
An introduction to Bayesian nonparametrics
Lecture 1: The Dirichlet process

Sinead Williamson

MLSS Madrid 2018

Sinead Williamson Bayesian nonparametrics 1 / 86



Lecture Overview

Lecture 1: The Dirichlet process
What is Bayesian nonparametrics?
From Dirichlet distribution to Dirichlet Process
Representations
Inference

Lecture 2: The Indian buffet process
Lecture 3: Hierarchical nonparametric models

Sinead Williamson Bayesian nonparametrics 2 / 86



What is Bayesian nonparametrics?

In this summer school, you’ve seen various examples of Bayesian modeling.

General framework:
Come up with a class of models, parametrized by some set of parameters Θ.
Place a prior distribution over the parameters.
Update our posterior distribution as we see observations.

Challenge... how to choose a prior?

We want to capture intuitions about the data, while minimizing erroneous assumptions... this
can be hard!

How to choose the number of topics to model the New York Times?
What if our test set contains features not present in our training set?
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What is Bayesian nonparametrics?

A parametric Bayesian model is one with a fixed, pre-specified number of global parameters:
Bayesian linear regression: yi ∼ Normal(xTi β, σ

2), β is of fixed size.
Mixture of K Gaussians: K means, K covariances, one probability vector.

A nonparametric Bayesian model is not a model with no parameters...
It is a model where the number of parameters can grow with dataset size.

We achieve this by allowing an infinite number of parameters a priori.
However, a finite data set will only ever use a finite number of data points.

Bayesian linear regression Gaussian processes – we need infinitely many values to pin down the
function.
Mixture of K Gaussians Dirichlet process mixture model – infinitely many mixture
components a priori.
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Bayesian parametric models for clustering data

One obvious model: Mixture of three Gaussians, parametrized by a probability vector
π = (π1, π2, π3), three means µ1, µ2, µ3, three covariances Σ1,Σ2,Σ3.
For each data point,

Sample cluster indicator zi ∼ π
Sample xi ∼ Normal(µzi,Σzi)

This gives us a likelihood

p(x1, . . . , xN |π, {µk}, {Σk}) =
N∏
i=1

3∑
k=1

πkNormal(xn|µk,Σk)
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Bayesian mixture models

How to choose the mixing weights π and the mixture parameters {µk,Σk}?
Bayesian choice: Put a prior on them and integrate out:

p(x1, . . . , xN ) =

∫ ∫ ∫
p(x1, . . . , xN |π, {µk}, {Σk})︸ ︷︷ ︸

likelihood

p(π)
3∏

k=1

p(µk,Σk)︸ ︷︷ ︸
prior

dπdµkdΣk

Where possible, use conjugate priors:
Gaussian-inverse Wishart for mixture parameters
Dirichlet distribution for mixing weights

Let’s think about the Dirichlet distribution for a bit...
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The Dirichlet distribution: A distribution over probability vectors

The Dirichlet distribution is a distribution over the (K − 1)-dimensional simplex – in other words,
the space of all K-dimensional probability vectors.
Parametrized by α = (α1, . . . , αK) such that each αk ≥ 0 and

∑
k αk > 0.

The expected value of a Dirichlet random variable π is given by E[π] = (α1,...,αK)∑
k αk

The Dirichlet(1,1,1) distribution is the uniform distribution on the 2-simplex.
The Dirichlet(α, β) distribution is the Beta(α, β) distribution.
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The Dirichlet distribution: A distribution over probability vectors

The magnitude
∑

k αk of the parameters acts as an inverse variance.
Larger magnitude → more similar samples.
Smaller magnitude → sparser samples.
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The Dirichlet distribution: Conjugacy to the multinomial

There are a number of distributions over probability vectors... but the Dirichlet is nice because
it’s conjugate to the multinomial.
If π ∼ Dirichlet(α1, . . . , αK), then

p(π) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

παk−1
k

If xi
iid∼ π for i = 1, . . . , N , then

p(x1, . . . , xN |π) =
N !

m1! · · ·mK !

K∏
k=1

πmk

k

where mk =
∑

i I(xi = k)

So, the posterior takes the form

p(π|x1, . . . , xN ) ∝ p(x1 . . . xN |π)p(π) ∝
K∏
k=1

παk+mk−1
k

so, p(π|x1, . . . , xN ) = Dirichlet(π|α1 +m1, . . . , αK +mK)
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Combining and splitting elements

The Dirichlet distribution has a number of nice properties...

[Agglomeration property]

We can get a K − 1-dimensional Dirichlet distribution from a K-dimensional distribution.

If
(π1, . . . , πK) ∼ Dirichlet(α1, . . . , αK)

then
(π1 + π2, π3, . . . , πK) ∼ Dirichlet(α1 + α2, α3, . . . , αK)
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Combining and splitting elements

[Decimation property]

We can get a K + 1-dimensional Dirichlet(α1b, α1(1− b), α2, . . . , αK) distribution from a
K-dimensional Dirichlet(α1, α2, . . . , αK) distribution.

If
(π1, . . . , πK) ∼ Dirichlet(α1, . . . , αK)

and
θ ∼ Beta(α1b, α1(1− b)), 0 < b < 1

then
(π1θ1, π1(1− θ1), π2, . . . , πK) ∼ Dirichlet(α1b, α1(1− b) . . . , αK)
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Returning to the Bayesian mixture of Gaussians

Now we know about the Dirichlet distribution... we will return to our mixture of Gaussians.
Sample π ∼ Dirichlet(α1, α2, α3)
For each cluster, sample µk,Σk ∼ Normal-inverse Wishart(µ0, λ,Ψ, ν)
For the ith data point...

Sample a cluster indicator zi ∼ π.
Sample a location xi ∼ Normal(µzi ,Σzi)
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Bayesian mixture of Gaussians: Posterior inference

We can make use of conjugacy to sample from the posteriors of π, µ and Σ.
Conditioned on the indicators zi, then

π|z1, . . . , zN ∼ Dirichlet(α1 +m1, α2 +m2, α3 +m3)

where mk =
∑N

i=1 I(xi = k).

