

Outline of the tutorial

- An Introduction to GPs
- Mathematical foundations
- Hyper-parameter learning
- Covariance functions
- Multi-dimensional inputs
- Using GPs: Models, Applications and Connections
- Models and more on covariance functions
- Applications
- Connections
- GPs for large data and non-linear models
- Scaling through pseudo-data
- Variational Inference
- General Approximate inference

Big fat covariance function quiz
Which are GPs? Compute the GPs mean and covariance functions.

1. Addition of two GPs

$$
f(x)=f_{1}(x)+f_{2}(x)
$$

$$
\begin{aligned}
& f_{1}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{1}\left(x, x^{\prime}\right)\right) \\
& f_{2}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{2}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

2. Random linear model

$$
g(x)=m x+c
$$

$$
\begin{aligned}
m & \sim \mathcal{N}\left(0, \sigma_{m}^{2}\right) \\
c & \sim \mathcal{N}\left(0, \sigma_{c}^{2}\right)
\end{aligned}
$$

3. Random sinusoid model

$$
h(x)=a \cos (\omega t)+b \sin (\omega t)
$$

$$
\begin{aligned}
a & \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
b & \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

1. Addition of two GPs

$$
f(x)=f_{1}(x)+f_{2}(x)
$$

$$
\begin{aligned}
& f_{1}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{1}\left(x, x^{\prime}\right)\right) \\
& f_{2}(x) \sim \mathcal{G P}\left(0, \Sigma_{2}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

1. Addition of two GPs

$$
f(x)=f_{1}(x)+f_{2}(x) \quad \begin{aligned}
& f_{1}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{1}\left(x, x^{\prime}\right)\right) \\
& f_{2}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{2}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

Gaussians are closed under addition: so are GPs

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

1. Addition of two GPs

$$
f(x)=f_{1}(x)+f_{2}(x) \quad \begin{aligned}
& f_{1}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{1}\left(x, x^{\prime}\right)\right) \\
& f_{2}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{2}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

Gaussians are closed under addition: so are GPs

$$
m(x)=\mathbb{E}_{f_{1}, f_{2}}[f(x)]
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

1. Addition of two GPs

$$
f(x)=f_{1}(x)+f_{2}(x) \quad \begin{aligned}
& f_{1}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{1}\left(x, x^{\prime}\right)\right) \\
& f_{2}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{2}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

Gaussians are closed under addition: so are GPs

$$
m(x)=\mathbb{E}_{f_{1}, f_{2}}[f(x)]=\mathbb{E}_{f_{1}, f_{2}}\left[f_{1}(x)+f_{2}(x)\right]
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

1. Addition of two GPs

$$
\begin{aligned}
& f_{1}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{1}\left(x, x^{\prime}\right)\right) \\
& f_{2}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{2}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

Gaussians are closed under addition: so are GPs

$$
m(x)=\mathbb{E}_{f_{1}, f_{2}}[f(x)]=\mathbb{E}_{f_{1}, f_{2}}\left[f_{1}(x)+f_{2}(x)\right]=\mathbb{E}_{f_{1}}\left[f_{1}(x)\right]+\mathbb{E}_{f_{2}}\left[f_{2}(x)\right]
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

1. Addition of two GPs

$$
\begin{aligned}
& f_{1}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{1}\left(x, x^{\prime}\right)\right) \\
& f_{2}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{2}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

Gaussians are closed under addition: so are GPs

$$
\begin{aligned}
m(x)=\mathbb{E}_{f_{1}, f_{2}}[f(x)]=\mathbb{E}_{f_{1}, f_{2}}\left[f_{1}(x)+f_{2}(x)\right] & =\mathbb{E}_{f_{1}}\left[f_{1}(x)\right]+\mathbb{E}_{f_{2}}\left[f_{2}(x)\right] \\
& =0+0
\end{aligned}
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

1. Addition of two GPs

$$
\begin{aligned}
& f_{1}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{1}\left(x, x^{\prime}\right)\right) \\
& f_{2}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{2}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

Gaussians are closed under addition: so are GPs

$$
\begin{aligned}
m(x)=\mathbb{E}_{f_{1}, f_{2}}[f(x)]=\mathbb{E}_{f_{1}, f_{2}}\left[f_{1}(x)+f_{2}(x)\right] & =\mathbb{E}_{f_{1}}\left[f_{1}(x)\right]+\mathbb{E}_{f_{2}}\left[f_{2}(x)\right] \\
& =0+0=0
\end{aligned}
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

1. Addition of two GPs

$$
f(x)=f_{1}(x)+f_{2}(x) \quad \begin{aligned}
& f_{1}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{1}\left(x, x^{\prime}\right)\right) \\
& f_{2}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{2}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

Gaussians are closed under addition: so are GPs

$$
\begin{aligned}
m(x) & =0 \\
\Sigma\left(x, x^{\prime}\right) & =\mathbb{E}_{f_{1}, f_{2}}\left[f(x) f\left(x^{\prime}\right)\right]
\end{aligned}
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

1. Addition of two GPs

$$
\begin{aligned}
f_{1}(x) & \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{1}\left(x, x^{\prime}\right)\right) \\
f_{2}(x) & \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{2}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

Gaussians are closed under addition: so are GPs

$$
\begin{aligned}
m(x) & =0 \\
\Sigma\left(x, x^{\prime}\right) & =\mathbb{E}_{f_{1}, f_{2}}\left[f(x) f\left(x^{\prime}\right)\right]=\mathbb{E}_{f_{1}, f_{2}}\left[\left(f_{1}(x)+f_{2}(x)\right)\left(f_{1}\left(x^{\prime}\right)+f_{2}\left(x^{\prime}\right)\right)\right]
\end{aligned}
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

1. Addition of two GPs

$$
f(x)=f_{1}(x)+f_{2}(x) \quad \begin{aligned}
& f_{1}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{1}\left(x, x^{\prime}\right)\right) \\
& f_{2}(x) \sim \mathcal{G P}\left(0, \Sigma_{2}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

