + b(t)dWt where Wt =
Wiener Process aka Brownian motion
Krigging (geostatistics), splines (curve fitting), moving average processes, time-frequency
analysis, ...



Gaussian Processes in Disguise

Wide neural networks (perhaps don’t need to be so wide) and CNNs with many
features
linear-in-the-parameters models with Gaussian priors: linear regression, RBF
networks, ...

Linear Gaussian State Space Model (Kalman Filter): xt = Axt−1 + Q1/2εt and
yt = Cxt + R1/2ηt

Linear stochastic differential equations: dXt = a(t)Xtdt + b(t)dWt where Wt =
Wiener Process aka Brownian motion
Krigging (geostatistics), splines (curve fitting), moving average processes, time-frequency
analysis, ...



Gaussian Processes in Disguise

Wide neural networks (perhaps don’t need to be so wide) and CNNs with many
features
linear-in-the-parameters models with Gaussian priors: linear regression, RBF
networks, ...
Linear Gaussian State Space Model (Kalman Filter): xt = Axt−1 + Q1/2εt and
yt = Cxt + R1/2ηt

Linear stochastic differential equations: dXt = a(t)Xtdt + b(t)dWt where Wt =
Wiener Process aka Brownian motion
Krigging (geostatistics), splines (curve fitting), moving average processes, time-frequency
analysis, ...



Gaussian Processes in Disguise

Wide neural networks (perhaps don’t need to be so wide) and CNNs with many
features
linear-in-the-parameters models with Gaussian priors: linear regression, RBF
networks, ...
Linear Gaussian State Space Model (Kalman Filter): xt = Axt−1 + Q1/2εt and
yt = Cxt + R1/2ηt

Linear stochastic differential equations: dXt = a(t)Xtdt + b(t)dWt where Wt =
Wiener Process aka Brownian motion

Krigging (geostatistics), splines (curve fitting), moving average processes, time-frequency
analysis, ...



Gaussian Processes in Disguise

Wide neural networks (perhaps don’t need to be so wide) and CNNs with many
features
linear-in-the-parameters models with Gaussian priors: linear regression, RBF
networks, ...
Linear Gaussian State Space Model (Kalman Filter): xt = Axt−1 + Q1/2εt and
yt = Cxt + R1/2ηt

Linear stochastic differential equations: dXt = a(t)Xtdt + b(t)dWt where Wt =
Wiener Process aka Brownian motion
Krigging (geostatistics), splines (curve fitting), moving average processes, time-frequency
analysis, ...



References (hyperlinked)

Gaussian Process Models
Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data
Lawrence, NIPS, 2005
Local Distance Preservation in the GP-LVM through Back Constraints, Lawrence and
Quinonero-Candela, ICML 2006

The Automatic Statistician
The Automatic Statistician, Ghahramani et al., (website link)

GPs for Reinforcement Learning and Control
PILCO: A Model-Based and Data-Efficient Approach to Policy Search, Deisenroth and
Rasmussen, ICML 2011

GPs and Neural Networks
Bayesian Learning for Neural Networks Neal, 1996
Gaussian Process Behaviour in Wide Deep Neural Networks, Matthews et al., arXiv, 2018

https://papers.nips.cc/paper/2540-gaussian-process-latent-variable-models-for-visualisation-of-high-dimensional-data.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/lawrence06bcgplvm.pdf
https://www.automaticstatistician.com/index/
http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf
https://www.cs.toronto.edu/~radford/bnn.book.html
https://arxiv.org/pdf/1804.11271.pdf

