Interactive visualizations of Machine Learning and Linear Algebra concepts, built with React, Three.js, and GSAP.
All animations are now available in a single unified React application with:
- 🎨 Consistent design system
- 🌓 Dark/Light mode toggle
- 📱 Responsive sidebar navigation
- ⚡ Lazy loading for performance
cd unified-app
npm install
npm run dev- Natural Language Processing
- Transformers & Attention
- Neural Networks
- Advanced Models
- Diffusion Models
- Math Fundamentals
- Probability & Statistics
- Reinforcement Learning
- Algorithms & Data Structures
- Information Theory
- Mini Diffusion (Rust)
- Mini-Diffusion (Multi-Language)
- Mini-NN (Multi-Language)
- Mini Markov (Multi-Language)
- Neural Network Animation
A foundational NLP concept showing how text is converted to numerical vectors.
- Visualizes: Text → Word Frequency Vectors
- Features:
- Interactive document input
- Vocabulary building visualization
- Vector representation display
- Similarity calculations between documents
cd bag-of-words-animation && npm install && npm run devUnderstanding word embeddings through the Skip-gram and CBOW models.
- Visualizes: Words → Dense Vector Space
- 3 Learning Modes:
- 📖 Concept: Understanding context windows and word relationships
- 🎯 Skip-gram: Predicting context words from center word
- 🔄 CBOW: Predicting center word from context
- Features:
- Interactive training visualization
- 2D/3D embedding space exploration
- Analogy demonstrations (King - Man + Woman = Queen)
cd word2vec-animation && npm install && npm run devGlobal Vectors for Word Representation - learning from co-occurrence statistics.
- Visualizes: Co-occurrence Matrix → Word Vectors
- Features:
- Co-occurrence matrix construction
- Objective function visualization
- Comparison with Word2Vec approach
- Interactive embedding exploration
cd glove-animation && npm install && npm run devSubword embeddings for handling rare and out-of-vocabulary words.
- Visualizes: Words → Character n-grams → Embeddings
- Features:
- Subword decomposition visualization
- OOV word handling demonstration
- Morphologically rich language support
- Comparison with Word2Vec
cd fasttext-animation && npm install && npm run devBreaking text into tokens - the first step in NLP pipelines.
- Visualizes: Text → Tokens → IDs
- 3 Learning Modes:
- Visualizes: Query-Key-Value attention mechanism
- 3 Learning Modes:
-
📚 Library Search: Intuitive analogy for Q, K, V
-
🌍 Translation: Attention in sequence-to-sequence models
-
💬 Conversation: Context-aware attention
-
🔑 The Concept: Intuitive "Library" analogy for Query, Key, and Value
-
🧮 The Mechanism: Step-by-step visualization of the math
-
🕸️ Playground: Interactive text attention visualization (Coreference Resolution)
-
- Features:
- Interactive Q/K/V matching
- Matrix multiplication visualization
- Real-time attention heatmaps for text
cd self-attention-animation && npm install && npm run devBidirectional Encoder Representations from Transformers.
- Visualizes: Pre-training objectives and fine-tuning
- 3 Learning Modes:
- 🎭 Masked Language Model (MLM): Predicting masked tokens
- 📝 Next Sentence Prediction (NSP): Understanding sentence relationships
- 🔧 Fine-tuning: Adapting BERT for downstream tasks
- Features:
- Token embedding visualization
- Attention pattern exploration
- Interactive masking playground
cd bert-animation && npm install && npm run devThe complete Transformer architecture - "Attention Is All You Need".
- Visualizes: Encoder-Decoder architecture
- 4 Learning Modes:
- 🏗️ Architecture Overview: High-level component breakdown
- 🔄 Encoder Stack: Multi-head attention and feed-forward layers
- 📤 Decoder Stack: Masked attention and cross-attention
- 🎬 Full Forward Pass: End-to-end sequence transformation
- Features:
- Layer-by-layer visualization
- Residual connections and layer normalization
- Interactive token flow
cd transformer-animation && npm install && npm run devHow Transformers understand word order.