Gaussians are closed under addition: so are GPs

$$
\begin{aligned}
m(x) & =0 \\
\Sigma\left(x, x^{\prime}\right) & =\mathbb{E}_{f_{1}, f_{2}}\left[f(x) f\left(x^{\prime}\right)\right]=\mathbb{E}_{f_{1}, f_{2}}\left[\left(f_{1}(x)+f_{2}(x)\right)\left(f_{1}\left(x^{\prime}\right)+f_{2}\left(x^{\prime}\right)\right)\right] \\
& =\mathbb{E}_{f_{1}, f_{2}}\left[f_{1}(x) f_{1}\left(x^{\prime}\right)+f_{1}(x) f_{2}\left(x^{\prime}\right)+f_{1}\left(x^{\prime}\right) f_{2}(x)+f_{2}(x) f_{2}\left(x^{\prime}\right)\right]
\end{aligned}
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

1. Addition of two GPs

$$
f(x)=f_{1}(x)+f_{2}(x)
$$

$$
\begin{aligned}
& f_{1}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{1}\left(x, x^{\prime}\right)\right) \\
& f_{2}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{2}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

Gaussians are closed under addition: so are GPs

$$
\begin{aligned}
m(x) & =0 \\
\Sigma\left(x, x^{\prime}\right) & =\mathbb{E}_{f_{1}, f_{2}}\left[f(x) f\left(x^{\prime}\right)\right]=\mathbb{E}_{f_{1}, f_{2}}\left[\left(f_{1}(x)+f_{2}(x)\right)\left(f_{1}\left(x^{\prime}\right)+f_{2}\left(x^{\prime}\right)\right)\right] \\
& =\mathbb{E}_{f_{1}, f_{2}}\left[f_{1}(x) f_{1}\left(x^{\prime}\right)+f_{1}(x) f_{2}\left(x^{\prime}\right)+f_{1}\left(x^{\prime}\right) f_{2}(x)+f_{2}(x) f_{2}\left(x^{\prime}\right)\right] \\
& =\mathbb{E}_{f_{1}, f_{2}}\left[f_{1}(x) f_{1}\left(x^{\prime}\right)\right]+\mathbb{E}_{f_{1}, f_{2}}\left[f_{2}(x) f_{2}\left(x^{\prime}\right)\right]
\end{aligned}
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

1. Addition of two GPs

$$
f(x)=f_{1}(x)+f_{2}(x)
$$

$$
\begin{aligned}
& f_{1}(x) \sim \mathcal{G P}\left(0, \Sigma_{1}\left(x, x^{\prime}\right)\right) \\
& f_{2}(x) \sim \mathcal{G P}\left(0, \Sigma_{2}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

Gaussians are closed under addition: so are GPs

$$
\begin{aligned}
m(x) & =0 \\
\Sigma\left(x, x^{\prime}\right) & =\mathbb{E}_{f_{1}, f_{2}}\left[f(x) f\left(x^{\prime}\right)\right]=\mathbb{E}_{f_{1}, f_{2}}\left[\left(f_{1}(x)+f_{2}(x)\right)\left(f_{1}\left(x^{\prime}\right)+f_{2}\left(x^{\prime}\right)\right)\right] \\
& =\mathbb{E}_{f_{1}, f_{2}}\left[f_{1}(x) f_{1}\left(x^{\prime}\right)+f_{1}(x) f_{2}\left(x^{\prime}\right)+f_{1}\left(x^{\prime}\right) f_{2}(x)+f_{2}(x) f_{2}\left(x^{\prime}\right)\right] \\
& =\mathbb{E}_{f_{1}, f_{2}}\left[f_{1}(x) f_{1}\left(x^{\prime}\right)\right]+\mathbb{E}_{f_{1}, f_{2}}\left[f_{2}(x) f_{2}\left(x^{\prime}\right)\right]=\Sigma_{1}\left(x, x^{\prime}\right)+\Sigma_{2}\left(x, x^{\prime}\right)
\end{aligned}
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

1. Addition of two GPs

$$
f(x)=f_{1}(x)+f_{2}(x) \quad \begin{aligned}
& f_{1}(x) \sim \mathcal{G P}\left(0, \Sigma_{1}\left(x, x^{\prime}\right)\right) \\
& f_{2}(x) \sim \mathcal{G P}\left(0, \Sigma_{2}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

Gaussians are closed under addition: so are GPs

$$
\begin{aligned}
m(x) & =0 \quad \quad \text { addition of functions }<=>\text { addition of mean and covariance } \\
\Sigma\left(x, x^{\prime}\right) & =\Sigma_{1}\left(x, x^{\prime}\right)+\Sigma_{2}\left(x, x^{\prime}\right)
\end{aligned}
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.

1. Addition of two GPs

$$
f(x)=f_{1}(x)+f_{2}(x) \quad \begin{aligned}
& f_{1}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{1}\left(x, x^{\prime}\right)\right) \\
& f_{2}(x) \sim \mathcal{G} \mathcal{P}\left(0, \Sigma_{2}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

Gaussians are closed under addition: so are GPs
$m(x)=0 \quad$ addition of functions $<=>$ addition of mean and covariance
$\Sigma\left(x, x^{\prime}\right)=\Sigma_{1}\left(x, x^{\prime}\right)+\Sigma_{2}\left(x, x^{\prime}\right)$
More generally: GPs closed under linear transformation / combination:
GP multiplied by a deterministic function $=G P$, derivatives of GP $=G P$, integral of a GP $=G P$, convolution of a GP by a deterministic function $=G P$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.
2. Random linear model

$$
g(x)=m x+c
$$

$$
\begin{aligned}
m & \sim \mathcal{N}\left(0, \sigma_{m}^{2}\right) \\
c & \sim \mathcal{N}\left(0, \sigma_{c}^{2}\right)
\end{aligned}
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.
2. Random linear model

$$
g(x)=m x+c
$$

$$
\begin{aligned}
m & \sim \mathcal{N}\left(0, \sigma_{m}^{2}\right) \\
c & \sim \mathcal{N}\left(0, \sigma_{c}^{2}\right)
\end{aligned}
$$

