
DISTRIM: Parallel GMM Learning on Multicore
Cluster

Renyong Yang1, Tengke Xiong1, Tao Chen2, Zhexue Huang1, Shengzhong Feng1
1Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

Email: {ry.yang, tk.xiong, zx.huang, sz.feng}@siat.ac.cn
2EMC Labs China, China

Email: {tao.chen2}@emc.com

Abstract—Learning GMM model on extreme large data is
challenging. We provide theoretical support for the feasibility
of parallel EM-based GMM learning via distributed computing,
and also design and implement a distributed memory sharing
GMM learning system on multicore clusters, which is named as
Distrim. Distrim aims to maximize the usage of computational
power and minimize the communication overheads as much as
possible. The experimental results show that Distrim is much
more efficient than Hadoop, and also has a good scalability with
respect to the number of computing nodes.
Keywords: Gaussian Mixture Model, parallel learning, MPI,
memory sharing, distributed computing

I. INTRODUCTION

Gaussian Mixture Model (GMM) [1] is a parametric prob-

ability density function represented as a weighted sum of

Gaussian component densities, which has been widely used

in a variety of applications such as speaker identification

[2], [3] , image segmentation [4] and distributed data stream

clustering [5]. There are several methods for estimating GMM

parameters, such as moment estimation and maximum likeli-

hood estimation (MLE). The MLE in GMM learning can be

implemented through several machine learning methods, such

as expectation-maximum (EM) [6], gradient descent [7], con-

jugate gradient [8], Gauss-Newton algorithms [9], etc. Among

these methods, EM is the most widely used method for GMM

learning due to its well-established theoretical framework.

However, EM in GMM learning is a computationally inten-

sive task. First, EM is an iterative algorithm which requires

many iterations to finish the learning procedure, K-means [10]

is a case in point, which suffers a lower bound of 2Ω(
√
n)

(n is the number of observations) iterations for a complete

learning process. EM even tends to involve far more than

100 iterations on most data sets [11]. Second, during each

iteration, tremendous computation imposes on the performance

evaluation of each observation, which is measured by log-

likelihood function. Therefore, the classic serial EM learning

running on a single machine is unable to handle the large data

containing millions or even more observations. Learning from

such large data has to resort to parallel approaches.

Concerning with the limitation of classic serial EM learning

of GMM on large data, various parallel approaches have

been proposed. Existing parallel approaches can be divided as

MapReduce [12] approaches and non-MapReduce approaches.

MapReduce is a popularly used parallel computational frame-

work which has attracted many attentions in large data anal-

ysis. However, MapReduce does not directly support iterative

learning process such as PageRank and EM in GMM learning

[13]. Hadoop [14], developed based on MapReduce concept,

is the most successful open-source platform. However, the

iterations of GMM learning have to be performed by rounds of

Hadoop jobs, which requires manually orchestrating execution

using a driver program; furthermore, the creation of these

jobs leads to tremendous redundant disk I/O, network traffic

and time consuming. HaLoop [15] and Twister [16] have

been proposed to be iterative-aware for MapReduce. The disk

caching (not in memory) and indexing adopted in HaLoop

accelerate the intermediate data accessing for application such

as PageRank. However, these strategies expect little promotion

in GMM learning because GMM learning process produces

much little intermediate data. Twister is a full-in-memory

iterative-aware framework, which caches all data in distributed

memory pool; however, its dynamic scheduling pays consid-

erable overheads for its runtime system, and data can not be

shared among the daemon processes.

Some non-MapReduce parallel approaches have also been

applied to GMM learning, such as the MPI approaches [17]

and the memory-sharing approaches [18]. The MPI implemen-

tation [17] is designed for multiple single core clusters. Its

intermediate computation needs many times of MPI broadcast
operation, resulting in a none-optimized communication. The

memory sharing implementation using CUDA running on

GPU systems in [17], which is designed for parallel GMM

learning, is the closest related to our work in this paper. In this

implementation, each iteration of EM is split into six kernels,

taking advantage of the high efficiency of GPU’s SIMT archi-

tecture. Furthermore, the multithreaded data sharing scheme

is able to save time on data exchange between processes and

eliminate redundant data copies among processes. However, in

its fifth kernel of the implementation, there is an intermediate

data structure used for computing new covariance parameters,

which grows with the increase of the size of input data, making

it difficult to scale up for large data.