Conditioned on π and the µk and Σk, we can sample from the posteriors of z:

P (zi = k|xi, π, µk,Σk) ∝ πkNormal(xi;µk,Σk)

Conditioned on all the observations xi s.t. zi = k, we can sample from the posteriors for µ and
Σ as in a standard normal model.

Alternatively, instead of explicitly sampling π, we can integrate it out.
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An urn representation

Conditioned on π, the cluster indicators are independent: p(zi = k|π) = πk.
When we integrate out π, they are no longer independent, and we have

p(zi = k|z1:i−1) =

∫
p(zi = k|π)p(π|z1:i−1)dπ =

∑i−1
j=1 I(zj = k) + αk

i− 1 +
∑

k αk

We can describe this using an urn analogy.

Start with K different colored balls, each of
size αk.
Pick a ball with probability proportional to its
size.
Return that ball, plus a unit-size ball of the
same color.
Repeat to build up dataset.
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Exchangeability

Does the probability of the ith ball being red depend on how many of the first i− 1 balls are red?

Of course! More red balls → more likely to pick a red ball.
The balls are not i.i.d.
Does changing the order of the sequence matter? Does p(r, r, r, b, g) = p(g, r, b, r, r)?
No! But this might not be as obvious... so we can double check

p(r, r, r, b, g) =
αr∑
k αk

αr + 1∑
k αk + 1

αr + 2∑
k αk + 2

αb∑
k αk + 3

αg∑
k αk + 3

p(g, r, b, r, r) =
αg∑
k αk

αr∑
k αk + 1

αb∑
k αk + 2

αr + 1∑
k αk + 3

αr + 2∑
k αk + 3

This property is known as exchangeability – the probability of a sequence is invariant to
permutations

Sinead Williamson Bayesian nonparametrics 15 / 86



Exchangeability

Does the probability of the ith ball being red depend on how many of the first i− 1 balls are red?
Of course! More red balls → more likely to pick a red ball.
The balls are not i.i.d.

Does changing the order of the sequence matter? Does p(r, r, r, b, g) = p(g, r, b, r, r)?
No! But this might not be as obvious... so we can double check

p(r, r, r, b, g) =
αr∑
k αk

αr + 1∑
k αk + 1

αr + 2∑
k αk + 2

αb∑
k αk + 3

αg∑
k αk + 3

p(g, r, b, r, r) =
αg∑
k αk

αr∑
k αk + 1

αb∑
k αk + 2

αr + 1∑
k αk + 3

αr + 2∑
k αk + 3

This property is known as exchangeability – the probability of a sequence is invariant to
permutations

Sinead Williamson Bayesian nonparametrics 15 / 86



Exchangeability

Does the probability of the ith ball being red depend on how many of the first i− 1 balls are red?
Of course! More red balls → more likely to pick a red ball.
The balls are not i.i.d.
Does changing the order of the sequence matter? Does p(r, r, r, b, g) = p(g, r, b, r, r)?

No! But this might not be as obvious... so we can double check

p(r, r, r, b, g) =
αr∑
k αk

αr + 1∑
k αk + 1

αr + 2∑
k αk + 2

αb∑
k αk + 3

αg∑
k αk + 3

p(g, r, b, r, r) =
αg∑
k αk

αr∑
k αk + 1

αb∑
k αk + 2

αr + 1∑
k αk + 3

αr + 2∑
k αk + 3

This property is known as exchangeability – the probability of a sequence is invariant to
permutations

Sinead Williamson Bayesian nonparametrics 15 / 86



Exchangeability

Does the probability of the ith ball being red depend on how many of the first i− 1 balls are red?
Of course! More red balls → more likely to pick a red ball.
The balls are not i.i.d.
Does changing the order of the sequence matter? Does p(r, r, r, b, g) = p(g, r, b, r, r)?
No! But this might not be as obvious... so we can double check

p(r, r, r, b, g) =
αr∑
k αk

αr + 1∑
k αk + 1

αr + 2∑
k αk + 2

αb∑
k αk + 3

αg∑
k αk + 3

p(g, r, b, r, r) =
αg∑
k αk

αr∑
k αk + 1

αb∑
k αk + 2

αr + 1∑
k αk + 3

αr + 2∑
k αk + 3

This property is known as exchangeability – the probability of a sequence is invariant to
permutations

Sinead Williamson Bayesian nonparametrics 15 / 86



Exchangeability

Does the probability of the ith ball being red depend on how many of the first i− 1 balls are red?
Of course! More red balls → more likely to pick a red ball.
The balls are not i.i.d.
Does changing the order of the sequence matter? Does p(r, r, r, b, g) = p(g, r, b, r, r)?
No! But this might not be as obvious... so we can double check

p(r, r, r, b, g) =
αr∑
k αk

αr + 1∑
k αk + 1

αr + 2∑
k αk + 2

αb∑
k αk + 3

αg∑
k αk + 3

p(g, r, b, r, r) =
αg∑
k αk

αr∑
k αk + 1

αb∑
k αk + 2

αr + 1∑
k αk + 3

αr + 2∑
k αk + 3

This property is known as exchangeability – the probability of a sequence is invariant to
permutations

Sinead Williamson Bayesian nonparametrics 15 / 86



Exchangeability

Does the probability of the ith ball being red depend on how many of the first i− 1 balls are red?
Of course! More red balls → more likely to pick a red ball.
The balls are not i.i.d.
Does changing the order of the sequence matter? Does p(r, r, r, b, g) = p(g, r, b, r, r)?
No! But this might not be as obvious... so we can double check

p(r, r, r, b, g) =
αr∑
k αk

αr + 1∑
k αk + 1

αr + 2∑
k αk + 2

αb∑
k αk + 3

αg∑
k αk + 3

p(g, r, b, r, r) =
αg∑
k αk

αr∑
k αk + 1

αb∑
k αk + 2

αr + 1∑
k αk + 3

αr + 2∑
k αk + 3

This property is known as exchangeability – the probability of a sequence is invariant to
permutations

Sinead Williamson Bayesian nonparametrics 15 / 86



Exchangeability

Does the probability of the ith ball being red depend on how many of the first i− 1 balls are red?
Of course! More red balls → more likely to pick a red ball.
The balls are not i.i.d.
Does changing the order of the sequence matter? Does p(r, r, r, b, g) = p(g, r, b, r, r)?
No! But this might not be as obvious... so we can double check

p(r, r, r, b, g) =
αr∑
k αk

αr + 1∑
k αk + 1

αr + 2∑
k αk + 2

αb∑
k αk + 3

αg∑
k αk + 3

p(g, r, b, r, r) =
αg∑
k αk

αr∑
k αk + 1

αb∑
k αk + 2

αr + 1∑
k αk + 3

αr + 2∑
k αk + 3

This property is known as exchangeability – the probability of a sequence is invariant to
permutations

Sinead Williamson Bayesian nonparametrics 15 / 86



Why does exchangeability matter?