Gaussians are closed under linear transformations: so are GPs

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.
2. Random linear model

$$
\begin{aligned}
m & \sim \mathcal{N}\left(0, \sigma_{m}^{2}\right) \\
c & \sim \mathcal{N}\left(0, \sigma_{c}^{2}\right)
\end{aligned}
$$

Gaussians are closed under linear transformations: so are GPs

$$
m(x)=\mathbb{E}_{m, c}[g(x)]
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.
2. Random linear model

$$
\begin{aligned}
m & \sim \mathcal{N}\left(0, \sigma_{m}^{2}\right) \\
c & \sim \mathcal{N}\left(0, \sigma_{c}^{2}\right)
\end{aligned}
$$

Gaussians are closed under linear transformations: so are GPs

$$
m(x)=\mathbb{E}_{m, c}[g(x)]=\mathbb{E}_{m, c}[m x+c]
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.
2. Random linear model

$$
\begin{aligned}
m & \sim \mathcal{N}\left(0, \sigma_{m}^{2}\right) \\
c & \sim \mathcal{N}\left(0, \sigma_{c}^{2}\right)
\end{aligned}
$$

Gaussians are closed under linear transformations: so are GPs

$$
m(x)=\mathbb{E}_{m, c}[g(x)]=\mathbb{E}_{m, c}[m x+c]=0
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.
2. Random linear model

$$
\begin{aligned}
m & \sim \mathcal{N}\left(0, \sigma_{m}^{2}\right) \\
c & \sim \mathcal{N}\left(0, \sigma_{c}^{2}\right)
\end{aligned}
$$

Gaussians are closed under linear transformations: so are GPs
$m(x)=\mathbb{E}_{m, c}[g(x)]=\mathbb{E}_{m, c}[m x+c]=0$
$\Sigma\left(x, x^{\prime}\right)=\mathbb{E}_{m, c}\left[g(x) g\left(x^{\prime}\right)\right]$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.
2. Random linear model

$$
g(x)=m x+c
$$

$$
\begin{aligned}
m & \sim \mathcal{N}\left(0, \sigma_{m}^{2}\right) \\
c & \sim \mathcal{N}\left(0, \sigma_{c}^{2}\right)
\end{aligned}
$$

Gaussians are closed under linear transformations: so are GPs

$$
m(x)=\mathbb{E}_{m, c}[g(x)]=\mathbb{E}_{m, c}[m x+c]=0
$$

$$
\Sigma\left(x, x^{\prime}\right)=\mathbb{E}_{m, c}\left[g(x) g\left(x^{\prime}\right)\right]=\mathbb{E}_{m, c}\left[(m x+c)\left(m x^{\prime}+c\right)\right]
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.
2. Random linear model

$$
g(x)=m x+c
$$

$$
\begin{aligned}
m & \sim \mathcal{N}\left(0, \sigma_{m}^{2}\right) \\
c & \sim \mathcal{N}\left(0, \sigma_{c}^{2}\right)
\end{aligned}
$$

Gaussians are closed under linear transformations: so are GPs

$$
\begin{aligned}
m(x) & =\mathbb{E}_{m, c}[g(x)]=\mathbb{E}_{m, c}[m x+c]=0 \\
\Sigma\left(x, x^{\prime}\right) & =\mathbb{E}_{m, c}\left[g(x) g\left(x^{\prime}\right)\right]=\mathbb{E}_{m, c}\left[(m x+c)\left(m x^{\prime}+c\right)\right]=\mathbb{E}_{m}\left[m^{2}\right] x x^{\prime}+\mathbb{E}_{c}\left[c^{2}\right]
\end{aligned}
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.
2. Random linear model

$$
g(x)=m x+c
$$

$$
\begin{aligned}
m & \sim \mathcal{N}\left(0, \sigma_{m}^{2}\right) \\
c & \sim \mathcal{N}\left(0, \sigma_{c}^{2}\right)
\end{aligned}
$$

Gaussians are closed under linear transformations: so are GPs

$$
\begin{aligned}
m(x) & =\mathbb{E}_{m, c}[g(x)]=\mathbb{E}_{m, c}[m x+c]=0 \\
\begin{aligned}
\Sigma\left(x, x^{\prime}\right) & =\mathbb{E}_{m, c}\left[g(x) g\left(x^{\prime}\right)\right]=\mathbb{E}_{m, c}\left[(m x+c)\left(m x^{\prime}+c\right)\right]
\end{aligned} & =\mathbb{E}_{m}\left[m^{2}\right] x x^{\prime}+\mathbb{E}_{c}\left[c^{2}\right] \\
& =\sigma_{m}^{2} x x^{\prime}+\sigma_{c}^{2}
\end{aligned}
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.
2. Random linear model

$$
g(x)=m x+c
$$

$$
\begin{aligned}
m & \sim \mathcal{N}\left(0, \sigma_{m}^{2}\right) \\
c & \sim \mathcal{N}\left(0, \sigma_{c}^{2}\right)
\end{aligned}
$$

Gaussians are closed under linear transformations: so are GPs

$$
m(x)=0
$$

$$
\Sigma\left(x, x^{\prime}\right)=\sigma_{m}^{2} x x^{\prime}+\sigma_{c}^{2}
$$

GPs encompass Bayesian linear regression
Not all GPs are non-parametric (infinite numbers of parameters)

