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@ An Introduction to GPs

Mathematical foundations
Hyper-parameter learning
Covariance functions
Multi-dimensional inputs
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e Using GPs: Models, Applications and Connections
» Models and more on covariance functions
» Applications
» Connections

o GPs for large data and non-linear models

» Scaling through pseudo-data
» Variational Inference
» General Approximate inference






Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

1. Addition of two GPs f ( ) gP(O 5 ( ,))
f(x) = fi(z) + f2(x) f;(x) ~ 9’7?(0: z:l@:’, z'))

2. Random linear model

m ~ N(0,02)
g(x) =mx +c ¢~ N(0, 02)

3. Random sinusoid model
a~ N(0,0?)

h(x) = acos(wt) + bsin(wt) b~ N0, 02)
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Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

1. Addition of two GPs f ( ) QP(O 5 ( ,))
f(x) = fi(z) + f2(x) f;(x) ~ QP(0: z:l@:’, z'))

Gaussians are closed under addition: so are GPs

m(x) =0 addition of functions <=> addition of mean and covariance

X(z,2") = Bi(z, 2" )+ Xa(x, 2)

More generally: GPs closed under linear transformation / combination:

GP multiplied by a deterministic function = GP,
derivatives of GP = GP, integral of a GP = GP,
convolution of a GP by a deterministic function = GP
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Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

2. Random linear model

m ~ N(0,02)
9(@) = ma + ¢ ¢~ N(0,02)
Gaussians are closed under linear transformations: so are GPs
m(x) = 0
Y(z,2') = o2z 2 + o2

GPs encompass Bayesian linear regression
Not all GPs are non-parametric (infinite numbers of parameters)
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Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

3. Random sinusoid model

a~ N(0,0?)
h(x) = acos(wt) + bsin(wt) b~ N(0,5?)

Gaussians are closed under linear transformations: so are GPs

m(x) =0 GPs can model periodic structure
Sums of sinusoidal basis functions connects GPs to
E(x, :L'/) — o2 cos(w(gj — gj’)) Fourier series and Fourier transforms

Bochner's theorem: Any stationary covariance function can be written as:
Y(z—2') = [o%(w) cos(w(z — 2'))dw

roughly, the function comprises "an uncountably infinite sum of random sins and cosines"
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Basis function view of Gaussian processes
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Basis function view of Gaussian processes
e~ N(0,1) \ m(x) =0
K(x,x) = 325 96(x) gk (X')
gr(x) = —=e A } = %> ke — 5 (x—k/K)? = (X —k/ K)?
3 () =5 (X —u)?
o fdue®
L (x—x")2
f( ):Zszerkgk( ) J x e 2 ( )

Gaussian processes = models with co parameters
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What are Gaussian Processes good for?

Strengths
@ interpretable machine learning (covariance functions specify easy-to-explain high-level
properties of functions)

o data-efficient machine learning (non-parametric + Bayesian = lots of flexibility +
avoid overfitting)

e decision making (well-calibrated uncertainties: knows when it does not know)

e automated machine learning including probabilistic numerics (regression and
classification are rock-solid)

Weaknesses

e Large numbers of datapoints (N < 10° unless there is special structure, due to
covariance matrix inversion & storage)

e High-dimensional inputs spaces (D < 102 unless there is special structure, due to need
to compute pair-wise elements of covariance function)
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Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified four additive components in the data.
e A linearly increasing function.

e An approximately periodic function with a period of 1.0 years and with approximately
linearly increasing amplitude.

e A smooth function.

e Uncorrelated noise with linearly increasing standard deviation.
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Data-efficient reinforcement learning: PILCO

T

- run policy and acquire data

- update GP model of dynamics using

new data

- perform roll-outs in GP model

- adapt policy to improve performance
on roll-outs

/- goal: stabilise pendulum here




Deep Gaussian Processes

y(x) = f(z)+ oye f(z) =GP0, Ky (x,2'))

f(®)

input
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Deep Gaussian Processes

Z/ = +Uy

W
| 4]

input

z=g(z)

input




Deep Gaussian Processes

y(x) = f(9(x)) + oye f(z) = GP(0, Ky(z,2'))

g9(z) = GP(0, Ky(z,2"))
long short
f(2)
f(g(z))
z=g()
= x
ﬁn input
R Deep GP perform
z automatic kernel design

input
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Experiment: Comparison to Bayesian neural networks [Best results]
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Infinitely wide neural nets as GPs

inputs  activations activities outputs
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Infinitely wide neural nets as GPs

inputs  activations

T a=Wgx

> 3

outputs

f =V stops the variance
of the output blowing
up (cf. initialisation of

neural nets)

~ Vi~ N(0,0}/D)

f(z) =NN(z; W, V) — f(z) ~GP
as D — o0

central limit kicks in:
sum of independent
random variables

Neal, 1996
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Infinitely wide neural nets as GPs
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Infinitely wide neural nets as GPs
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Matthews et al.,2018
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Gaussian Processes in Disguise

e Wide neural networks (perhaps don't need to be so wide) and CNNs with many
features

@ linear-in-the-parameters models with Gaussian priors: linear regression, RBF
networks, ...

e Linear Gaussian State Space Model (Kalman Filter): z; = Az,_; + Q/%¢; and
Y = Cry + Rl/277t

e Linear stochastic differential equations: dX; = a(t)X;dt + b(t)dW; where W, =
Wiener Process aka Brownian motion

e Krigging (geostatistics), splines (curve fitting), moving average processes, time-frequency
analysis, ...
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