From 14d21a5d2b186c67ff22e0638c000bd9b18a738a Mon Sep 17 00:00:00 2001 From: Pranit Brahmbhatt Date: Mon, 14 Oct 2019 15:38:21 +0530 Subject: [PATCH] Dijkstra Shortest path added. --- Greedy Algorithms/dijkstra shortest path.java | 95 +++++++++++++++++++ 1 file changed, 95 insertions(+) create mode 100644 Greedy Algorithms/dijkstra shortest path.java diff --git a/Greedy Algorithms/dijkstra shortest path.java b/Greedy Algorithms/dijkstra shortest path.java new file mode 100644 index 0000000..c6a6dfe --- /dev/null +++ b/Greedy Algorithms/dijkstra shortest path.java @@ -0,0 +1,95 @@ +// A Java program for Dijkstra's single source shortest path algorithm. +// The program is for adjacency matrix representation of the graph +import java.util.*; +import java.lang.*; +import java.io.*; + +class ShortestPath { + // A utility function to find the vertex with minimum distance value, + // from the set of vertices not yet included in shortest path tree + static final int V = 9; + int minDistance(int dist[], Boolean sptSet[]) + { + // Initialize min value + int min = Integer.MAX_VALUE, min_index = -1; + + for (int v = 0; v < V; v++) + if (sptSet[v] == false && dist[v] <= min) { + min = dist[v]; + min_index = v; + } + + return min_index; + } + + // A utility function to print the constructed distance array + void printSolution(int dist[]) + { + System.out.println("Vertex \t\t Distance from Source"); + for (int i = 0; i < V; i++) + System.out.println(i + " \t\t " + dist[i]); + } + + // Function that implements Dijkstra's single source shortest path + // algorithm for a graph represented using adjacency matrix + // representation + void dijkstra(int graph[][], int src) + { + int dist[] = new int[V]; // The output array. dist[i] will hold + // the shortest distance from src to i + + // sptSet[i] will true if vertex i is included in shortest + // path tree or shortest distance from src to i is finalized + Boolean sptSet[] = new Boolean[V]; + + // Initialize all distances as INFINITE and stpSet[] as false + for (int i = 0; i < V; i++) { + dist[i] = Integer.MAX_VALUE; + sptSet[i] = false; + } + + // Distance of source vertex from itself is always 0 + dist[src] = 0; + + // Find shortest path for all vertices + for (int count = 0; count < V - 1; count++) { + // Pick the minimum distance vertex from the set of vertices + // not yet processed. u is always equal to src in first + // iteration. + int u = minDistance(dist, sptSet); + + // Mark the picked vertex as processed + sptSet[u] = true; + + // Update dist value of the adjacent vertices of the + // picked vertex. + for (int v = 0; v < V; v++) + + // Update dist[v] only if is not in sptSet, there is an + // edge from u to v, and total weight of path from src to + // v through u is smaller than current value of dist[v] + if (!sptSet[v] && graph[u][v] != 0 && dist[u] != Integer.MAX_VALUE && dist[u] + graph[u][v] < dist[v]) + dist[v] = dist[u] + graph[u][v]; + } + + // print the constructed distance array + printSolution(dist); + } + + // Driver method + public static void main(String[] args) + { + /* Let us create the example graph discussed above */ + int graph[][] = new int[][] { { 0, 4, 0, 0, 0, 0, 0, 8, 0 }, + { 4, 0, 8, 0, 0, 0, 0, 11, 0 }, + { 0, 8, 0, 7, 0, 4, 0, 0, 2 }, + { 0, 0, 7, 0, 9, 14, 0, 0, 0 }, + { 0, 0, 0, 9, 0, 10, 0, 0, 0 }, + { 0, 0, 4, 14, 10, 0, 2, 0, 0 }, + { 0, 0, 0, 0, 0, 2, 0, 1, 6 }, + { 8, 11, 0, 0, 0, 0, 1, 0, 7 }, + { 0, 0, 2, 0, 0, 0, 6, 7, 0 } }; + ShortestPath t = new ShortestPath(); + t.dijkstra(graph, 0); + } +} \ No newline at end of file