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.
3. Random sinusoid model

$$
a \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

$$
h(x)=a \cos (\omega t)+b \sin (\omega t) \quad b \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.
3. Random sinusoid model

$$
a \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

$$
h(x)=a \cos (\omega t)+b \sin (\omega t) \quad b \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Gaussians are closed under linear transformations: so are GPs

$$
\begin{aligned}
m(x) & =0 \\
\Sigma\left(x, x^{\prime}\right) & =\mathbb{E}_{m, c}\left[h(x) h\left(x^{\prime}\right)\right]
\end{aligned}
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.
3. Random sinusoid model

$$
a \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

$$
h(x)=a \cos (\omega t)+b \sin (\omega t) \quad b \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Gaussians are closed under linear transformations: so are GPs

$$
\begin{aligned}
m(x) & =0 \\
\Sigma\left(x, x^{\prime}\right) & =\mathbb{E}_{m, c}\left[h(x) h\left(x^{\prime}\right)\right] \\
& =\mathbb{E}_{a, b}\left[(a \cos (\omega x)+b \sin (\omega x))\left(a \cos \left(\omega x^{\prime}\right)+b \sin \left(\omega x^{\prime}\right)\right)\right]
\end{aligned}
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.
3. Random sinusoid model

$$
h(x)=a \cos (\omega t)+b \sin (\omega t)
$$

$$
\begin{aligned}
a & \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
b & \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Gaussians are closed under linear transformations: so are GPs

$$
\begin{aligned}
m(x) & =0 \\
\Sigma\left(x, x^{\prime}\right) & =\mathbb{E}_{m, c}\left[h(x) h\left(x^{\prime}\right)\right] \\
& =\mathbb{E}_{a, b}\left[(a \cos (\omega x)+b \sin (\omega x))\left(a \cos \left(\omega x^{\prime}\right)+b \sin \left(\omega x^{\prime}\right)\right)\right] \\
& =\mathbb{E}_{a}\left[a^{2}\right] \cos (\omega x) \cos \left(\omega x^{\prime}\right)+\mathbb{E}_{b}\left[b^{2}\right] \sin (\omega x) \sin \left(\omega x^{\prime}\right)
\end{aligned}
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.
3. Random sinusoid model

$$
h(x)=a \cos (\omega t)+b \sin (\omega t)
$$

$$
\begin{aligned}
a & \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
b & \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Gaussians are closed under linear transformations: so are GPs

$$
\begin{aligned}
m(x) & =0 \\
\Sigma\left(x, x^{\prime}\right) & =\mathbb{E}_{m, c}\left[h(x) h\left(x^{\prime}\right)\right] \\
& =\mathbb{E}_{a, b}\left[(a \cos (\omega x)+b \sin (\omega x))\left(a \cos \left(\omega x^{\prime}\right)+b \sin \left(\omega x^{\prime}\right)\right)\right] \\
& =\mathbb{E}_{a}\left[a^{2}\right] \cos (\omega x) \cos \left(\omega x^{\prime}\right)+\mathbb{E}_{b}\left[b^{2}\right] \sin (\omega x) \sin \left(\omega x^{\prime}\right) \\
& =\sigma^{2} \cos (\omega x) \cos \left(\omega x^{\prime}\right)+\sigma^{2} \sin (\omega x) \sin \left(\omega x^{\prime}\right)
\end{aligned}
$$

Big fat covariance function quiz
Which are GPs? Compute the GPs mean and covariance functions.
3. Random sinusoid model

$$
h(x)=a \cos (\omega t)+b \sin (\omega t)
$$

$$
\begin{aligned}
a & \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
b & \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Gaussians are closed under linear transformations: so are GPs

$$
\begin{aligned}
m(x) & =0 \\
\Sigma\left(x, x^{\prime}\right) & =\mathbb{E}_{m, c}\left[h(x) h\left(x^{\prime}\right)\right] \\
& =\mathbb{E}_{a, b}\left[(a \cos (\omega x)+b \sin (\omega x))\left(a \cos \left(\omega x^{\prime}\right)+b \sin \left(\omega x^{\prime}\right)\right)\right] \\
& =\mathbb{E}_{a}\left[a^{2}\right] \cos (\omega x) \cos \left(\omega x^{\prime}\right)+\mathbb{E}_{b}\left[b^{2}\right] \sin (\omega x) \sin \left(\omega x^{\prime}\right) \\
& =\sigma^{2} \cos (\omega x) \cos \left(\omega x^{\prime}\right)+\sigma^{2} \sin (\omega x) \sin \left(\omega x^{\prime}\right)=\sigma^{2} \cos \left(\omega\left(x-x^{\prime}\right)\right)
\end{aligned}
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.
3. Random sinusoid model

$$
\begin{aligned}
a & \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
b & \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Gaussians are closed under linear transformations: so are GPs

$$
\begin{aligned}
m(x) & =0 & \text { GPs can model periodic structure } \\
\Sigma\left(x, x^{\prime}\right) & =\sigma^{2} \cos \left(\omega\left(x-x^{\prime}\right)\right) &
\end{aligned}
$$

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.
3. Random sinusoid model

$$
\begin{aligned}
a & \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
b & \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Gaussians are closed under linear transformations: so are GPs

$$
\begin{aligned}
m(x) & =0 \\
\Sigma\left(x, x^{\prime}\right) & =\sigma^{2} \cos \left(\omega\left(x-x^{\prime}\right)\right)
\end{aligned}
$$

GPs can model periodic structure
Sums of sinusoidal basis functions connects GPs to Fourier series and Fourier transforms

Big fat covariance function quiz

Which are GPs? Compute the GPs mean and covariance functions.
3. Random sinusoid model

$$
h(x)=a \cos (\omega t)+b \sin (\omega t)
$$

$$
\begin{aligned}
a & \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
b & \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Gaussians are closed under linear transformations: so are GPs

$$
\begin{array}{rr}
m(x)=0 & \text { GPs can model periodic structure } \\
\left(x, x^{\prime}\right)=\sigma^{2} \cos \left(\omega\left(x-x^{\prime}\right)\right) & \text { Sums of sinusoidal basis functions connects GPs to } \\
\text { Sourier series and Fourier transforms }
\end{array}
$$

Bochner's theorem: Any stationary covariance function can be written as:

$$
\Sigma\left(x-x^{\prime}\right)=\int \sigma^{2}(\omega) \cos \left(\omega\left(x-x^{\prime}\right)\right) \mathrm{d} \omega
$$

roughly, the function comprises "an uncountably infinite sum of random sins and cosines"