In this paper, we propose a new memory sharing parallel

iterative-aware GMM learning on multicore clusters for large

data. First, we provide theoretical support for the feasibility

of using parallel partitioning and computation for EM based

978-1-4673-0089-6/12/$26.00 ©2012 IEEE

GMM learning. Our theorem shows that the learning process

can be independent of the data size, which is superior for

scaling up on large data. Second, concerning with the draw-

backs of existing implementation for GMM learning (Hadoop,

HaLoop, Twister, etc.) discussed above, we developed a new

framework called Distrim from scratch, aiming to minimize

space and communication overheads as much as possible, and

to maximize the usage of computational power of multicore

clusters as much as possible. Implemented with C++, Distrim

has a distributed multithreaded architecture, which is scalable

for multiple nodes, and can share data among threads within

the same process and eliminate redundant data copies within

processes. The experiments demonstrate that, compared with

Hadoop implementation, Distrim gains notable improvement

both in time and space consumption.

The rest of this paper is organized as follows: Section II

introduces preliminary knowledge on GMM and its learning

via EM algorithm. In section III, we provide theoretical

support for parallel EM-based GMM learning via distributed

computing. Section IV presents the framework of Distrim and

its implementation for parallel GMM learning. In section V,

experimental results are presented. We make conclusions in

section VI.

II. PRELIMINARY KNOWLEDGE ON GMM LEARNING VIA

EM

A GMM model is a weighted superposition of K compo-

nents, each of which is modeled as multivariate Gaussian on

continuous D-dimensional row vector x = {x1, . . . , xD} with

its own mean μk and covariance matrix Σk as parameters,

(1 ≤ k ≤ K). A GMM model is as follows:

P (x|θ) =
K∑

k=1

wkN (x|μk,Σk)

θ = {w1..wK , μ1..μK ,Σ1..ΣK}
(1)

where wk is called a weight coefficient satisfying
∑K

k=1 wk =
1. Each component λk of GMM is a D-variant Gaussian

density function, which is as follows:

N (x|μk,Σk)

=
1

(2π)D/2|Σk|1/2 exp

{
−1

2
(x− μk)Σ

−1
k (x− μk)

T

}
(2)

The EM algorithm for GMM learning is conducted through

E and M steps. The E-step is to evaluate posterior φt
nk of

observation xn(1 ≤ n ≤ N) on the k-th component in the

t-th iteration, i.e.,

φt
nk = P (xn ∈ λk|θt−1) =

wt−1
k P (xn|θt−1)∑K

k=1 w
t−1
k P (xn|θt−1)

(3)

Given these posteriors, the new estimates for the parameter set

θ in the t-th iteration is obtained in the M-step, i.e.,

wt
k =

∑N
n=1 φ

t
nk

N
(4)

μt
k =

∑N
n=1 φ

t
nkxn∑N

n=1 φ
t
nk

(5)

Σt
k =

∑N
n=1 φ

t
nk(xn − μt

k)
T(xn − μt

k)∑N
n=1 φ

t
nk

(6)

The Evaluation step uses log-likelihood function as conver-

gence criterion,

L t = L (X|θt) =
N∑

n=1

ln

{
K∑

k=1

wt
kN (xn|μt

k,Σ
t
k)

}
(7)

The iterations of E and M steps continue until the log-

likelihood converged to a given threshold or maximum times

of iteration reached.

III. PARALLEL GMM LEARNING VIA DISTRIBUTED

COMPUTING

In this section we prove the feasibility of parallel GMM

learning via distributed computing, and propose optimized

computation strategies to speed up the learning process.

A. Feasibility of Parallel GMM Learning via Distributed Com-
puting

Following the notations in Section II, let θt denote es-

timated parameters in the t-th iteration, Φt = {φt
ij}(1 ≤

i ≤ N, 1 ≤ j ≤ K) denote the posterior (COEFFICIENT-

FRACTION) matrix for the N observations on the K mixture

components, M t = {mt
ij} = {φt

ijxi}(1 ≤ i ≤ N, 1 ≤
j ≤ K) denote the MEAN-FRACTION matrix, and St =
{stij} = {φt

ijx
T
i xi}(1 ≤ i ≤ N, 1 ≤ j ≤ K) denote

the COVARIANCE-FRACTION matrix, where stij itself is a

matrix of order (N×N). X is split into B partitions, denoted

as X = (X1, . . . , XB)
T, Xi represents observation set in the

i-th partition, which is called a block. Each block Xi is split

into T smaller pages, denoted as Xi = (Xi1, . . . , XiT)
T. Let

Φt
Xij

, M t
Xij

and St
Xij

denote the sub-matrices of Φt, M t and

St for page Xij in the t-th iteration.