Exchangeability allows us treat every data point as if it were the last one that we’ve seen.
We know that

p(zi = k|z1:i−1) =

∑i−1
j=1 I(zj = k) + αk

i− 1 +
∑

k αk

Instead of just conditioning on the first i− 1 data points, we can pretend the ith data point is
actually the last one we saw, so that

p(zi = k|z−i) =

∑
j 6=i I(zj = k) + αk

N − 1 +
∑

k αk

We can combine this with the cluster likelihood to get the posterior distribution

p(zi = k|xiz−i, {µk}, {Σk}) ∝
∑

j 6=i I(zj = k) + αk

N − 1 +
∑

k αk
Normal(xi|µk,Σk)

This makes it easy to construct a Gibbs sampler!
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Choosing the number of clusters

The Dirichlet distribution is a great choice when there is a clear, fixed number of clusters... but
sometimes that’s not the case.
Sometimes it’s hard to tell what the right number of clusters is...

Even if we have a good idea of how many clusters we have today... what if we see new clusters
tomorrow?
We should make sure we have more clusters than we actually need.
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Bayesian nonparametric mixture models

The finite mixture model had K mixture components:

p(xn|π, {µk}, {Σk}) =
K∑
k=1

πkNormal(xn|µk,Σk)

To make sure we never run out of clusters, no matter how many data points we see, we need
(countably) infinite clusters!

p(xn|π, {µk}, {Σk}) =
∞∑
k=1

πkNormal(xn|µk,Σk)

N data points will use at most N clusters.
However, if some of the πk are bigger than others, there will probably be fewer than N .
So, a finite data set will always use a finite—but random—number of clusters.
How to choose an appropriate prior?
We want something like a Dirichlet prior... but with an infinite number of components.
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Constructing an appropriate prior

Start off with
π(2) = (π

(2)
1 , π

(2)
2 ) ∼ Dirichlet

(
α
2 ,

α
2

)

Split each component according to our beta
splitting rule:

θ1, θ2
iid∼ Beta

(α
4
,
α

4

)
π(4) =

(
θ1π

(2)
1 , (1− θ1)π

(2)
1 , θ2π

(2)
2 , (1− θ2)π

(2)
2

)
∼ Dirichlet

(α
4
,
α

4
,
α

4
,
α

4

)
Repeat to get
π(K) ∼ Dirichlet(α/K, . . . , α/K)

As K →∞, we get a vector with infinitely
many components.
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0.0

0.2
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The Dirichlet process [Ferguson, 1973]

We can combine this with a mechanism for
generating parameter values.

Let π ∼ limK→∞ Dirichlet
(
α
K , . . . ,

α
K

)
Let H be a distribution on some space Ω...
e.g. a Gaussian distribution on the real line.
For k = 1, 2, . . . , sample θk ∼ H

Then G :=
∑∞

k=1 πkδθk is a probability
distribution over Ω.
Samples from the Dirichlet process are
discrete. We call the point masses, atoms
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Samples from the Dirichlet process

We write G ∼ DP (α,H)

The base measure H determines the
locations of the atoms.

The concentration parameter α
determines the distribution over atom sizes.
Small values of α give sparser distributions
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Dirichlet process and Dirichlet marginals

Consider a Dirichlet process on (0, 1) with uniform base measure H.
Pick any partition A1, . . . , AK of (0, 1), and sum up the atoms in each partition.

Remember: If (π1, π2, . . . , πK) ∼ Dirichlet(α1, α2, . . . , αK), then
(π1 + π2, π3 . . . , πK) ∼ Dirichlet(α1 + α2, α3, . . . , αK)
So, the weights assigned to the partition are Dirichlet(αH(A1), . . . , αH(AK))
This gives an alternative definition of the Dirichlet process: The (unique) distribution over Ω
such that, for a partition A1, . . . , AK of Θ,

(P (A1), . . . , P (AK)) ∼ Dirichlet(αH(A1), . . . , αH(AK))
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The Dirichlet process mixture model [Antoniak, 1974]

We can use the Dirichlet process in place of the Dirichlet distribution to construct a mixture
model with infinitely many clusters.

Sample a probability distribution G ∼ DP(α,H) where H is a normal-inverse Wishart
distribution (i.e. a distribution over means and covariances).
This gives us G =

∑
k πkδθk .

For each observation, sample a cluster indicator zi ∼ π, and set φi := (µi,Σi) = θzi .
Then, sample the observation xi ∼ Normal(µi,Σi)

The Dirichlet process has some similar properties to the Dirichlet distribution, that make
inference feasible.
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Conjugacy to the multinomial

We saw that the Dirichlet distribution was conjugate to the multinomial.
This is also true of the Dirichlet process!

Pick a partition A1, . . . , AK of Ω, and let P (Ak) be the mass assigned to Ak by
G ∼ Dirichlet(α,H).
Then (P (A1), . . . , P (Ak)) ∼ Dirichlet (αH(A1), . . . , αH(AK)).

If we see an observation in the jth segment, then we must have

(P (A1), . . . , P (Aj), . . . , P (Ak)) ∼ Dirichlet (αH(A1), . . . , αH(Aj) + 1, . . . , αH(AK))

This must be true for all possible partitions of Ω.
This is only possible if the posterior of G is given by

G|X1 = x ∼ DP
(
α + 1,

αH + δx
α + 1

)
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Predictive distribution

Remember, for the Dirichlet distribution we could integrate out π to get
P (zk = k|z−n) ∝

∑
i 6=j I(zj = k) + αk

We can do something similar for the Dirichlet process!