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

Basis function view of Gaussian processes

$$
\begin{aligned}
& \gamma_{k} \sim \mathcal{N}(0,1) \quad m(x)=\langle f(x)\rangle \\
& g_{k}(\mathrm{x})=\frac{1}{\sqrt{K}} \mathrm{e}^{-\frac{1}{1^{2}}(\mathrm{x}-k / K)^{2}} \\
& f(\mathrm{x})=\sum_{k=1}^{K} \gamma_{k} g_{k}(\mathrm{x})
\end{aligned}
$$

Basis function view of Gaussian processes

$$
\begin{aligned}
& \gamma_{k} \sim \mathcal{N}(0,1) \quad m(\mathrm{x})=\left\langle\sum_{k} \gamma_{k} g_{k}(\mathrm{x})\right\rangle \\
& g_{k}(\mathrm{x})=\frac{1}{\sqrt{K}} \mathrm{e}^{-\frac{1}{1^{2}(\mathrm{x}-k / K)^{2}}} \\
& f(\mathrm{x})=\sum_{k=1}^{K} \gamma_{k} g_{k}(\mathrm{x})
\end{aligned}
$$

Basis function view of Gaussian processes

$$
\begin{aligned}
& \gamma_{k} \sim \mathcal{N}(0,1) \quad m(\mathrm{x})=\sum_{k}\left\langle\gamma_{k}\right\rangle g_{k}(\mathrm{x}) \\
& g_{k}(\mathrm{x})=\frac{1}{\sqrt{K}} \mathrm{e}^{-\frac{1}{1^{2}(\mathrm{x}-k / K)^{2}}} \\
& f(\mathrm{x})=\sum_{k=1}^{K} \gamma_{k} g_{k}(\mathrm{x})
\end{aligned}
$$

Basis function view of Gaussian processes

$$
\begin{aligned}
& \gamma_{k} \sim \mathcal{N}(0,1) \\
& g_{k}(\mathrm{x})=\frac{1}{\sqrt{K}} \mathrm{e}^{-\frac{1}{12}(\mathrm{x}-k / K)^{2}} \\
& f(\mathrm{x})=\sum_{k=1}^{K} \gamma_{k} g_{k}(\mathrm{x})
\end{aligned}
$$

Basis function view of Gaussian processes

$$
\begin{aligned}
& \gamma_{k} \sim \mathcal{N}(0,1) \\
& \left.g_{k}(\mathrm{x})=\frac{1}{\sqrt{K}} \mathrm{e}^{-\frac{1}{12}(\mathrm{x}-k / K)^{2}}\right\} \\
& \mathrm{K}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\left\langle f(\mathrm{x}) f\left(\mathrm{x}^{\prime}\right)\right\rangle
\end{aligned}
$$

Basis function view of Gaussian processes

$$
\begin{aligned}
& \gamma_{k} \sim \mathcal{N}(0,1) \quad\left\{\begin{array}{l}
m(\mathrm{x})=0 \\
\mathrm{~K}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\left\langle\sum_{k} \gamma_{k} g_{k}(\mathrm{x}) \sum_{k^{\prime}} \gamma_{k^{\prime}} g_{k^{\prime}}\left(\mathrm{x}^{\prime}\right)\right\rangle
\end{array}\right. \\
& g_{k}(\mathrm{x})=\frac{1}{\sqrt{K}} \mathrm{e}^{-\frac{1}{1^{2}}(\mathrm{x}-k / K)^{2}} \\
& f(\mathrm{x})=\sum_{k=1}^{K} \gamma_{k} g_{k}(\mathrm{x})
\end{aligned}
$$

Basis function view of Gaussian processes

$$
\begin{aligned}
& \gamma_{k} \sim \mathcal{N}(0,1) \\
& \left.\left.g_{k}(\mathrm{x})=\frac{1}{\sqrt{K}} \mathrm{e}^{-\frac{1}{12}(x-k / K)^{2}}\right\} \begin{array}{l}
m(\mathrm{x})=0 \\
\mathrm{~K}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\sum_{k, k^{\prime}}\left\langle\gamma_{k} \gamma_{k^{\prime}}\right\rangle g_{k}(\mathrm{x}) g_{k^{\prime}}\left(\mathrm{x}^{\prime}\right)
\end{array}\right\}=\sum_{k=1}^{K} \gamma_{k} g_{k}(\mathrm{x})
\end{aligned}
$$

Basis function view of Gaussian processes

$$
\begin{aligned}
& \gamma_{k} \sim \mathcal{N}(0,1) \\
& \left.\left.g_{k}(\mathrm{x})=\frac{1}{\sqrt{K}} \mathrm{e}^{-\frac{1}{2}(\mathrm{x}-k / K)^{2}}\right\} \begin{array}{l}
m(\mathrm{x})=0 \\
\mathrm{~K}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\sum_{k, k^{\prime}} \delta_{k, k^{\prime}} g_{k}(\mathrm{x}) g_{k^{\prime}}\left(\mathrm{x}^{\prime}\right)
\end{array}\right\}=\sum_{k=1}^{K} \gamma_{k} g_{k}(\mathrm{x})
\end{aligned}
$$

Basis function view of Gaussian processes

$$
\begin{aligned}
& \gamma_{k} \sim \mathcal{N}(0,1) \\
& g_{k}(\mathrm{x})=\frac{1}{\sqrt{K}} \mathrm{e}^{-\frac{1}{1^{2}}(\mathrm{x}-k / K)^{2}} \\
& f(\mathrm{x})=\sum_{k=1}^{K} \gamma_{k} g_{k}(\mathrm{x})
\end{aligned}
$$

