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Motivating application 2: non-linear regression
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Outline of the tutorial

An Introduction to GPs
I Mathematical foundations

I Hyper-parameter learning

I Covariance functions

I Multi-dimensional inputs

Using GPs: Models, Applications and Connections
I Models and more on covariance functions

I Applications

I Connections

GPs for large data and non-linear models
I Scaling through pseudo-data: changing the generative model

I Scaling through pseudo-data: variational Inference

I General Approximate inference
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GP regression: introducing notation

Q1. What's the formal justification for how we were using GPs for regression?

;

;

;

generative model (like non-linear regression)

place GP prior over the non-linear function

I

sum of Gaussian variables = Gaussian: induces a GP over 

(smoothly wiggling functions expected)
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GP regression: introducing notation

;

Q4. How do we make predictions?

;

prior 
uncertainty

predictive 
uncertainty

reduction in
uncertainty

linear in the data

predictive mean predictive covariance

predictions more confident than prior
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inputs

outputs

?

inference & learning

intractabilities
computational          

analytic 



Motivation: Gaussian Process Regression



A Brief History of Gaussian Process Approximations

FITC: Snelson et al. “Sparse Gaussian Processes using Pseudo-inputs”
PITC: Snelson et al. “Local and global sparse Gaussian process approximations”
EP: Csato and Opper 2002 / Qi et al. "Sparse-posterior Gaussian Processes for general likelihoods.” 
VFE: Titsias “Variational Learning of Inducing Variables in Sparse Gaussian Processes”
DTC / PP: Seeger et al. “Fast Forward Selection to Speed Up Sparse Gaussian Process Regression”
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A Brief History of Gaussian Process Approximations

approximate generative model
exact inference

exact generative model
approximate inference

methods employing
pseudo-data

FITC: Snelson et al. “Sparse Gaussian Processes using Pseudo-inputs”
PITC: Snelson et al. “Local and global sparse Gaussian process approximations”
EP: Csato and Opper 2002 / Qi et al. "Sparse-posterior Gaussian Processes for general likelihoods.” 
VFE: Titsias “Variational Learning of Inducing Variables in Sparse Gaussian Processes”
DTC / PP: Seeger et al. “Fast Forward Selection to Speed Up Sparse Gaussian Process Regression”

VFE
EP
PP

FITC
PITC
DTC

A Unifying View of Sparse 
Approximate Gaussian 
Process Regression
Quinonero-Candela & 
Rasmussen, 2005
(FITC, PITC, DTC)

A Unifying Framework for 
Sparse Gaussian Process 
Approximation using 
Power Expectation 
Propagation
Bui, Yan and Turner, 2016
(VFE, EP, FITC, PITC ...)
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factor graph examples

what is the minimal factor graph for this multivariate Gaussian?

4 dimensional

solution:



A brief introduction to the Kullback-Leibler divergence

KL(p1(z)||p2(z)) =
ÿ

z
p1(z) log p1(z)

p2(z)
Important properties:

Gibb’s inequality: KL(p1(z)||p2(z)) Ø 0, equality at p1(z) = p2(z)
I proof via Jensen’s inequality or di�erentiation (see slide at end )

Non-symmetric: KL(p1(z)||p2(z)) ”= KL(p2(z)||p1(z))
I hence named divergence and not distance

Example:

binary variables z œ {0, 1}
p(z = 1) = 0.8 and q(z = 1) = fl

ρ
0 0.5  1

KL
(q

 ||
 p

)

0

2

4
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ρ
0 0.5  1

KL
(p

 ||
 q
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Fully independent training conditional (FITC) approximation

cost of computing likelihood is 

construct new generative model (with pseudo-data)
cheaper to perform exact learning and inference
calibrated to original 

indirect 
posterior 

approximation

original variances along diagonal: stops variances collapsing 
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Fully independent training conditional (FITC) approximation

introduces parametric bottleneck into non-parametric model

(although in a clever way)

if I see more data, should I add extra pseudo-data?

I unnatural from a generative modelling perspective

I natural from a prediction perspective (posterior gets more complex)

=∆ lost elegant separation of model, inference and approximation
example of prior approximation

Extensions:
methods for optimising pseudo-inputs (indirect approximations tend

to over-fit)

partially independent training conditional and tree-structured

approximations (see extra slides)
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Variational free-energy method (VFE)

true posteriorapproximate posterior

inputs locations of
 'pseudo' data

output locations 
and covariance
 'pseudo' data

same form as prediction 
from GP-regression

optimise variational free-energy wrt to these variational parameters
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Summary of VFE method

optimisation pseudo point inputs better behaved in VFE methods

(direct posterior approximation)

variational methods known to underfit (and have other biases)

no augmentation required: target is posterior over functions,
which includes inducing variables

I pseudo-input locations are pure variational parameters (do not

parameterise the generative mdoel)

