forked from ActionSeeker/chatbot-using-nlp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathassistant.py~
402 lines (332 loc) · 11.3 KB
/
assistant.py~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
from __future__ import division
from __future__ import print_function
from collections import Counter
from nltk.tree import *
from nltk.draw import tree
from nltk.corpus import brown
from nltk.util import ngrams
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.tokenize import RegexpTokenizer
from nltk.data import load
from nltk import CFG
from nltk import Tree
import nltk
import json
import os
import action
from action import *
import filecheck
from filecheck import *
tagdict = load('help/tagsets/brown_tagset.pickle')
#taglist = tagdict.keys()
#taglist stored in the file
f = open('concise_taglist','r')
tagLine = f.readline().rstrip('\n')
tagLine = tagLine.split(',')
tagDict = set()
for i in range(0,len(tagLine)):
tagDict.add(tagLine[i].strip())
taglist = list(tagDict)
taglist.remove('NP')
taglist.remove('')
taglist = ['NP']+taglist
taglist = ['AN']+taglist
f.close()
appnames = []
commands = []
verbList = ['copy','open','close','exit','shut','move','make','create','cut','change']
#os.system("./app.awk")
userName = ''
f = open('appnames.txt','r')
for line in f:
if '=>' in line:
line_chunks = line.split('=>')
n = len(line_chunks)
for i in range(0,n-1):
an = line_chunks[i].strip().lower()
if 'disk' not in an:
appnames.append(line_chunks[i].strip().lower())
command = line_chunks[n-1].rstrip('\n')
if '%' in command:
position = command.find('%')
command = command[0:position]
commands.append(command.strip())
#os.system('rm appnames.txt')
f.close()
def userNameLoader():
os.system('whoami>myname')
f = open('myname','r')
user = ''
for line in f:
userName = line.rstrip('\n')
f.close()
os.system('rm myname')
taglist_size = len(taglist)
tag_sequence_corpus = brown.tagged_sents(tagset='brown')
tag_list = []
corpus_with_tag = []
#Everything is tagged, including the punctuations and the lines
print("Creating tag lists....")
for sentences in tag_sequence_corpus:
for tags in sentences:
word = tags[0]
wordTag = tags[1]
if '+' in wordTag:
position = wordTag.find('+')
wordTag = wordTag[0:position]
if '-' in wordTag and wordTag!='--':
position = wordTag.find('-')
wordTag = wordTag[0:position]
tag_list.append(wordTag)
corpus_with_tag.append((word,wordTag))
print("Done creating tag lists....")
print("Creating tag corpus...")
#Code snippet that works upon the unigrams list
unigrams = ngrams(tag_list,1)
unigrams_freq = Counter(unigrams);
#Code snippet that works upon the bigrams list
bigrams = ngrams(tag_list,2)
bigrams_freq = Counter(bigrams);
#Code snippet that works upon the trigrams list
trigrams = ngrams(tag_list,3)
trigrams_freq = Counter(trigrams);
#Length of the corpus
len_corpus = brown.words().__len__()
word_with_tag = Counter(corpus_with_tag)
print("Corpus tagged!")
def S(k):
"This function returns the set value S for the viterbi algorithm"
if k in (-1,0): return [""]
else: return taglist
def argmax(ls):
return max(ls, key = lambda x:x[1])
def trigramCounter(w,u,v):
ans = 0.0 if bigrams_freq[(u,v,)] == 0 else float(trigrams_freq[(w,u,v)])/float(bigrams_freq[(u,v,)])
ans += 0.0 if unigrams_freq[(u,)] == 0 else float(bigrams_freq[(u,v,)])/float(unigrams_freq[(u,)])
ans += float(unigrams_freq[(v,)])/float(len_corpus)
ans = ans/3;
return ans
def q(v,w,u):
"This function returns the trigram count estimation"
return trigramCounter(w,u,v)
def e(x,u):
w_t = word_with_tag[(x,u,)]
t = unigrams_freq[(u,)]
if t == 0 : t = 1
return w_t/t
def Viterbi(sentence):