Basis function view of Gaussian processes

Basis function view of Gaussian processes

$$
\begin{aligned}
& \gamma_{k} \sim \mathcal{N}(0,1) \\
& m(x)=0 \\
& \mathrm{~K}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\sum_{k} g_{k}(\mathrm{x}) g_{k}\left(\mathrm{x}^{\prime}\right) \\
& =\frac{1}{K} \sum_{k} \mathrm{e}^{-\frac{1}{1^{2}}(\mathrm{x}-k / K)^{2}-\frac{1}{1^{2}}\left(\mathrm{x}^{\prime}-k / K\right)^{2}} \\
& \underset{K \rightarrow \infty}{\longrightarrow} \int d u \mathrm{e}^{-\frac{1}{1^{2}}(\mathrm{x}-u)^{2}-\frac{1}{1^{2}}\left(\mathrm{x}^{\prime}-u\right)^{2}}
\end{aligned}
$$

Basis function view of Gaussian processes

$$
\begin{aligned}
& \gamma_{k} \sim \mathcal{N}(0,1) \\
& m(\mathrm{x})=0 \\
& \mathrm{~K}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\sum_{k} g_{k}(\mathrm{x}) g_{k}\left(\mathrm{x}^{\prime}\right) \\
& =\frac{1}{K} \sum_{k} \mathrm{e}^{-\frac{1}{1^{2}}(\mathrm{x}-k / K)^{2}-\frac{1}{1^{2}}\left(\mathrm{x}^{\prime}-k / K\right)^{2}} \\
& \underset{K \rightarrow \infty}{\longrightarrow} \int d u \mathrm{e}^{-\frac{1}{1^{2}}(\mathrm{x}-u)^{2}-\frac{1}{1^{2}}\left(\mathrm{x}^{\prime}-u\right)^{2}} \\
& \propto \mathrm{e}^{-\frac{1}{21^{2}}\left(x-x^{\prime}\right)^{2}}
\end{aligned}
$$

Basis function view of Gaussian processes

$$
\begin{aligned}
& \gamma_{k} \sim \mathcal{N}(0,1) \\
& m(x)=0 \\
& \mathrm{~K}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\sum_{k} g_{k}(\mathrm{x}) g_{k}\left(\mathrm{x}^{\prime}\right) \\
& =\frac{1}{K} \sum_{k} \mathrm{e}^{-\frac{1}{1^{2}}(\mathrm{x}-k / K)^{2}-\frac{1}{1^{2}}\left(\mathrm{x}^{\prime}-k / K\right)^{2}} \\
& \underset{K \rightarrow \infty}{\longrightarrow} \int d u \mathrm{e}^{-\frac{1}{1^{2}}(\mathrm{x}-u)^{2}-\frac{1}{1^{2}}\left(\mathrm{x}^{\prime}-u\right)^{2}} \\
& \propto \mathrm{e}^{-\frac{1}{21^{2}}\left(x-x^{\prime}\right)^{2}}
\end{aligned}
$$

Gaussian processes \equiv models with ∞ parameters

A selection of GP models

probabilistic model

linear	neural network
mappings	mappings
$f(x)=W x$	$f(x)=\mathrm{NN}(x ; W)$

mappings
$f(x)=\mathrm{NN}(x ; W)$

Gaussian Process
mappings
$f(x) \sim \mathcal{G P}$

A selection of GP models

probabilistic model	linear mappings $f(x)=W x$	neural network mappings	Gaussian Process mappings
		$f(x)=\mathrm{NN}(x ; W)$	$f(x) \sim \mathcal{G P}$

A selection of GP models

probabilistic model	linear mappings $f(x)=W x$	neural network mappings	Gaussian Process mappings
	observed	linear	$f(x)=\mathrm{NN}(x ; W)$

A selection of GP models

probabilistic model	linear mappings $f(x)=W x$	neural network mappings	Gaussian Process mappings
	observed	linear	$f(x)=\mathrm{NN}(x ; W)$

A selection of GP models

A selection of GP models

A selection of GP models

A selection of GP models

probabilistic model		linear mappings	neural network mappings	Gaussian Process mappings $f(x)=W x$
$f(x)=\operatorname{NN}(x ; W)$				

A selection of GP models

A selection of GP models

\(\left.$$
\begin{array}{cccc}\hline \begin{array}{c}\text { probabilistic } \\
\text { model }\end{array} & \begin{array}{c}\text { linear } \\
\text { mappings }\end{array} & \begin{array}{c}\text { neural network } \\
\text { mappings }\end{array} & \begin{array}{c}\text { Gaussian Process } \\
\text { mappings }\end{array}
$$

f(x)=W x\end{array}\right]\)| $f(x)=\operatorname{NN}(x ; W)$ |
| :---: |

A selection of GP models

A selection of GP models

$\left.\begin{array}{cccc}\hline \begin{array}{c}\text { probabilistic } \\ \text { model }\end{array} & \begin{array}{c}\text { linear } \\ \text { mappings }\end{array} & \begin{array}{c}\text { neural network } \\ \text { mappings }\end{array} & \begin{array}{c}\text { Gaussian Process } \\ \text { mappings }\end{array} \\ f(x)=W x\end{array}\right)$

A selection of GP models

Strengths

- interpretable machine learning (covariance functions specify easy-to-explain high-level properties of functions)
- data-efficient machine learning (non-parametric + Bayesian \Longrightarrow lots of flexibility + avoid overfitting)
- decision making (well-calibrated uncertainties: knows when it does not know)
- automated machine learning including probabilistic numerics (regression and classification are rock-solid)

Weaknesses

- Large numbers of datapoints $\left(N \leq 10^{5}\right.$ unless there is special structure, due to covariance matrix inversion \& storage)
- High-dimensional inputs spaces $\left(D \leq 10^{2}\right.$ unless there is special structure, due to need to compute pair-wise elements of covariance function)

Interpretable auto-ML: the automatic statistician

Interpretable auto-ML: the automatic statistician

Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified four additive components in the data.

- A linearly increasing function.
- An approximately periodic function with a period of 1.0 years and with approximately linearly increasing amplitude.
- A smooth function.
- Uncorrelated noise with linearly increasing standard deviation.

