Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
ds-math/src/math.sol
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
88 lines (77 sloc)
2.99 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/// math.sol -- mixin for inline numerical wizardry | |
// This program is free software: you can redistribute it and/or modify | |
// it under the terms of the GNU General Public License as published by | |
// the Free Software Foundation, either version 3 of the License, or | |
// (at your option) any later version. | |
// This program is distributed in the hope that it will be useful, | |
// but WITHOUT ANY WARRANTY; without even the implied warranty of | |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
// GNU General Public License for more details. | |
// You should have received a copy of the GNU General Public License | |
// along with this program. If not, see <http://www.gnu.org/licenses/>. | |
pragma solidity >0.4.13; | |
contract DSMath { | |
function add(uint x, uint y) internal pure returns (uint z) { | |
require((z = x + y) >= x, "ds-math-add-overflow"); | |
} | |
function sub(uint x, uint y) internal pure returns (uint z) { | |
require((z = x - y) <= x, "ds-math-sub-underflow"); | |
} | |
function mul(uint x, uint y) internal pure returns (uint z) { | |
require(y == 0 || (z = x * y) / y == x, "ds-math-mul-overflow"); | |
} | |
function min(uint x, uint y) internal pure returns (uint z) { | |
return x <= y ? x : y; | |
} | |
function max(uint x, uint y) internal pure returns (uint z) { | |
return x >= y ? x : y; | |
} | |
function imin(int x, int y) internal pure returns (int z) { | |
return x <= y ? x : y; | |
} | |
function imax(int x, int y) internal pure returns (int z) { | |
return x >= y ? x : y; | |
} | |
uint constant WAD = 10 ** 18; | |
uint constant RAY = 10 ** 27; | |
//rounds to zero if x*y < WAD / 2 | |
function wmul(uint x, uint y) internal pure returns (uint z) { | |
z = add(mul(x, y), WAD / 2) / WAD; | |
} | |
//rounds to zero if x*y < WAD / 2 | |
function rmul(uint x, uint y) internal pure returns (uint z) { | |
z = add(mul(x, y), RAY / 2) / RAY; | |
} | |
//rounds to zero if x*y < WAD / 2 | |
function wdiv(uint x, uint y) internal pure returns (uint z) { | |
z = add(mul(x, WAD), y / 2) / y; | |
} | |
//rounds to zero if x*y < RAY / 2 | |
function rdiv(uint x, uint y) internal pure returns (uint z) { | |
z = add(mul(x, RAY), y / 2) / y; | |
} | |
// This famous algorithm is called "exponentiation by squaring" | |
// and calculates x^n with x as fixed-point and n as regular unsigned. | |
// | |
// It's O(log n), instead of O(n) for naive repeated multiplication. | |
// | |
// These facts are why it works: | |
// | |
// If n is even, then x^n = (x^2)^(n/2). | |
// If n is odd, then x^n = x * x^(n-1), | |
// and applying the equation for even x gives | |
// x^n = x * (x^2)^((n-1) / 2). | |
// | |
// Also, EVM division is flooring and | |
// floor[(n-1) / 2] = floor[n / 2]. | |
// | |
function rpow(uint x, uint n) internal pure returns (uint z) { | |
z = n % 2 != 0 ? x : RAY; | |
for (n /= 2; n != 0; n /= 2) { | |
x = rmul(x, x); | |
if (n % 2 != 0) { | |
z = rmul(z, x); | |
} | |
} | |
} | |
} |