Let mk be the number of times we have seen Xi = θk in the first n observations – or equivalently
the number of times that Zi = k – and let K+ be the number of values we’ve seen so far.
The posterior distribution over G given n observations is

DP

(
α + n,

αH +
∑K+

k=1mkδθk
α + n

)
So, we have

P (Zn+1 = k|Z1:n) =

{
mk

n+α if k ≤ K+

α
n+α for new cluster

If we pick a new cluster, we sample it’s parameter from H.
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Polya urn scheme [Blackwell and MacQueen, 1973]

Again, we can describe this using an urn
analogy.

Start with one black ball, of size α.

Pick a ball with probability proportional to its
size.
If it’s the black ball, sample a new color from
H. Return the black ball plus a unit-size ball
of the new color.
If it’s a colored ball, return that ball, plus a
unit-size ball of the same color.
Note, we can always sample a new color (the
black ball is always there), but it gets less
likely as N grows.
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The Chinese restaurant process

We can also describe a sample from a DP-distributed probability distribution in terms of the following
restaurant metaphor.

Imagine a restaurant with infinitely many tables, each serving a different dish.

The first customer comes to the restaurant, and sits at the first table.
The second customer enters the restaurant. He sits at the first table with probability 1

1+α , or sits
at a new table with probability α

1+α .
Let mk be the number of people sat at the kth table. The nth customer sits at the kth table
with probability mk

n−1+α , or at a new table with probability 1
n−1+α .
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The Chinese restaurant process

We tend to sit at popular tables! This is known as the “rich-get-richer” property.
We can always add new tables – nonparametric.
For a given number of customers, the number of clusters is random.
We can show that the probability of an assignment of people to tables is exchangeable (if we
ignore the table ordering).
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Inference using the Chinese restaurant process

Since the cluster assignments are exchangeable, we can treat each customer as if he is the last.
So, conditioned on the other N − 1 observations, we know that the prior predictive probability of
the ith data point (customer) being in cluster (table) k is

P (zi = k|z−i) ∝

{
m−ik k ≤ K+

α new cluster

Each cluster (table) k is associated with a parameter (dish) θk – e.g. the mean and covariance of
a Gaussian.
So, the conditional probability of the ith data point xi being in cluster k is:

P (zi = k|xi, z−i) ∝

{
m−ik f(xi; θk) k ≤ K+

α
∫
f(xi; θ)dH(θ)new cluster

where f(x; θ) is the appropriate likelihood model.
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Collapsed inference using the Chinese restaurant process

This suggests a Gibbs sampler of the form:
For i = 1, . . . , N :

Sample the cluster allocation of the ith data point, given the conditional distribution

P (zi = k|xi, z−i) ∝

{
m−ik f(xi; θk) k ≤ K+

α
∫
f(xi; θ)dH(θ) new cluster

If the number of clusters grow or shrink, adjust our representation accordingly (add/delete
clusters)

For k = 1 : K+:
Sample the cluster parameters from their conditional distribution (unless they are integrated
out)
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Problems with the collapsed sampler

The collapsed sampler is easy to implement – but can have some problems
We are only updating one data point at a time.
Imagine two “true” clusters are merged into a single cluster – a single data point is unlikely to
“break away”.
Getting to the true distribution involves going through low probability states, so mixing can be
slow.
If the likelihood is not conjugate, integrating out parameter values for new features can be
difficult.

An alternative approach is to instantiate G, so we can update multiple data points at once.
Problem: G is infinite-dimensional!
Luckily, there is a nice representation that can help us...
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Stick breaking construction [Sethuraman, 1994]

Imagine a stick of unit length, representing the total probability.
For k = 1, 2, . . .

Sample a Beta(1, α) random variable bk
Break off a fraction bk of the stick. This is the first atom.
Sample a random location for this atom.
Recurse on the remaining stick to get:

bk ∼ Beta(1, α) πk = bk

k−1∏
j=1

(1− bk) θk ∼ H G =
∞∑
k=1

πkδθk

We can use the bk directly to obtain the cluster assignment.
Starting at the first cluster, choose cluster k with probability bk, else move on to the next cluster.
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Blocked Gibbs sampling using the stick breaking construction

This gives us an alternative inference approach.
Pick a truncation K, so we are working with an approximation to the DP,

bk ∼ Beta(1, α) πk = bk

k−1∏
j=1

(1− bk) θk ∼ H GK =
K∑
k=1

πkδθk

Conditioned on Gk, we can sample a cluster assignment using

P (zi = k|GK , xi) ∝ πkf(xi|θk)

Contitioned on the cluster allocations, we can update each bk.
Remember, bk is the probability of belonging to the kth cluster, conditioned on not belonging to
any previous clusters.
So,

bk|z ∼ Beta

1 +mk, α +
K∑

j=k+1

mj


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Summary

We’ve introduced the Dirichlet process, which we can think of as an infinitely large Dirichlet
distribution.
We’ve explored different ways of representing the DP:

Dirichlet marginals
Urns
Chinese restaurant process
Stick-breaking construction

We’ve explored the main ways of doing inference... if you can code up a collapsed Gibbs sampler
for a Dirichlet mixture of Gaussians, you should be able to code up a sampler for a DP mixture
of Gaussians.

Now let’s look at a new class of models...
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Lecture Overview

Lecture 1: The Dirichlet process
Lecture 2: The Indian buffet process

From clustering to latent feature modeling
The beta-Bernoulli process
The Indian buffet process
Modeling
Inference

Lecture 3: Hierarchical nonparametric models
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Beyond clustering

The Dirichlet distribution and the Dirichlet process are great if we want to cluster data into
non-overlapping clusters.
However, DP/Dirichlet mixture models cannot share features between clusters.
In many applications, data points exhibit properties of multiple latent features

Images contain multiple objects.
Actors in social networks belong to multiple social groups.
Movies contain aspects of multiple genres.
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Latent variable models

Latent variable models allow each data point to exhibit multiple features, to varying degrees.