- Visualizes: Position information in sequences
- 3 Learning Modes:
- 🔀 The Problem: Demonstrate why "Dog bites man" ≠ "Man bites dog"
- 🌊 Sinusoidal Encoding: Visualize the wave patterns that encode position
- 🎮 Encoding Playground: Compare Sinusoidal vs. Learned vs. Integer encoding
- Features:
- Interactive sentence comparison
- Waveform visualization with multiple frequencies
cd positional-encoding-animation && npm install && npm run devA visual explanation of the ReLU (Rectified Linear Unit) activation function.
- Visualizes: z = W·X + b → ReLU(z) = max(0, z)
- Features:
- Step-by-step animation showing dot product, bias addition, and ReLU application
- Interactive ReLU graph visualization synchronized with steps
- Practice mode with randomly generated problems
- Formula reference and hints
- Built with Three.js for 3D rendering
cd relu-animation && npm install && npm run devA visual explanation of the Leaky ReLU activation function.
- Visualizes: z = W·X + b → Leaky ReLU(z) = z if z > 0, else α×z
- Features:
- Step-by-step animation showing dot product, bias addition, and Leaky ReLU application
- Interactive Leaky ReLU graph visualization with reference line
- Practice mode with randomly generated problems
- α (alpha) parameter visualization (default: 0.01)
cd leaky-relu-animation && npm install && npm run devConverting logits to probabilities for classification.
- Visualizes: e^(xi) / Σe^(xj) → Probability Distribution
- 3 Learning Modes:
- 📊 The Math: Step-by-step calculation breakdown
- 🌡️ Temperature Scaling: How temperature affects sharpness
- 🎯 Classification: Real-world application in neural networks
- Features:
- Interactive logit adjustment
- Probability distribution visualization
- Temperature parameter exploration
cd softmax-animation && npm install && npm run devA "Bit-by-Bit" interactive guide to Long Short-Term Memory networks.
- 4-Mode Learning System:
- 📚 The Conveyor Belt: Intuitive analogy for cell state flow
- 🔬 Anatomy Lab: Interactive component explorer (Sigmoid, Tanh, Gates)
- 🎬 Bit-by-Bit Flow: Granular 8-step animation of a single time step
- 🔁 Sequence View: Visualization of LSTM unrolled over time
cd lstm-animation && npm install && npm run devA visual guide to 2D convolution operations used in CNNs.
- Visualizes: Input (5×5) ∗ Kernel (3×3) = Output (3×3)
- Features:
- Animated kernel sliding across input matrix
- Real-time element-wise multiplication and summation display
- Color-coded highlighting showing kernel position
- Practice mode with different kernel types (edge detection, sharpen, blur)
cd conv2d-animation && npm install && npm run devA visual demonstration of a two-layer neural network with three inputs and ReLU activations.
- Visualizes: X × W₁ → ReLU → A₁ × W₂ → ReLU → Output
- Features:
- Two-layer feedforward network with matrix multiplication
- Step-by-step animation showing forward propagation
- Clear visualization of pre-activation (Z) and post-activation (A) values
- Practice mode with randomly generated matrix problems
cd conv-relu-animation && npm install && npm run devStabilizing deep network training.
- 3 Learning Modes:
- 📊 The Problem: Visualize activation drift and gradient instability
- ⚖️ Layer Norm vs Batch Norm: Compare normalization across different axes
- 🔄 Residual Connections: Demonstrate the "Add & Norm" pattern in Transformers
- Features:
- Activation distribution visualization
- Interactive batch size adjustment
- Gradient flow demonstration
cd layer-normalization-animation && npm install && npm run devUnderstanding generative models through the lens of variational inference.
- Visualizes: Encoder → Latent Space → Decoder
- 3 Learning Modes:
- 🔄 Autoencoder Basics: Compression and reconstruction
- 📊 The Latent Space: Continuous latent representation
- 🎲 Sampling & Generation: Reparameterization trick
- Features:
- Interactive latent space exploration
- KL divergence visualization
- Image generation playground
cd vae-animation && npm install && npm run devEnhancing LLMs with external knowledge retrieval.