Interpretable auto-ML: the automatic statistician

Figure 1: Raw data (left) and model posterior with extrapolation (right)

$$
\Sigma\left(t, t^{\prime}\right)=\Sigma_{1}\left(t, t^{\prime}\right)+\Sigma_{2}\left(t, t^{\prime}\right)+\Sigma_{3}\left(t, t^{\prime}\right)+\Sigma_{4}\left(t, t^{\prime}\right)+\Sigma_{5}\left(t, t^{\prime}\right)
$$

The structure search algorithm has identified four additive components in the data.

- A linearly increasing function.
- An approximately periodic function with a period of 1.0 years and with approximately linearly increasing amplitude.
- A smooth function.
- Uncorrelated noise with linearly increasing standard deviation.

Interpretable auto-ML: the automatic statistician

Figure 1: Raw data (left) and model posterior with extrapolation (right)

$$
\Sigma\left(t, t^{\prime}\right)=\Sigma_{1}\left(t, t^{\prime}\right)+\Sigma_{2}\left(t, t^{\prime}\right)+\Sigma_{3}\left(t, t^{\prime}\right)+\Sigma_{4}\left(t, t^{\prime}\right)+\Sigma_{5}\left(t, t^{\prime}\right)
$$

The structure search algorithm has identified four additive components in the data.

- A linearly increasing function. $\longleftarrow \Sigma_{1}\left(t, t^{\prime}\right)=\sigma_{m}^{2} t t^{\prime}+\sigma_{c}^{2}$
- An approximately periodic function with a period of 1.0 years and with approximately linearly increasing amplitude.
- A smooth function.
- Uncorrelated noise with linearly increasing standard deviation.

Interpretable auto-ML: the automatic statistician

Figure 1: Raw data (left) and model posterior with extrapolation (right)

$$
\Sigma\left(t, t^{\prime}\right)=\Sigma_{1}\left(t, t^{\prime}\right)+\Sigma_{2}\left(t, t^{\prime}\right)+\Sigma_{3}\left(t, t^{\prime}\right)+\Sigma_{4}\left(t, t^{\prime}\right)+\Sigma_{5}\left(t, t^{\prime}\right)
$$

The structure search algorithm has identified four additive components in the data.

- A linearly increasing function. $\Sigma_{1}\left(t, t^{\prime}\right)=\sigma_{m}^{2} t t^{\prime}+\sigma_{c}^{2}$
- An approximately periodic function with a period of 1.0 years and with approximately linearly increasing amplitude.
- A smooth function.

$$
\Sigma_{2}\left(t, t^{\prime}\right)=\mathrm{SE}\left(t, t^{\prime}\right) \exp \left(k \cos \left(\omega\left(t-t^{\prime}\right)\right)\right)
$$

- Uncorrelated noise with linearly increasing standard deviation.

Interpretable auto-ML: the automatic statistician

$\Sigma_{3}\left(t, t^{\prime}\right)=\mathrm{SE}\left(t, t^{\prime}\right)$ Raw data (left) and model posterior with extrapolation (right)

$$
\Sigma\left(t, t^{\prime}\right)=\Sigma_{1}\left(t, t^{\prime}\right)+\Sigma_{2}\left(t, t^{\prime}\right)+\Sigma_{3}\left(t, t^{\prime}\right)+\Sigma_{4}\left(t, t^{\prime}\right)+\Sigma_{5}\left(t, t^{\prime}\right)
$$

The structure search algorithm has identified four additive components in the data.

- A linearly increasing function. $\longleftarrow \Sigma_{1}\left(t, t^{\prime}\right)=\sigma_{m}^{2} t t^{\prime}+\sigma_{c}^{2}$
- An approximately periodic function with a period of 1.0 years and with approximately linearly increasing amplitude.

$$
\Sigma_{2}\left(t, t^{\prime}\right)=\mathrm{SE}\left(t, t^{\prime}\right) \exp \left(k \cos \left(\omega\left(t-t^{\prime}\right)\right)\right)
$$

- Uncorrelated noise with linearly increasing standard deviation.

Interpretable auto-ML: the automatic statistician

$\Sigma_{3}\left(t, t^{\prime}\right)=\mathrm{SE}\left(t, t^{\prime}\right)$ Raw data (left) and model posterior with extrapolation (right)

$$
\Sigma\left(t, t^{\prime}\right)=\Sigma_{1}\left(t, t^{\prime}\right)+\Sigma_{2}\left(t, t^{\prime}\right)+\Sigma_{3}\left(t, t^{\prime}\right)+\Sigma_{4}\left(t, t^{\prime}\right)+\Sigma_{5}\left(t, t^{\prime}\right)
$$

The structure search algorithm has identified four additive components in the data.

- A linearly increasing function. $\longleftarrow \Sigma_{1}\left(t, t^{\prime}\right)=\sigma_{m}^{2} t t^{\prime}+\sigma_{c}^{2}$
- An approximately periodic function with a period of 1.0 years and with approximately linearly increasing amplitude.

$$
\Sigma_{2}\left(t, t^{\prime}\right)=\mathrm{SE}\left(t, t^{\prime}\right) \exp \left(k \cos \left(\omega\left(t-t^{\prime}\right)\right)\right)
$$

- Uncorrelated noise with linearly increasing standard deviation.
 $\Sigma_{4}\left(t, t^{\prime}\right)=\sigma_{\mathrm{y}}^{2} t \delta\left(t-t^{\prime}\right)$

Interpretable auto-ML: the automatic statistician

Data-efficient reinforcement learning: PILCO

Data-efficient reinforcement learning: PILCO

Data-efficient reinforcement learning: PILCO

Deep Gaussian Processes

$$
y(x)=f(x)+\sigma_{\mathrm{y}} \epsilon \quad f(x)=\mathcal{G} \mathcal{P}\left(0, K_{f}\left(x, x^{\prime}\right)\right)
$$

Deep Gaussian Processes

$$
y(x)=f(g(x))+\sigma_{\mathrm{y}} \epsilon \quad \begin{aligned}
& f(x)=\mathcal{G} \mathcal{P}\left(0, K_{f}\left(x, x^{\prime}\right)\right) \\
& \\
& g(x)=\mathcal{G} \mathcal{P}\left(0, K_{g}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