Example: Factor analysis: X = WAT + ε, where
K rows of A = latent features
N rows of W = datapoint-specific weights for these features
ε = Gaussian noise.

Question: Can we make the number of features unbounded a posteriori, as we did with the DP?
Like the DP, we want to allow infinitely many features a priori – ie let W have infinitely many
columns.
Problem: In factor analysis, the matrices W and A are dense... if we make them infinitely large,
we’d have to represent infinitely many features!
Solution: make our matrix W of datapoint-specific weights sparse.
Intuition: We allow a data point to exhibit infinitely many features a priori... but in practice,
most of them are zeroed out.

Sinead Williamson Bayesian nonparametrics 37 / 86



The CRP: A distribution over binary matrices

Recall that the CRP gives us a distribution over partitions of our data.
We can represent this as a distribution over binary matrices, where each row corresponds to a
data point, and each column to a cluster.

This gives us a sparse matrix... but only one feature per data point.
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A sparse, finite latent variable model

We’re going to have to come up with a different model.
Let’s think about the finite case first.
Simplest idea: make W a binary matrix Z – so a feature is either “on” or “off”.
For K features, we can do this using a beta-Bernoulli prior on Z.

πk ∼Beta
( α
K
, 1
)
, k = 1, . . . , K

znk ∼Bernoulli(πk), n = 1, . . . , N

πk is the global probability of a data point exhibiting feature k.
znk tells us whether the nth data point exhibits a given feature.

Sinead Williamson Bayesian nonparametrics 39 / 86



A sparse, finite latent variable model

We’re going to have to come up with a different model.
Let’s think about the finite case first.
Simplest idea: make W a binary matrix Z – so a feature is either “on” or “off”.
For K features, we can do this using a beta-Bernoulli prior on Z.

πk ∼Beta
( α
K
, 1
)
, k = 1, . . . , K

znk ∼Bernoulli(πk), n = 1, . . . , N

πk is the global probability of a data point exhibiting feature k.
znk tells us whether the nth data point exhibits a given feature.

Sinead Williamson Bayesian nonparametrics 39 / 86



The beta process

However, we don’t want K features... we want infinitely many features!
The beta process [Hjort, 1990] is a distribution over discrete measures B =

∑
k µkδθk with

atoms in [0, 1].
If you don’t know measure theory, just think of a measure as an unnormalized probability
distribution.
For our purposes, we can think of it as a distribution over infinitely long sequences of
probabilities µk.

This sequence corresponds to the limit, as K →∞, of K Beta(α/K, 1) random variables.

Most of these will be really small... but some of them will be significant.
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The beta-Bernoulli process

The Bernoulli process is a distribution over infinite-dimensional binary sequences z1, z2, . . .

It is parametrized by an infinite sequence of probabilities µ1, µ2, . . .

Each element zk is sampled according to Bernoulli(µk)

So, we can write the limit of our latent feature model, as K →∞, as

B = (µ1, µ2, . . . ) ∼ BetaProc(α)

zi ∼ BernoulliProc(B)

This is known as a beta-Bernoulli process [Thibaux and Jordan, 2007]
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The beta process and the Dirichlet process – an aside

The beta process and the Dirichlet process are fairly similar... they are both infinite-dimensional
measures of the form

∑∞
k=1 πkδθk .

They both have atoms between zero and one.
The main difference is that the Dirichlet process sums to one, and the beta process doesn’t.

These are both examples of a much wider class of nonparametric processes:
The gamma process and the stable process are distributions over infinite-dimensional measures
with positive real-valued atoms.
The Poisson process is a distribution over infinite-dimensional measures with unit-valued atoms
(counting measures).
The Pitman-Yor process is a distribution over probability distributions similar to the Dirichlet
process.
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A stick-breaking representation for the beta process

When working with a beta process, we have infinitely many almost-zero atoms.
When generating samples from a beta process, we want to generate the largest atoms first.
We can use a stick-breaking process to do this.

Begin with a stick of unit length.
For k = 1, 2, . . .

Sample a Beta(α, 1) random variable µk.
Break off a fraction µk of the stick. This is the kth atom size.
Throw away what’s left of the stick.
Recurse on the part of the stick that you broke off

Note that, unlike the DP stick breaking construction, the atoms will not sum to one.

[Teh et al., 2007]
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Integrating out the beta process

In practice, we often don’t want to work directly with an infinite-dimensional vector!

How did we deal with this in the Dirichlet process?
Integrate out the infinite-dimensional vector to get a collapsed representation, with a
restaurant analogy.
Because a finite number of data points must belong to a finite number of clusters, we are left
with a finite-dimensional vector of cluster assignments.
The restaurant scheme directly suggests a way to do Gibbs sampling.

We can do exactly the same thing with the beta process!
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Predictive distribution of a beta-Bernoulli distribution

Before we get into the full predictive distribution, let’s just think about the beta distribution.
Let p ∼ Beta(α, β) be the bias of a coin.
Let xi ∼ Bernoulli(p) be the outcome of a coin toss.

The posterior distribution after n coin tosses is

p|x1, . . . , xn ∼ Beta

(
α +

n∑
i=1

xi, β + n−
n∑
i=1

xi

)

If we integrate out p, the predictive distribution for xn+1 is

P (xn+1 = 1|x1, . . . , xn) =
α +

∑n
i=1 xi

α + β + n
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Predictive distribution of a beta-Bernoulli distribution

Again, we can think of this in terms of urns!
Start off with a red ball of size α, and a blue
ball of size β

Pick a ball with probability proportional to its
size.
Return that ball, plus a unit-size ball of the
same color.

Note that the order we sample the balls doesn’t matter...

P (r, r, b) =
α

α + β

α + 1

α + β + 1

β

α + β + 2

P (r, b, r) =
α

α + β

β

α + β + 1

α + 1

α + β + 2

In other words, it is exchangeable!
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Predictive distribution of a beta-Bernoulli distribution

Our model is the limit, as K →∞, of K Beta(α/K, 1) random variables.
Let’s consider sampling the nth row.
If we have already seen mk > 0 non-zero elements in column k, that corresponds to mk

unit-sized red balls (plus an infinitesimally small initial ball), plus n−mk unit-sized blue balls
(including the inital ball).
So, the probability of a non-zero entry is the proportion of red: mk

n .