- Visualizes: Query → Retrieve → Augment → Generate
- 3 Learning Modes:
- 📚 The Pipeline: Understanding RAG architecture
- 🔍 Retrieval: Vector similarity search
- ✨ Generation: Augmented context for LLM
- Features:
- Document embedding visualization
- Relevance scoring demonstration
- Interactive query playground
cd rag-animation && npm install && npm run devUnderstanding models that process multiple modalities (text, images, audio).
- Visualizes: Multi-modal input processing and fusion
- Features:
- Vision encoder architecture
- Cross-modal attention mechanisms
- Token embedding visualization
- Interactive multimodal queries
cd multimodal-llm-animation && npm install && npm run devAdapting pre-trained models for specific tasks.
- Visualizes: Pre-trained → Fine-tuned model transformation
- 3 Learning Modes:
- 🎯 Full Fine-tuning: Updating all parameters
- ❄️ Freeze & Train: Selective layer training
- 🔌 LoRA/Adapters: Parameter-efficient fine-tuning
- Features:
- Layer-wise training visualization
- Learning rate strategies
- Catastrophic forgetting demonstration
cd fine-tuning-animation && npm install && npm run devInteractive animations explaining Stable Diffusion 3 and Flux-style diffusion models.
Understanding the complete SD3 architecture and how all components work together.
- Visualizes: Text → CLIP/T5 → DiT → VAE Decoder → Image
- Features:
- Complete pipeline overview
- Component interactions
- Data flow visualization
cd sd3-overview-animation && npm install && npm run devModern training approach used in SD3 and Flux.
- Visualizes: ODE-based generation paths
- Features:
- Rectified Flow concepts
- Euler solver stepping
- Logit-normal timestep sampling
cd flow-matching-animation && npm install && npm run devDiffusion Transformer - replacing U-Net with transformers.
- Attention pattern visualization
cd joint-attention-animation && npm install && npm run devCLIP encoder for visual concept understanding.
- Visualizes: Text → BPE Tokenization → Transformer → Embeddings
- Features:
- 12-layer transformer architecture
- Causal attention masking
- Pooled embedding extraction
cd clip-text-encoder-animation && npm install && npm run devT5-XXL encoder for detailed text understanding.
- Visualizes: Text → SentencePiece → Bidirectional Encoder
- Features:
- 24-layer encoder architecture
- Relative position bias
- RMSNorm vs LayerNorm
cd t5-text-encoder-animation && npm install && npm run devUnderstanding tokenization for diffusion models.
- Visualizes: BPE and SentencePiece tokenization
- Features:
- CLIP vs T5 tokenizer comparison
- Vocabulary structure
- Word boundary markers
cd diffusion-tokenizer-animation && npm install && npm run devA step-by-step visual guide to matrix multiplication.
- Visualizes: Matrix A (2x2) × Matrix B (2x3) = Matrix C (2x3)
- Features:
- Step-by-step animation of row-column dot products
- Color-coded highlighting of active rows and columns
- Interactive controls (Play, Reset, Next/Prev Step)
- Practice mode with different matrices
- Built with Three.js for 3D rendering
cd matrix-multiplication-animation && npm install && npm run devA comprehensive visualization of Singular Value Decomposition.
- Visualizes: A (m×n) = U (m×m) × Σ (m×n) × V^T (n×n)
- Features:
- Step-by-step SVD decomposition animation (9 steps)
- Shows U (left singular vectors), Σ (singular values), V^T (right singular vectors)
- Visualizes reconstruction: A = UΣV^T
- Practice mode with exercises
- Educational info on ML applications (PCA, compression)
cd svd-animation && npm install && npm run devA comprehensive learning system teaching eigenvalues from first principles.