Theorem 1: θt can be obtained by computing Φt
Xij

, M t
Xij

and St
Xij

in parallel.

Proof: Notice that Φt
Xij

, M t
Xij

and St
Xij

can be processed

in parallel. The k-th (1 ≤ k ≤ K) mixture component is

obtained by summarizing the k-th column of every Φt
Xij

to

get Φt
Xij ,k

, then the k-th column of Φt can be obtained by

Φt
k =

B∑
i=1

T∑
j=1

Φt
Xij ,k =

∑
Xi∈X

∑
Xij∈Xi

∑
xn∈Xij

φt
nk

Likewise, M t
k and St

k can be obtained by

M t
k =

∑
Xi∈X

∑
Xij∈Xi

∑
xn∈Xij

φt
nkxn

St
k =

∑
Xi∈X

∑
Xij∈Xi

∑
xn∈Xij

φt
nkx

T
nxn

Then wt
k, μt

k and Σt
k can be evaluated sequentially as

wt
k =

1

N
Φk, μt

k =
M t

k

Φt
k

and

Σt
k =

∑N
n=1 φ

t
nk(xn − μt

k)
T(xn − μt

k)∑N
n=1 φ

t
nk

=

∑N
n=1(φ

t
nkx

T
nxn − φt

nkx
T
nμ

t
k − φt

nkμ
t,T
k xn)∑N

n=1 φ
t
nk

+ μt,T
k μt

k

=
St
k

Φt
k

− μt,T
k μt

k

Thus θt can be obtained by computing Φt
Xij

, M t
Xij

and St
Xij

in parallel. These sub-matrices are concurrently calculated on

the pages using collateral threads.

Compared with the implementation of GMM learning in

[18], our approach is scalable for large data. From above analy-

sis we can see that Φt
Xij

, M t
Xij

and St
Xij

require O(TBKD2)
space to store intermediate data, where each page requires

only O(KD2) space, which is irrelevant to the size of input

data. Whereas, in the implementation in [18], its fifth kernel

needs O(NKD) space, which grows with data size, making

it difficult to scale up.

Since the implementation in [18] considers only special case

where the Gaussian covariance matrices are diagonal, we do

not make time comparison with it, as our implementation deals

with general situations.

B. Optimized Computing

Optimizing the bottlenecks in the computing can remarkably

improve the efficiency of the whole system. There are three

bottlenecks can be optimized, including the computation for

log-likelihood convergence arbitration, for posteriors φnk and

for matrix multiplication xT
nxn.

(1) Convergence arbitration: We propose a strategy, called

Delayed Convergence Arbitration (DCA), to avoid redundant

convergence computation. Let L t denote the log-likelihood

found in the t-th iteration, directly after θt has been obtained,

L t can be evaluated, and if L t−L t−1 < C, the convergence

is justified. DCA takes advantage of the association between

calculation of log-likelihood and calculation of model update

of GMM, and conducts the two types of computation syn-

chronously. Let L t−1 = Ł(θt−1) denote the log-likelihood

calculation, and θt = Q(θt−1) denote the model update

calculation in the t-th iteration, assuming T is the number of

iterations before convergence, then the last two synchronizing

processes are denoted as follows:{
θT = Q(θT−1)||L T−1 = Ł(θT−2)

}
and {

θT+1 = Q(θT)||L T = Ł(θT−1)
}

. We select θT+1 as the final result because Ł(θt+1) > Ł(θt).
DCA is named because the convergence arbitration of the T -

th iteration is delayed to the (T +1)-th iteration. This process

is called L0 level optimization.

(2) φnk: Let Σ−1
k = {σij}k(1 ≤ i ≤ D, 1 ≤ j ≤ D), for

∀ x ∈ X , let Δk = x − μk = {δi}k(1 ≤ i ≤ D), then the

calculation of (x− μk)Σ
−1
k (x− μk)

T can be optimized as

(x− μk)Σ
−1
k (x− μk)

T

=

⎛
⎝ δ1

. . .
δD

⎞
⎠

T

k

⎛
⎝ σ11 . . . σ1D

.
σD1 . . . σDD

⎞
⎠

k

⎛
⎝ δ1

. . .
δD

⎞
⎠

k

=

⎛
⎝ D∑

i=1

σiiδ
2
i + 2

⎛
⎝ D∑

i=1

D∑
j>i

σijδiδj

⎞
⎠
⎞
⎠

k

This optimized computing can reduce O(D2) addition opera-

tions. This process is called L1 level optimization.