Problem: What if we haven’t seen any non-zero entries yet for the kth feature? We have a
bunch of blue balls, and our initial red ball is infinitely small!
Well, we have infinitely many features with no non-zero entries.
Because of the relationship between the Bernoulli and the Poisson, we know that, out of these
infinitely many urns, we will get a Poisson-distributed number of balls in total.
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The Indian buffet process (IBP)

We can combine these urns to get a predictive distribution over the binary matrix Z.
We can describe this in terms of the following restaurant analogy.

A customer enters a restaurant with an infinitely large buffet.
He helps himself to Poisson(α) dishes.

The ith customer enters the restaurant
She helps herself to each dish with probability mk/i, where mk is the number of people
who’ve tried dish k.
She then tries Poisson(α/i) new dishes
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The Indian buffet process (IBP)

Each row has a Poisson(α) number of
features – due to exchangeability.
“Rich get richer” property – popular dishes
become more popular.
Total number of non-empty columns
unbounded and grows with N .
Concretely, total number of dishes is
Poisson(αHN ), where HN =

∑N
i=1

1
i .
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Building latent feature models using the IBP

We can use the IBP to build latent feature
models with an unbounded number of
features.
Let each column of the IBP correspond to one
of an infinite number of features.
Each row of the IBP selects a finite subset of
these features.
The rich-get-richer property of the IBP
ensures features are shared between data
points.
We must pick a likelihood model that
determines what the features look like and
how they are combined.
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A linear Gaussian model

The simplest likelihood model is to assume
the features are normally distributed, and we
superimpose features selected by the IBP.
Sample Z ∼ IBP(α)

For each feature k, sample
Ak ∼ Normal(0, σ2

AI)

Sample nth observation
xn ∼ Normal(znAT , σ2

XI)

[Griffiths and Ghahramani, 2005]
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Infinite factor analysis

Problem with linear Gaussian model: Features are “all or nothing”
Not always reasonable... maybe a movie is mostly a horror, but with some elements of comedy
and romance?
Factor analysis allows for weighted features: X = WAT + ε where

Rows of A = latent features (Gaussian)
Rows of W = datapoint-specific weights for these features (Gaussian)
ε = Gaussian noise.

We can obtain similar properties in an infinite model, by associating each non-zero entry of our
IBP with a Gaussian weight
Let X = (Z � V )AT + ε, where
Z ∼ IBP(α)
vnk ∼ Normal(0, σ2

V )
Ak ∼ Normal(0, σ2

AI)

[Knowles and Ghahramani, 2007]
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More complicated models

We can come up with more complicated models to fit our data.
For example, assume we are trying to model images in terms of
latent features.
Here, we need to deal with occlusion, translation and rotation of
features.
We can model each feature using a combination of a
Gaussian-distributed image vector, a location between foreground
and background, and a binary alpha-channel.
We can associate each non-zero entry of the IBP with a
transformation.
We generate the image by transforming the selected features using
the corresponding transformation, and superimposing them in the
given order.

[Zhai et al., 2012]
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Inference in the IBP

When looking at the IBP, we considered two main forms of inference
Collapsed inference, using a restaurant analogy.
Uncollapsed inference, using a stick-breaking representation.

We can construct analogous samplers for the IBP!
We’ll work with the linear Gaussian model:

Z ∼ IBP(α)

Ak ∼ Normal(0, σ2
AI)

xn ∼ Normal(znAT , σ2
XI)
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Collapsed inference using the restaurant analogy

We can sample a matrix from an IBP using the restaurant analogy
A customer enters a restaurant with an infinitely large buffet.
He helps himself to Poisson(α) dishes.
The ith customer enters the restaurant
She helps herself to each dish with probability mk/i, where mk is the number of people
who’ve tried dish k.
She then tries Poisson(α/i) new dishes

However, the sequence of customers is exchangeable... it doesn’t matter what order we enter in.
Rather than condition on the first i− 1 data points, we can always “pretend” the ith data point
is actually the last.
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Collapsed inference using the restaurant analogy

We can re-work the Indian buffet process to generate samples from the IBP.
Lets assume we have N customers in our restaurant, all eating different dishes.
The ith customer drops her plate, so she has to go back to the buffet.
She considers all the dishes that her fellow diners have on their plates. She takes each dish with
probability m−ik /N , where m−ik is the number of customers currently with dish k (except herself).
She then takes a Poisson(α/N) number of new dishes.

In other words:
For columns where m−ik > 0, we have P (zik = 1|z−i,k) =

m−i
k

N
In addition, we have a Poisson(α/N) number of features that appear only in the ith row.
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Collapsed inference using the restaurant analogy

We can construct a Gibbs sampler that iterates through each element of each row.

To resample the ith row Zi, we first resample the elements where m−ik > 0

Combining our prior predictive with our likelihood, we have

P (zik = 1|xi, Z−ik, A) ∝ mkf(xi; zik = 1, Z−ik, A)

P (zik = 1|xi, Z−ik, A) ∝ (N −mk)f(xi; zik = 0, Z−ik, A)

where f is our linear Gaussian likelihood.
In the linear Gaussian case we can integrate out A if desired [Griffiths and Ghahramani, 2005]
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Collapsed inference using the restaurant analogy

Next, we must propose adding/removing singleton features using a Metropolis-Hastings
distribution.

Let K∗old be the number of features appearing only in the ith data point.
Propose K∗new ∼ Poisson(α/N), and let Z∗ be the matrix with K∗new features appearing only
in the ith data point.
If K∗new > K∗old and you are not integrating out A, sample K∗new −K∗old new features to
create a proposal feature matrix A∗

Accept the proposal with probability min
(

1, f(xi|Z∗,A∗)
f(xi|Z,A)

)

If we’re instantiating A, we then sample new values conditioned on X and Z (see
[Doshi-Velez and Ghahramani, 2009])
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Summary

We’ve looked at two of the main “building blocks” in nonparametric Bayesian modeling
The Dirichlet process is an infinite-dimensional analogue of the Dirichlet distribution.
We use the Dirichlet distribution for clustering data into K clusters (among other things).
Similarly, we can use the Dirichlet process to cluster data into an unbounded (and growing)
number of clusters.