- Visualizes: A = Q Λ Q^T (for symmetric A)
- 5 Learning Modes:
- 📚 Tutorial Mode: 7-step conceptual learning
- 🌐 Geometric Visualizer: Circle → ellipse transformation
- 🎮 Interactive Explorer: Drag vectors to see transformation
- 🎬 Matrix Decomposition: Step-by-step A = QΛQ^T animation
- ✏️ Practice Exercises: Interactive problems with hints
cd eigenvalue-animation && npm install && npm run devA demonstration of QR decomposition using the Gram-Schmidt process.
- Visualizes: A = Q × R (orthonormal Q, upper triangular R)
- Features:
- Step-by-step Gram-Schmidt orthogonalization (6 steps)
- Shows transformation of matrix columns into orthonormal basis
- Visualizes Q (orthonormal columns) and R (upper triangular)
- Practice mode with QR decomposition exercises
cd qr-decomposition-animation && npm install && npm run devA step-by-step guide to the "Learning Process" of neural networks.
- 4 Learning Modes:
- 🏔️ The Hiker: Intuitive analogy of a hiker in the fog
- 📉 2D Slope Lab: Connecting the hiker to the math (dy/dx)
- 🏞️ 3D Landscape: Exploring complex terrain with local minima
- 🎛️ Tuning Studio: Experimenting with Learning Rates
- Features:
- Interactive 3D visualization with Three.js
- Learning rate comparison
cd gradient-descent-animation && npm install && npm run devFinding the line of best fit.
- 3 Learning Modes:
- 📏 The Residuals: Manually drag the line to minimize error squares
- ✍️ Interactive Fitter: Click to add points, see OLS formula update
- 🥣 The Cost Landscape: Visualize MSE as a 3D surface bowl
- Features:
- Interactive point manipulation
- Real-time coefficient updates
cd linear-regression-animation && npm install && npm run devWhere words become geometry.
- 3 Learning Modes:
- 🧮 Word Algebra: Visualizing "King - Man + Woman = Queen"
- 📐 Similarity Lab: Interactive Cosine Similarity calculator
- 🌌 3D Semantic Space: Fly through a galaxy of word clusters
- Features:
- Vector arithmetic visualization
- 3D Point Cloud with Three.js
cd embeddings-animation && npm install && npm run devThe math behind recommendations and search.
- 3 Learning Modes:
- ✖️ The Dot Product: Visualizing projections
- 🎬 Movie Matcher: Build a recommender system
- 🔍 Search Engine: Rank documents by relevance
- Features:
- Interactive vector manipulation
- Radar charts for multi-dimensional comparison
cd cosine-similarity-animation && npm install && npm run devUpdating beliefs with evidence.
- 3 Learning Modes:
Modeling randomness with mathematics.
- 3 Learning Modes:
- 🎲 Discrete Distributions: Binomial and Poisson
- 📊 Continuous Distributions: Normal and Exponential
- ⚖️ PMF vs PDF: Understanding the critical difference
- Features:
- Interactive parameter sliders
- Real-time distribution visualization
- Area under curve calculation
cd probability-distributions-animation && npm install && npm run devQuantifying center and spread.
- 3 Learning Modes:
- ⚖️ Expected Value: Visualize E[X] as the "balance point"
- 📏 Variance: Compare narrow vs wide distributions
- 🎰 Decision Making: Apply to investment choices
- Features:
- Balance beam visualization for E[X]
- Deviation visualization for variance
- Risk-adjusted decision making
cd expected-value-variance-animation && npm install && npm run devThe engine behind PageRank and Text Generation.
- 4 Learning Modes:
- 🐸 The Markov Property: Frog simulator demonstrating memorylessness
- 🕸️ Transition Matrix: Interactive graph-to-matrix builder
- ⚖️ Stationary Distribution: Visualizing convergence
- 📝 Text Generation: Mini-LLM using bigram models
- Features:
- Animated simulations
- Real-time matrix updates
- Text generation playground
cd markov-chains-animation && npm install && npm run devAn interactive exploration of Rank Correlation and Robustness.