"This function implements the viterbi algorithm for a given function"
#The pi refers to the dictionary for the Viterbi tagset probabilties
pi = {}
#Initialization
pi[0,"",""] = 1.0
#This array, called as backpointer is used to retrieve the tags corresponding to a given sentence
bp = {}
#Tokens converts the sentence into array of words and punctuations
tokens = word_tokenize(sentence)
n = tokens.__len__()
#Padding so that the sentence begins at the position 1
tokens = [""]+tokens
#The viterbi algorithm
for k in range(1,n+1):
for u in S(k-1):
for v in S(k):
bp[k,u,v], pi[k,u,v] = argmax([(w, pi[k-1,w,u]* q(v,w,u) * e(tokens[k],v)) for w in S(k-2)])
#Now the dictionary pi consists of the maximum probabilities of tag sequences
#We first create an array of n+1 length to store all the tags
y = [""]*(n+1)
(y[n-1],y[n]),score = argmax([( (u,v), pi[n,u,v]*q(".",u,v) ) for u in S(n-1) for v in S(n)])
for k in range(n-2,0,-1):
y[k] = bp[k+2, y[k+1],y[k+2]]
y[0]=""
return y
def cutit(s,rem,n):
n = n + len(rem)
return s[n:]
def tree2dict(tree):
return {tree.label(): [tree2dict(t) if isinstance(t, Tree) else t
for t in tree]}
def dict_to_json(dict):
return json.dumps(dict)
def tree2json(tree):
return json.loads(dict_to_json(tree2dict(tree)))
def main():
while 1 == 1 :
print("Enter a statement")
statement = raw_input().strip()
if statement == '':
continue
if statement.lower() in ['bye','goodbye','tata','good-bye']:
print("Good-bye, dear human")
exit()
userNameLoader() #loads the username
tagged_arr = Viterbi(statement)
tokens = word_tokenize(statement)
isFile = False
isDir = False
#check if all of the elements are same
count = 1
tag = tagged_arr[1]
for i in range(2,len(tagged_arr)):
if tagged_arr[i] == tag:
count = count + 1
if count == len(tagged_arr)-1:
n = len(tokens)
for i in range(0,n):
tag_temp = Viterbi(tokens[i])[1]
tagged_arr[i+1] = tag_temp
for i in range(0,len(tokens)):
if i+2 <= len(tokens):
if tokens[i] in ['folder','file','directory'] and tagged_arr[i+2] in ['VB','VBN']:
tagged_arr[i+1] = 'NN'
elif tokens[i] in ['folder','file','directory'] and tagged_arr[i] in ['VB','VBN']:
tagged_arr[i+1]='NN'
for i in range (0,len(tokens)):
if tagged_arr[i+1] in ['NN','NNS','NP','VB','AN','JJ'] and tokens[i]!= 'open':
for j in range(0,len(appnames)):
if tokens[i].lower() in appnames[j] and tokens[i].lower() not in ['file','folder','directory','copy','videos','desktop']:
tagged_arr[i+1]='AN'
tokens[i] = commands[j]
isFile = True
break
if isDirName(userName,tokens[i])==True:
tagged_arr[i+1] = 'AN'
isDir = True
elif isFileName(userName,tokens[i])==True:
tagged_arr[i+1] = 'AN'
isFile = True
for i in range (0,len(tokens)):
if tokens[i] in verbList:
tagged_arr[i+1] = 'VB'
break
elif tokens[i] in ['words','lines']:
tagged_arr[i+1] = 'NNS'
break
#print(tagged_arr)
grammar_string = """
S -> NPP VP
S -> VP
NPP -> MODAL PRONOUN | NOUN VA | APPNAME
NPP -> DET FOLDER VERB NAME | FOLDER VERB NAME| FOLDER NAME | DET NAME
NPP -> DET JJ FOLDER VERB NAME | JJ FOLDER VERB NAME| JJ FOLDER NAME
NPP -> DET AN FOLDER VERB NAME | AN FOLDER VERB NAME| AN FOLDER NAME
NPP -> DET APPNAME
NPP -> BACK TONAME | DET BACK TONAME
NPP -> WQUERY
WQUERY -> WQL AP NOUN | WRB AP NOUN
BACK -> 'background' | 'BACKGROUND' | 'Background'
BACK -> 'wallpaper' | 'WALLPAPER' | 'Wallpaper'
BACK -> AN
TONAME -> TO FILENAME | TO DET FILENAME
CPY -> DET FILENAME SOURCE DESTINATION | DET FILENAME DESTINATION SOURCE
CPY -> FILENAME SOURCE DESTINATION | FILENAME DESTINATION SOURCE
SOURCE -> IN SOURCER
SOURCER -> DET FOLDER VBN APPNAME | DET FOLDER APPNAME | DET APPNAME
SOURCER -> FOLDER VBN APPNAME | FOLDER APPNAME | APPNAME