Deep Gaussian Processes

$$
y(x)=f(g(x))+\sigma_{\mathrm{y}} \epsilon \quad \begin{aligned}
& f(x)=\mathcal{G} \mathcal{P}\left(0, K_{f}\left(x, x^{\prime}\right)\right) \\
& g(x)=\mathcal{G} \mathcal{P}\left(0, K_{g}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

input

Deep Gaussian Processes

$$
y(x)=f(g(x))+\sigma_{\mathrm{y}} \epsilon \quad \begin{aligned}
& f(x)=\mathcal{G} \mathcal{P}\left(0, K_{f}\left(x, x^{\prime}\right)\right) \\
& \\
& g(x)=\mathcal{G} \mathcal{P}\left(0, K_{g}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

Deep Gaussian Processes

$$
y(x)=f(g(x))+\sigma_{\mathrm{y}} \epsilon \quad \begin{aligned}
& f(x)=\mathcal{G} \mathcal{P}\left(0, K_{f}\left(x, x^{\prime}\right)\right) \\
& \\
& g(x)=\mathcal{G} \mathcal{P}\left(0, K_{g}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

input
Deep GP perform automatic kernel design

Experiment: Comparison to Bayesian neural networks [Best results]

BNN-deterministic	BNN-sampling	\bigcirc GP	< DGP

| -2.0 |
| :--- | :--- | :--- |

Experiment: Comparison to Bayesian neural networks [Best results]

BNN-deterministic	BNN-sampling	\bigcirc GP	< DGP

| -2.0 |
| :--- | :--- | :--- |

Experiment: Comparison to Bayesian neural networks [Best results]

| BNN-deterministic |
| :--- | :--- | :--- |

Experiment: Comparison to Bayesian neural networks [Best results]

Experiment: Comparison to Bayesian neural networks [Best results]

BNN-deterministic	BNN-sampling	GP	< DGP

Infinitely wide neural nets as GPs

inputs	activations	activities	outputs
x	$a=W x$	$h=\phi(a)$	$f=V h$

$$
f(x)=\mathrm{NN}(x ; W, V)
$$

Infinitely wide neural nets as GPs

inputs	activations	activities	outputs
x	$a=W x$	$h=\phi(a)$	$f=V h$

Infinitely wide neural nets as GPs

Infinitely wide neural nets as GPs

| inputs |
| :---: | :---: |
| x |\quad| activations |
| :--- |
| $a=W x$ | | activities |
| :---: |
| $h=\phi(a)$ |\quad| outputs |
| :--- |
| $f=V h$ |$\quad f(x)=\mathrm{NN}(x ; W, V) \rightarrow$?

Infinitely wide neural nets as GPs

Infinitely wide neural nets as GPs

Infinitely wide neural nets as GPs

inputs activations activities activations activities outputs x

Infinitely wide neural nets as GPs

inputs activations activities activations activities outputs

Infinitely wide neural nets as GPs

inputs activations activities activations activities outputs

Infinitely wide neural nets as GPs

inputs activations activities activations activities outputs		
x		$f(x) \sim \mathcal{G} \mathcal{P}$

Gaussian Processes in Disguise

- Wide neural networks (perhaps don't need to be so wide) and CNNs with many features

Gaussian Processes in Disguise

- Wide neural networks (perhaps don't need to be so wide) and CNNs with many features
- linear-in-the-parameters models with Gaussian priors: linear regression, RBF networks, ...

Gaussian Processes in Disguise

- Wide neural networks (perhaps don't need to be so wide) and CNNs with many features
- linear-in-the-parameters models with Gaussian priors: linear regression, RBF networks, ...
- Linear Gaussian State Space Model (Kalman Filter): $x_{t}=A x_{t-1}+Q^{1 / 2} \epsilon_{t}$ and $y_{t}=C x_{t}+R^{1 / 2} \eta_{t}$

Gaussian Processes in Disguise

- Wide neural networks (perhaps don't need to be so wide) and CNNs with many features
- linear-in-the-parameters models with Gaussian priors: linear regression, RBF networks, ...
- Linear Gaussian State Space Model (Kalman Filter): $x_{t}=A x_{t-1}+Q^{1 / 2} \epsilon_{t}$ and $y_{t}=C x_{t}+R^{1 / 2} \eta_{t}$
- Linear stochastic differential equations: $d X_{t}=a(t) X_{t} d t+b(t) d W_{t}$ where $W_{t}=$ Wiener Process aka Brownian motion

Gaussian Processes in Disguise

- Wide neural networks (perhaps don't need to be so wide) and CNNs with many features
- linear-in-the-parameters models with Gaussian priors: linear regression, RBF networks, ...
- Linear Gaussian State Space Model (Kalman Filter): $x_{t}=A x_{t-1}+Q^{1 / 2} \epsilon_{t}$ and $y_{t}=C x_{t}+R^{1 / 2} \eta_{t}$
- Linear stochastic differential equations: $d X_{t}=a(t) X_{t} d t+b(t) d W_{t}$ where $W_{t}=$ Wiener Process aka Brownian motion
- Krigging (geostatistics), splines (curve fitting), moving average processes, time-frequency analysis, ...

References (hyperlinked)

Gaussian Process Models

- Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data Lawrence, NIPS, 2005
- Local Distance Preservation in the GP-LVM through Back Constraints, Lawrence and Quinonero-Candela, ICML 2006

The Automatic Statistician

- The Automatic Statistician, Ghahramani et al., (website link)

GPs for Reinforcement Learning and Control

- PILCO: A Model-Based and Data-Efficient Approach to Policy Search, Deisenroth and Rasmussen, ICML 2011

GPs and Neural Networks

- Bayesian Learning for Neural Networks Neal, 1996
- Gaussian Process Behaviour in Wide Deep Neural Networks, Matthews et al., arXiv, 2018