- 3 Learning Modes:
- 💡 Concept: Raw Space (curved) to Rank Space (linear)
- 🧮 Calculation Lab: Step-by-step animated table
- ⚖️ Robustness: Interactive outlier sensitivity (Pearson vs. Spearman)
cd spearman-correlation-animation && npm install && npm run devThe building blocks of Reinforcement Learning.
- 3 Learning Modes:
- 🤖 The Agent: Manual Gridworld to understand State-Action-Reward loops
- 💎 Rewards: Design level rewards and analyze path returns
- 📉 Discounted Returns: Visualize how Gamma affects long-term planning
- Features:
- Playable Gridworld
- Level Editor
- Interactive Discount Factor visualization
cd rl-foundations-animation && npm install && npm run devThe core algorithm where the agent learns from experience.
- 3 Learning Modes:
- 📊 The Q-Table: Visualize the agent's brain (State-Action Values)
- 🧮 The Bellman Update: Step-by-step math visualization
- 🏋️ Training Loop: Watch the agent master the maze
- Features:
- Interactive Q-Table inspection
- Real-time training graphs
- Adjustable learning parameters
cd q-learning-animation && npm install && npm run devMastering the trade-offs in Reinforcement Learning.
- 3 Learning Modes:
- 🎲 Epsilon-Greedy: Visualize Explore vs Exploit
- 🧗 The Cliff: Risk vs Reward - why optimal isn't always safe
- 🎛️ Hyperparameters: Interactive tuning lab for Alpha and Gamma
- Features:
- Live exploration stats
- Cliff walking simulation
- Learning curve projections
cd rl-exploration-animation && npm install && npm run devA probabilistic data structure explorer.
- 3 Learning Modes:
- 🎮 Playground: Interactive visualizer to Add and Check items
⚠️ False Positive Lab: Create collisions to understand "Probably Yes"- 🎛️ Tuning Studio: Find the optimal k (hash functions)
cd bloom-filter-animation && npm install && npm run devThe algorithm that built Google.
- 3 Learning Modes:
- 🕸️ Graph Builder: Build your own "Mini-Internet"
- 🏄 Random Surfer: Monte Carlo simulation visualization
- 👑 Power Method: Watch "Rank Juice" flow to steady state
cd pagerank-animation && npm install && npm run devThe bridge between Probability and Machine Learning optimization.
A complete diffusion model implementation in Rust, built from scratch for educational purposes. This demonstrates the core concepts of modern diffusion models (like SD3 and Flux) while teaching Rust programming patterns.
| Component | Description | Status |
|---|---|---|
| Tensor | Multi-dim arrays, math ops | ✅ Working |
| U-Net | Encoder-decoder with skips | ✅ Working |
| DDPM/DDIM Sampling | Stochastic & deterministic | ✅ Working |
| BPE/Unigram Tokenizers | CLIP & T5 style | ✅ Working |
| Flow Matching | SD3-style training | ✅ Working |
| VAE/DiT/Joint Attention | Architecture structures |
cd mini-diffusion
# Build
cargo build --release
# Run demos
cargo run --bin generate --release # Generate images (random weights)
cargo run --bin train --release # Training structure demo
cargo run --bin demo_sd3 --release # SD3 components demo
# Run tests
cargo test- Ownership & Borrowing: Memory-safe tensor operations
- Traits: Common interfaces for layers and modules
- Builder Pattern: Configuration structs
- Error Handling: Result types for shape mismatches
- Type Safety: Compile-time dimension checking
See mini-diffusion/README.md for full documentation.
Diffusion model implementations from scratch in Rust, Go, Java, and Python - demonstrating DDPM/DDIM concepts across languages.