(3) xT
nxn: It is noticed that xT

nxn remains unchanged

between iterations, so the intermediate results can be stored for

latter use. A disadvantage is that the space complexity for high

dimensional or large inputs is tremendous, because the size of

intermediate data is D times of the original input. However,

for a cluster containing many machines with considerable

memory, it is still possible to apply it to large data. This

process is called L2 level optimization.

IV. DISTRIM

In this section, we describe the framework and detailed

implementation of Distrim.

A. Framework of Distrim

The framework of Distrim aims to maximize the usage

of computational power of multicore clusters, moreover, to

minimize space and time consumption as much as possible.

The design of the framework is divided into two parts, i.e.,

topology and scheduling.

The topology of Distrim is a static three-leveled hierarchical

tree, as illustrated in Figure 1(a), where each leaf (in the third-

level level) is a worker thread, and each second-level node is

a PageMaster process, and its root is an Accumulator process.

Assuming there are (N + 1) identically configured machines,

Distrim assigns N machines N PageMaster processes, each

machine for one process, and each process contains T col-

lateral worker threads; the remaining one machine is used to

load a single Accumulator process.

Conforming to aforementioned topology, Distrim adopts

a statically orchestrated three-level hierarchical job schedul-

ing and intermediate result accumulating. The first level of

the scheduling is accomplished by worker threads within a

PageMaster, each thread processing a page, in concurrence

with others; and then the intermediate results are statistically

scheduled to be accumulated to a page-accumulation within

the same page. The second level of the scheduling is accom-

plished by a local thread, who is scheduled to accumulate all

page-accumulations to a block-accumulation. The third level

(a) Architecture of Distrim (b) PageMaster

Fig. 1. Framework of Distrim

of the scheduling is accomplished by the Accumulator process,

where all the block-accumulations are scheduled to be sum-

marized to complete results via network. In this scheduling,

the computing in each node is independent of that in other

nodes in the same level, thus maximized parallel computing

and minimized communication overhead are expected.

Distrim assumes all the input data is fit in-memory, which

is suitable for the computational intensive GMM learning.

The architecture of the PageMaster is illustrated in Figure

1(b), which consists of four entities, i.e., a set of in-memory

observation pages, a set of worker threads and a local thread,

a single copy of parameters and a set of intermediate data.

Our memory sharing framework has three advantages: first,

the three-level accumulating greatly reduces network traffic

by locally pre-accumulating the intermediate results within

each PageMaster; second, the static scheduling eliminates

time overheads compared with dynamic scheduling, which

plays an important role in the enormous iterations; third,

the parameters are shared among collateral threads, which

eliminates space consumption resulting from storing redundant

copies of identical parameters of multiple processes. So both

time and space consumptions are optimized in Distrim.

B. Implementation Details

The pseudocode of Distrim implementation is illustrated in

Algorithm 1 and Algorithm 2. Algorithm 1 launches multiple

restarts at one time and terminates unnecessary iterations in

the early stages, and then the best restart with the best final

estimated parameters is selected as the final result.

There are two main procedures in Algorithm 1, i.e., RunInit-
Proc and RunProc. The RunInitProc procedure randomly

initializes the parameters for multiple restarts, and randomly

assigns each observation to one of the mixture components,

then estimates the initial parameters using the observations

within the component.

The inner iterative-aware procedure, i.e., RunProc, is the

core of our implementation. RunProc works as follows: worker

threads Thrdi(1 ≤ i ≤ T) run in parallel to process each page

within each PageMaster, then the intermediate accumulations

within each page are accumulated to the block-accumulation,

which are then be accumulated by the Accumulator process

Algorithm 1 Parallel GMM Learning on Distrim

Input: Training observation set X , maximum iterations M ,

convergence threshold C, initial restarts R, initial steps

S, components K, number of computing nodes W .

Output: Learned parameter set P .

1: Split X into X1 ∼ XW and distribute Xi to computing

node i, t← 1;

2: for each restart r(1 ≤ r ≤ R)
3: P 0

r ← RunInitProc(r,K);
4: for each restart r
5: Perform S iterations for r: P t

r ← RunProc(P t−1
r);

6: Add all restarts to restart set Q, m← R, n← 1;

7: while (m > 1)

8: for each remaining restart r in Q
9: Perform n iterations for r: P t

r ← RunProc(P t−1
r);

10: Exclude m restarts with smaller log-likelihoods from

Q. m← m/2, n← n× 2;

11: while (t < M and L t−1
q −L t−1

q > C) /*q is the only

restart left in Q.*/

12: P t
q ← RunProc(P t−1

q);
13: return P t

q

for computing the new set of parameters of the next iteration,

as illustrated in Algorithm 2.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results of

Distrim and compare the performance of Distrim with that

of Hadoop.