The Indian buffet process is an infinite-dimensional model for feature subset selection.
We can use it to construct latent feature models with infinitely many features.
We can customize the latent feature model to match our data.

Many more building blocks – gamma process, Poisson process, Pitman-Yor process, Kingman’s
coalescent... but these are the two most popular.
But for now, we’re going to take a quick look at some hierarchical models that use the DP and
IBP as building blocks.
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Latent Dirichlet allocation

Dirichlet distributions are commonly used in topic models.
Topic models describe documents using a distribution over “topics”.
Each “topic” is a distribution over words

Example: Latent Dirichlet allocation [Blei et al., 2003]

For each topic k = 1, . . . , K
Sample a distribution over words, βk ∼ Dirichlet(η1, . . . , ηV )

For each document m = 1, . . . ,M :
Sample a distribution over topics, θm ∼ Dirichlet(α1, . . . , αk)
For each word n = 1, . . . , Nm in the mth document:

Sample a topic zmn ∼ Discrete(θm)

Sample a word wmn ∼ Discrete(βzmn)
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Latent Dirichlet allocation

Image from [Blei et al., 2003]
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Latent Dirichlet allocation

For each topic k = 1, . . . , K

Sample a distribution over words, β ∼ Dirichlet(η1, . . . , ηV )

For each document m = 1, . . . ,M :
Sample a distribution over topics, θm ∼ Dirichlet(α1, . . . , αk)
For each word n = 1, . . . , Nm in the mth document:

Sample a topic zmn ∼ Discrete(θm)

Sample a word wmn ∼ Discrete(βzmn)

We have two Dirichlet distributions... one over words, one over topics.
It’s probably OK to say we have a fixed, known number of words... the dictionary is fairly
constant.
However, it’s hard to pick a number of topics.
Solution: Let’s replace the distribution over topics with a Dirichlet process!
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The Dirichlet process... a reminder

Let’s remind ourselves how we draw samples from the DP

We can combine this with a mechanism for
generating parameter values.
Let π ∼ limK→∞ Dirichlet

(
α
K , . . . ,

α
K

)
Let H be a distribution on some space Ω.
For k = 1, 2, . . . , sample θk ∼ H
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Multiple samples from the Dirichlet process

Let’s consider two independent samples from the Dirichlet process.

4 3 2 1 0 1 2 3 4
0.0
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0.5

0.6

0.7

The atom locations for each sample are iid samples from H.
If H is continuous, we will never get repeats.
So, the support of the two distributions are always different.

If we replace our Dirichlet distributions with Dirichlet processes, each atom corresponds to a
topic.
This means that a topic in a given document will never appear in any other documents.
We can’t draw statistical strength across documents.
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Sharing topics

The reason we won’t share topics is because the base measure is continuous, so we have zero
probability of picking the same topic twice.
If we want to pick the same topic twice, we need to use a discrete base measure.

We want there to be an infinite number of topics, so we want to use an infinite, discrete
probability distribution as our base measure.

Luckily we know how to construct an infinite, discrete probability measure... use a Dirichlet
process!
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Hierarchical Dirichlet process [Teh et al., 2006]

G0 ∼DP(γ,H)

Gm ∼DP(α,G0)

We sample a shared distribution over topics G0 ∼ DP(γ,H).
The concentration parameter γ controls how many high-probability topics we get – small γ leads
to a sparser distribution.
For each document, we then sample a document-specific distribution over topics
Gm ∼ DP(α,G0).
We generate atom sizes according to a stick breaking process.
When we pick our atom locations, we will tend to pick high-probability locations in G0 – multiple
sticks can go to the same location.
G0 acts as a mean distribution, and α controls how much variation there is between the Gm.
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Hierarchical Dirichlet process

Once we have our document-specific distributions over topics, we can generate our documents.
For each topic, sample a distribution over words, βk ∼ Dirichlet(η1, . . . , ηV ).
For each word in the mth document

Sample a topic according to zmn ∼ Discrete(Gm)
Sample a word according to wmn ∼ Discrete(βzmn)
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The Chinese restaurant franchise

As with our previous models, we often want to integrate out the infinite random variables.
This gives us an extension of the Chinese restaurant process.
Imagine we have a restaurant franchise with a common menu.
A single document is represented by a restaurant.
Words are clustered into tables... remember each table corresponds to a stick in our
stick-breaking construction.
The discrete base measure means that multiple sticks can go to the same location!
This is equivalent to having multiple tables serving the same dish.
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The Chinese restaurant franchise

Consider the first restaurant (document)
Customers pick tables according to a Chinese restaurant process with parameter α

Each table asks their waiter to pick a dish.
The waiter considers all dishes that have been served previously in the franchise. He picks an
existing dish d with probability proportional to the number of tables nd that have chosen that
dish, across the entire franchise.

Since this is the first restaurant, the first table gets a new dish.
The second table gets the red dish with probability 1

1+γ , or a new dish with probability γ
1+γ .

The third table gets the red dish with probability 1
2+γ , the blue dish with probability 1

2+γ , or a
new dish with probability γ

2+γ
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The Chinese restaurant franchise

Let’s move on to the second restaurant.

Customers pick tables according to a Chinese restaurant process with parameter α,
independently of the first restaurant.

Each table asks their waiter to pick a dish. The waiter picks an existing dish d with probability
proportional to the number of tables nd that have chosen that dish, across the entire franchise.

The first table gets the red dish with probability 2
3+γ , the blue dish with probability 1

3+γ , or a
new dish with probability γ

3+γ .
The second table gets the red dish with probability 2

4+γ , the blue dish with probability 2
4+γ , or

a new dish with probability γ
4+γ
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An infinite dimensional topic model
We can use this Chinese restaurant franchise to model a corpus of documents.

Each document is a restaurant.
Each customer is a word.
Each dish is a topic.