All implementations provide:
- ✅ 4D Tensor operations [batch, channels, height, width]
- ✅ Noise schedulers (linear, cosine, quadratic beta schedules)
- ✅ Neural network layers: Linear, Conv2d, GroupNorm
- ✅ U-Net architecture with residual blocks and skip connections
- ✅ Sinusoidal timestep embeddings
- ✅ DDPM sampling (stochastic)
- ✅ DDIM sampling (deterministic)
| Schedule | α̅₀ | α̅₅₀₀ | α̅₉₉₉ |
|---|---|---|---|
| Linear | 0.9999 | 0.0078 | 0.00004 |
| Cosine | 0.9999 | 0.4923 | 0.00000 |
| Quadratic | 0.9999 | 0.3313 | 0.00073 |
| Component | Parameters |
|---|---|
| Input Conv | 896 |
| Time MLP | 16,896 |
| Encoder | ~100K |
| Middle | ~50K |
| Decoder | ~200K |
| Total | ~450K |
Rust (original):
cd mini-diffusion
cargo build --release
cargo run --bin generate --release # Generate images (random weights)
cargo run --bin demo_sd3 --release # SD3 components demoPython (verified working):
cd mini-diffusion-python
pip install numpy
python -m mini_diffusion.demoGo:
cd mini-diffusion-go
go mod download
go run ./cmd/demoJava (requires JDK 8+):
cd mini-diffusion-java
mvn compile
mvn exec:java -Dexec.mainClass="com.minidiffusion.Demo"| Language | Directory | Matrix Lib | Core Files |
|---|---|---|---|
| Rust | mini-diffusion/ |
ndarray | tensor.rs, nn.rs, diffusion.rs, unet.rs |
| Go | mini-diffusion-go/ |
gonum | diffusion/*.go |
| Java | mini-diffusion-java/ |
Custom | com/minidiffusion/*.java |
| Python | mini-diffusion-python/ |
NumPy | mini_diffusion/*.py |
- mini-diffusion/README.md - Rust implementation (full SD3/Flux architecture)
- mini-diffusion-go/README.md - Go implementation
- mini-diffusion-java/README.md - Java implementation
- mini-diffusion-python/README.md - Python implementation
Neural network implementations from scratch in Rust, Go, Java, and Python - demonstrating backpropagation and gradient descent across languages.
All implementations provide:
- ✅ Tensor operations (matrix multiply, transpose, element-wise ops)
- ✅ Activations: ReLU, LeakyReLU, Sigmoid, Tanh, Softmax
- ✅ Loss functions: MSE, Binary Cross-Entropy, Cross-Entropy
- ✅ Dense (fully connected) layers with Xavier/He initialization
- ✅ Optimizers: SGD, SGD with Momentum, Adam
- ✅ Mini-batch training with validation split and early stopping
| Input | Expected | Rust | Go | Java | Python |
|---|---|---|---|---|---|
| [0, 0] | 0 | ✅ 0 | ✅ 0 | ✅ 0 | ✅ 0 |
| [0, 1] | 1 | ✅ 1 | ✅ 1 | ✅ 1 | ✅ 1 |
| [1, 0] | 1 | ✅ 1 | ✅ 1 | ✅ 1 | ✅ 1 |
| [1, 1] | 0 | ✅ 0 | ✅ 0 | ✅ 0 | ✅ 0 |
| Accuracy | 100% | 100% | 100% | 100% | 100% |
| Method | Accuracy |
|---|---|
| Logistic Regression | ~77% |
| Random Forest | ~78% |
| Gradient Boosting | ~80% |
| sklearn Neural Network | ~79% |
| Top Kaggle Submissions | ~83% |
| Our Mini-NN (Rust) | 84.3% ✨ |
Rust (original):
cd mini-nn
cargo build --release
cargo run --bin demo_xor --release # XOR (100%)
cargo run --bin train_titanic --release # Titanic (84.3%)Python (verified 100% XOR):
cd mini-nn-python
pip install numpy
python demo_xor.pyGo:
cd mini-nn-go
go mod download
go run ./cmd/demo_xorJava (requires JDK 8+):
cd mini-nn-java
mvn compile
mvn exec:java -Dexec.mainClass="com.mininn.DemoXOR"| Language | Directory | Matrix Lib | Core Files |
|---|---|---|---|
| Rust | mini-nn/ |
ndarray | tensor.rs, layer.rs, network.rs |
| Go | mini-nn-go/ |
gonum | nn/*.go |
| Java | mini-nn-java/ |
Custom | com/mininn/*.java |
| Python | mini-nn-python/ |
NumPy | mini_nn/*.py |
- mini-nn/README.md - Rust implementation
- mini-nn-go/README.md - Go implementation
- mini-nn-java/README.md - Java implementation
- mini-nn-python/README.md - Python implementation
Markov Chain implementations from scratch in Rust, Go, Java, and Python - demonstrating the same algorithms across languages.