I coherent way of adding pseudo-data: more complex posteriors require

more computational resources (more pseudo-points)

Curious observation:

VFE returns better mean estimates
FITC returns better error-bar estimates
how should we select M = number of pseudo-points?
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Power Expectation Propagation
and Gaussian Processes



A Brief History of Gaussian Process Approximations

approximate generative model
exact inference

exact generative model
approximate inference

methods employing
pseudo-data

FITC: Snelson et al. “Sparse Gaussian Processes using Pseudo-inputs”
PITC: Snelson et al. “Local and global sparse Gaussian process approximations”
EP: Csato and Opper 2002 / Qi et al. "Sparse-posterior Gaussian Processes for general likelihoods.” 
VFE: Titsias “Variational Learning of Inducing Variables in Sparse Gaussian Processes”
DTC / PP: Seeger et al. “Fast Forward Selection to Speed Up Sparse Gaussian Process Regression”

VFE
EP
PP

FITC
PITC
DTC

A Unifying View of Sparse 
Approximate Gaussian 
Process Regression
Quinonero-Candela & 
Rasmussen, 2005
(FITC, PITC, DTC)

A Unifying Framework for 
Sparse Gaussian Process 
Approximation using 
Power Expectation 
Propagation
Bui, Yan and Turner, 2016
(VFE, EP, FITC, PITC ...)
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EP pseudo-point approximation

input locations of
 'pseudo' data

outputs and covariance
 'pseudo' data

true posterior approximate posterior

marginal
likelihood

posterior

exact joint 
of new GP 
regression

model
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approximate generative model
exact inference

exact generative model
approximate inference

methods employing
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FITC: Snelson et al. “Sparse Gaussian Processes using Pseudo-inputs”
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VFE
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FITC
PITC
DTC

interpretation resolves issues with FITC: 
why does it work so well?

are we allowed to increase M with N

A Unifying View of Sparse 
Approximate Gaussian 
Process Regression
Quinonero-Candela & 
Rasmussen, 2005
(FITC, PITC, DTC)

A Unifying Framework for 
Sparse Gaussian Process 
Approximation using 
Power Expectation 
Propagation
Bui, Yan and Turner, 2016
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Power EP algorithm (as tractable as EP)

1. remove

2. include

3. project

4. update

take out fraction of
pseudo-observation

likelihood

add in fraction of
true observation

likelihood

project onto
approximating

family

update
pseudo-observation

likelihood

cavity
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1. minimum: moments matched at pseudo-inputs
2. Gaussian regression: matches moments everywhere
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Power EP: a unifying framework

FITC
Csato and Opper, 2002

Snelson and Ghahramani, 2005

VFE
Titsias, 2009



Power EP: a unifying framework

GP Regression GP Classification

PEP
VFE

EP

inter-dom
ain

[4] Quiñonero-Candela et al. 2005
[5] Snelson et al., 2005
[6] Snelson, 2006
[7] Schwaighofer, 2002 

[10,5,6*]

[14*]

[12*,15*]

[13][17,13]

[9,11,8*]

[16*] inter-dom
ain

 structured
approx.

 structured
approx.

(FITC)

[7,4*,6*]
(PITC)

[8] Titsias, 2009
[9] Csató, 2002
[10] Csató et al., 2002
[11] Seeger et al., 2003

[12] Naish-Guzman et al, 2007
[13] Qi et al., 2010
[14] Hensman et al., 2015
[15] Hernández-Lobato et al., 2016
[16] Matthews et al., 2016
[17] Figueiras-Vidal et al., 2009
 

PEP
VFE

EP

* = optimised pseudo-inputs              
** = structured versions of VFE recover VFE

** **



How should I set the power parameter –?

6 UCI classification datasets
20 random splits
M = 10, 50, 100

hypers and inducing 
inputs optimised

8 UCI regression datasets
20 random splits

M = 0 - 200
hypers and inducing 

inputs optimised
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= 0.5  does well on average
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Appendix: proof of KL divergence properties

Minimise Kullback Leibler divergence (relative entropy) KL(q(x)||p(x)):
add Lagrange multiplier (enforce q(x) normalises), take variational

derivatives:

”

”q(x)
Ë ⁄

q(x) log q(x)
p(x)dx + ⁄

!
1 ≠

⁄
q(x)dx

"È
= log q(x)

p(x) + 1 ≠ ⁄.

Find staionary point by setting the derivative to zero:

q(x) = exp(⁄≠1)p(x), normalization conditon ⁄ = 1, so q(x) = p(x),

which corresponds to a minimum, since the second derivative is positive:

”2

”q(x)”q(x)KL(q(x)||p(x)) = 1
q(x) > 0.

The minimum value attained at q(x) = p(x) is KL(p(x)||p(x)) = 0,

showing that KL(q(x)||p(x))
is non-negative and it attains its minimum 0 when p(x) and q(x) are

equal