The restaurant process gives us the predictive distributions we need to resample the assignments
of customers to tables, and tables to dishes.

Image from [Teh et al., 2006]
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BNP for networks

Why model networks?

Prediction: we have an observed network, and want to predict missing/future interactions
e.g. predicting interactions in social or communication networks.

Understanding: we have an observed network, and want to understand its latent structure
e.g. community detection, anomaly detection.

Network elucidation: we want to infer a latent network that generated our data
e.g. noisy network observations (Twitter), biological interactions
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Basic network models: Erdös-Renyi models

G(n, p) model:
n nodes, each edge included with probability p.
As n grows, number of edges grows as n2.

G(n,M) model:
n nodes, M edges sampled uniformly without replacement.
Equivalently, sample uniformly from all networks with n nodes and M edges

Neither really look like social networks... they lack structure.
They also can’t grow in a reasonable manner with more observations.
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G(n,M) model

The G(n,M) model treats networks as a sequence of links.

I’m going to modify this slightly to give a directed network


0 1 1 0 0
1 0 1 0 1
1 1 0 0 1
0 0 0 0 1
0 1 1 1 0

↔
(1, 2)

(1, 3)

(2, 3)

(2, 5)

(3, 5)

(4, 5)

↔
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
0 1 0 0 0
0 0 1 0 1
1 1 0 0 1
1 0 0 0 1
0 0 1 1 0

↔

(1, 2)

(2, 3)

(2, 5)

(3, 1)

(3, 2)

(3, 5)

(4, 1)

(4, 5)

(5, 3)

(5, 4)

↔
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Slight modification

Sampling without replacement is hard If we are OK with integer-valued networks, we can get a
conditionally iid model by sampling with replacement

(5, 1)

(3, 4)

(2, 5)

(3, 4)

(3, 3)

(2, 5)

(1, 4)

(5, 4)

(2, 1)

↔


0 0 0 1 0
1 0 0 0 2
0 0 1 2 0
0 0 0 0 0
1 1 0 1 0

↔

But, the G(n,M) model assumes n and M are fixed.
For prediction, we want to be able to grow the number of links M .
We also want to allow the number of nodes to grow.
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A nonparametric version: Dirichlet Network Distributions

Rather than sample pairs (s, r) of nodes from a uniform distribution, we can sample them from a
nonparametric distribution f

Easiest way:

π ∼ DP(α,H)

si, ri
iid∼ π

Assumes “symmetry”... a node is equally likely to be chosen as a “sender” or a “recipient”.
To break symmetry, we can use two different distributions

si ∼ πs ri ∼ πr

To ensure shared support (i.e. avoid bipartite graph), hierarchically couple πs and πr

πs ∼ DP(τ,H) πr ∼ DP(τ,H) H ∼ DP(γ,Θ)
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Structure of the Dirichlet Network Distribution

Unbounded number of nodes due to infinite-dimensional support.
Sparsity and degree distribution are similar to “real” graphs.
No real structure beyond a preferential attachment-like behavior.

Real networks have more complex structure than this.
We see clustering and the formation of cliques... here we only have one cluster.
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Adding structure

We can capture this using a mixture of Dirichlet Network Distributions (MDND)!
Each component is a Dirichlet Network Distribution.
Different components put high probability on different sets of nodes.
A globally shared base measure ensures the component networks share nodes.

Intuition: Emails clustered by type of person they are to/from.
An email might belong to a faculty-to-student cluster.
This cluster assigns high probability to senders being faculty and receivers being students.
An individual might have high probability under several clusters.
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Adding structure

More concretely,

D ∼ DP(α,Ω) distribution over clusters
H ∼ DP(γ,Θ) shared distribution over nodes
Ak ∼ DP(τ,H) per-cluster distribution over sender nodes
Bk ∼ DP(τ,H) per-cluster distribution over receiver nodes
cn ∼ D pick a cluster for the nth link
sn ∼ Acn sample a sender...
rn ∼ Bcn and a receiver
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Adding structure

Now we have some block structure!

Clustering concentration parameter α controls the number of groups.
Bottom level concentration parameter τ controls the degree of similarity/degree of overlap
between the groups.
Bottom and top level concentration parameters γ and τ control the total number of nodes and
the sparsity of the resulting network.
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Many more applications and extensions!

Incorporating spatio-temporal dynamics – Dependent Dirichlet processes [MacEachern, 1999],
Dependent IBPs [Williamson et al., 2010]
Infinite-context n-gram models [Teh, 2006]
Hierarchical clustering models [Adams et al., 2010]
Hidden Markov models with infinitely many states [Teh et al., 2006]
...
If you’re coming to NIPS, we’ll have a workshop on Bayesian nonparametrics.
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Further resources

There are some excellent tutorials on Bayesian nonparametrics, from a Machine Learning perspective:
A tutorial on Bayesian nonparametric models, S.J. Gershman and D.M. Blei, Journal of
Mathematical Psychology (56):1-12, 2012.
The introduction of Erik Sudderth’s PhD thesis is a very well-written introduction to Bayesian
nonparametrics, particularly the Dirichlet process.
Any of Tamara Broderick’s lectures.
Yee Whye Teh’s lectures from past MLSS’s on VideoLectures.

Some a little more Stats-y...
Bayesian Nonparametric Models, P. Orbanz and Y.W. Teh. In Encyclopedia of Machine Learning
(Springer), 2010.
Peter Orbanz’s lectures from past MLSS’s on VideoLectures.
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Further resources

Want to play with code? (Caveat: I’ve not used all of these...)
DPs and HDPs:

Python: bnpy-dev https://bitbucket.org/michaelchughes/bnpy-dev/
Julia: BNP.jl https://github.com/trappmartin/BNP.jl
Matlab: Yee Whye Teh http://www.stats.ox.ac.uk/ teh/software.html
Several R packages

IBP:
Python: PyIBP https://github.com/davidandrzej/PyIBP
Matlab: Finale Doshi-Velez http://people.csail.mit.edu/finale/

Great paper on inference in the DP: Markov chain sampling methods for Dirichlet process
mixture models, RM Neal, Journal of Computational and Graphical Statistics, 9:249-265, 2000.
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