All implementations provide:
- ✅ Generic Markov chain with configurable n-gram order
- ✅ Text generation (word-level and character-level)
- ✅ State machine modeling
- ✅ Stationary distribution calculation (power iteration)
- ✅ Entropy measurement
- ✅ Demo applications (text, weather, music)
Using transition probabilities:
- Sunny → Sunny: 70%, Cloudy: 20%, Rainy: 10%
- Cloudy → Sunny: 30%, Cloudy: 40%, Rainy: 30%
- Rainy → Sunny: 20%, Cloudy: 40%, Rainy: 40%
| State | Stationary Probability |
|---|---|
| ☀️ Sunny | 46.2% |
| ☁️ Cloudy | 30.8% |
| 🌧️ Rainy | 23.1% |
Trained on common progressions (I-V-vi-IV, I-IV-V-IV, vi-IV-I-V):
| Chord | Frequency |
|---|---|
| IV | ~36% |
| V | ~30% |
| vi | ~17% |
| I | ~17% |
| N-gram Order | Entropy | Behavior |
|---|---|---|
| Order 1 (unigram) | ~1.3 bits | More random, creative |
| Order 2 (bigram) | ~0.2 bits | More coherent |
| Order 3+ | <0.15 bits | Near-deterministic |
Rust (original):
cd mini-markov
cargo test # 13 tests passing
cargo run --bin demo_weather --releasePython (8/8 tests passing):
cd mini-markov-python
pip install -e ".[dev]"
pytest tests/ -v
python -m mini_markov.demo_weather
python -m mini_markov.demo_text
python -m mini_markov.demo_musicGo:
cd mini-markov-go
go test ./...
go run ./cmd/demo_weatherJava (requires JDK 8+):
cd mini-markov-java
mvn test
mvn exec:java -Dexec.mainClass="com.minimarkov.demo.DemoWeather"| Language | Directory | Core Files |
|---|---|---|
| Rust | mini-markov/ |
chain.rs, text.rs, state.rs |
| Go | mini-markov-go/ |
markov/chain.go, markov/text.go, markov/state.go |
| Java | mini-markov-java/ |
MarkovChain.java, TextGenerator.java, StateChain.java |
| Python | mini-markov-python/ |
chain.py, text.py, state.py |
- mini-markov/README.md - Rust implementation
- mini-markov-go/README.md - Go implementation
- mini-markov-java/README.md - Java implementation
- mini-markov-python/README.md - Python implementation
Interactive visualization of forward and backward propagation through a neural network.
- Visualizes: Forward propagation, backpropagation, gradient descent
- Features:
- Step-by-step forward pass with activation values
- Backward propagation with gradient visualization
- XOR problem demonstration
- Weight update visualization
- Mathematical formulas displayed
cd neural-network-animation && npm install && npm run dev- React: UI and state management
- Three.js: 3D graphics rendering
- GSAP: Smooth animations
- Vite: Fast build tool and development server
- Tailwind CSS: Styling
- Rust: Mini-Diffusion, Mini-NN, Mini-Markov implementations (ndarray, image crates)
- Go: Mini-NN, Mini-Markov implementations (gonum)
- Java: Mini-NN, Mini-Markov implementations (Maven)
- Python: Mini-NN, Mini-Markov implementations (NumPy)
- Fork the repository
- Create a feature branch
- Add your animation following the existing pattern
- Submit a pull request
MIT License - See LICENSE file for details










