DESTINATION -> TO DESTINATIONR
DESTINATIONR -> DET FOLDER VBN APPNAME | DET FOLDER APPNAME | DET APPNAME
DESTINATIONR -> FOLDER VBN APPNAME | FOLDER APPNAME | APPNAME
FOLDER -> 'folder'|'directory'|'file'|'Folder'|'File'|'Directory'|'FOLDER'|'FILE'|'DIRECTORY'
FOLDER -> NN
VP -> VERB NPP | VERB VP | ADVERB VP | VERB CPY
VP -> BER RB IN PPS
PPS -> DET PP | PP
PP -> JJ NOUN | NOUN | FOLDER VBN DET FILENAME | FOLDER VBN FILENAME | FOLDER FILENAME | FOLDER DET FILENAME
PP -> FILENAME
MODAL -> MD
PRONOUN -> PPSS | PPO
VA -> VERB APPNAME
APPNAME -> AN
VERB -> VB | VBN
ADVERB -> RB
DET -> AT
NOUN -> NN | NP | NNS
FILENAME -> AN
"""
str = 'NAME -> '
for i in range(1,len(tagged_arr)):
str+=tagged_arr[i]
if i < len(tagged_arr)-1:
str+=" | "
str+="\n"
grammar_string += str
#add POS tags
tl = len(tagged_arr)
for i in range(1,tl):
if tokens[i-1] not in ['file','folder','directory']:
grammar_string+=tagged_arr[i]+" -> \'"+tokens[i-1]+"\'\n"
simple_grammar = CFG.fromstring(grammar_string)
#print(simple_grammar)
parser = nltk.ChartParser(simple_grammar)
json_str = ''
ANs= []
ANJSON = []
VBs = []
VBJSON = []
NAMEs= []
NJSON = []
CCYs = []
SOURCEs = []
DESTs = []
FILENAMEs = []
TONAMEs = []
TONAMEFILEs = []
PPs = []
PPANs = []
WQUERY = []
OBJ = []
for tree in parser.parse(tokens):
#print(tree)
ANs = list(tree.subtrees(filter=lambda x: x.label()=='AN'))
VBs = list(tree.subtrees(filter=lambda x: x.label()=='VERB'))
NAMEs = list(tree.subtrees(filter=lambda x: x.label()=='NAME'))
CCYs = list(tree.subtrees(filter=lambda x:x.label()=='CCY'))
SOURCEs = list(tree.subtrees(filter=lambda x:x.label()=='SOURCER'))
SOURCEs = map(lambda x: list(x.subtrees(filter=lambda x: x.label()=='AN')), SOURCEs)
DESTs = list(tree.subtrees(filter = lambda x:x.label()=='DESTINATIONR'))
DESTs = map(lambda x: list(x.subtrees(filter=lambda x: x.label()=='AN')), DESTs)
FILENAMEs = list(tree.subtrees(filter = lambda x:x.label()=='FILENAME'))
FILENAMEs = map(lambda x: list(x.subtrees(filter=lambda x: x.label()=='AN')), FILENAMEs)
TONAMEs = list(tree.subtrees(filter=lambda x:x.label()=='TONAME'))
TONAMEFILEs = map(lambda x: list(x.subtrees(filter=lambda x: x.label()=='AN')), TONAMEs)
PPs = list(tree.subtrees(filter = lambda x:x.label()=='PP'))
PPANs = map(lambda x: list(x.subtrees(filter=lambda x: x.label()=='AN')), PPs)
WQUERY = list(tree.subtrees(filter = lambda x:x.label()=='WQUERY'))
OBJ = map(lambda x: list(x.subtrees(filter=lambda x: x.label()=='NOUN')), WQUERY)
if(len(PPANs)>0):
PPANs = PPANs[0][0]
PPANs = tree2json(PPANs)
OBJ = tree2json(OBJ[0][0])
obj = OBJ['NOUN'][0]
nounArr = ['NNS','NP','NN']
for n in nounArr:
if n in obj:
obj = obj[n]
break
obj = obj[0]
counter(PPANs['AN'][0],obj)
for i in xrange(0,len(ANs)):
ANJSON.append(tree2json(ANs[i]))
for i in xrange(0,len(VBs)):
VBJSON.append(tree2json(VBs[i]))
for i in xrange(0,len(NAMEs)):
NJSON.append(tree2json(NAMEs[i]))
for i in xrange(0,len(VBs)):
verbRoot = VBJSON[i]['VERB']
if 'VB' in verbRoot[0]:
if verbRoot[0]['VB'][0] in ['open','close','shut','exit']:
if isFile == True:
actionSequence(verbRoot[0]['VB'][0],ANJSON,True)
elif isDir == True:
actionSequence(verbRoot[0]['VB'][0],ANJSON,False)
elif verbRoot[0]['VB'][0] in ['make','create']:
#if isDir == True:
createSequence(verbRoot[0]['VB'][0],NJSON,str.rstrip('\n'))
elif verbRoot[0]['VB'][0] in ['copy','cut','move','duplicate']:
SOURCEs = tree2json(SOURCEs[0][0])
DESTs = tree2json(DESTs[0][0])
FILENAMEs = tree2json(FILENAMEs[0][0])
cutCopy(verbRoot[0]['VB'][0],FILENAMEs,SOURCEs,DESTs)
elif verbRoot[0]['VB'][0] in ['change','replace']:
changeWallpaper(verbRoot[0]['VB'][0],tree2json(TONAMEFILEs[0][0]))
main()