A. Environment

Instead of programming in Java, Distrim is implemented

with C++, as C++ can control memory allocation and deallo-

cation completely. MPI is adopted as the underlying runtime

for Distrim, as it has low communication overhead thanks to

its direct transmission on TCP/IP. The well-established library

Boost1 is adopted to manage threads.

The experiments are conducted on a cluster consisting of

1http://www.boost.org

Algorithm 2 Multithreaded P t ← RunProc(P t−1) Procedure

Input: Training observation subset Xi in the i-th computing

node, old parameter estimate P t−1, number of computing

nodes W .

Output: New parameter estimate P t.

1: In i-th PageMasteri:
2: T ← GetCoreNumber(), Thrdinit created to allo-

cate T pages, scatter Xi into pages, worker threads

Thrdj(1 ≤ j ≤ T) and Thrd0, sleep;

3: repeat (RunProc):
4: Thrd0 sleep;

5: Thrdi(1 ≤ i ≤ T): fetches a page, processes

its observations with P t−1, sleep; Thrdq wakes up

Thrd0, sleep;/* Thrdq is the last active thread. */

6: Thrd0: Ii ← I + IThrdi(1 ≤ i ≤ T), send Ii to

Accumulator, awaiting P t from Accumulator;

7: Thrd0: receives P t, P t−1 ← P t, wakes up Thrd1 ∼
ThrdT ;

8: until end
9: Thrd0 and Thrdinit awake and clean up resources, then

exit;

10: Accumulator (RunProc):

11: while (!AllRestartsConverged())

12: I ← I + Ii, compute P t from I , broadcast P t to

PageMasteri (1 ≤ i ≤W);

30 identically configured nodes, each node has 15GB memory

and two Intel Xeon CPUs, and each CPU contains eight 2.4Gz

cores. A 1,000Mb Ethernet switch is used to connect all

the nodes. Each node is installed with a 64bit CentOS 5.5

Linux System. Hadoop is v0.20.2 with official JDK 1.6.0 21.

OpenMPI [19] v1.4.3 is used in the MPI runtime system, and

Boost is v1.46.2.

B. Datasets

Being constrained by the hardware configuration, the size

of input data is limited to 100 million observations with 10

dimensions (10GB), or equally 10 million observations with

100 dimensions. The synthetic data used in our experiment are

generated by a data generator, which authentically generates

data following the multivariate Gaussian distribution with

given parameters. We keep the number of mixture components

as FOUR in the data generation and model learning. There

is no missing value in the datasets, and each observation is

a text line containing double type values in each dimension,

separated by commas.

C. Distrim vs. Hadoop

The comparison of Distrim with Hadoop is given in Figure

2. The size of input data for the left figure is 1GB, and the

right is 10GB. On the 1GB data, Distrim was implemented

with three versions, i.e., L0, L1 and L2 level optimization. On

the 10 GB data, Distrim was implemented with two versions,

i.e., L0 and L1 level; L2 level optimization is not included

because it can not be applied to our cluster due to the memory

limitation. On each data set, Distrim and Hadoop is compared

by iteration time on three different dimensionalities, i.e., 10,

50 and 100 dimenstions.

From Figure 2, we can see that Distrim always outperforms

Hadoop. If the intermediate data can fit into the memory,

i.e., L2 can be applied, Distrim outperforms Hadoop even

better. We also observe that, dealing with 1GB scale data only

needs 1.38 second in the best case, while Hadoop needs 85.33

seconds, speeding up to 61.8 times. Furthermore, we can see

that L1 level optimization gains small improvement over L0

level optimization, while L2 level optimization speeds up the

GMM learning by a large margin from L1 level.

D. Scalability w.r.t Number of Nodes

In this part, we test the scalability of Distrim with respect to

number of nodes, and compare it with Hadoop. The scalability

w.r.t number of nodes is also tested on two different data

sets, i.e., 1GB and 10GB. On each data set, we test on three

different dimensionalities, i.e., 10, 50 and 100 dimensions.

The number of computing nodes varies from 5 to 29, and

Accumulator process runs on an extra node.

The comparison of Distrim with Hadoop is illustrated in

Figure 3. From Figure 3 we can see that Distrim always

outperforms Hadoop in terms of scalability w.r.t the number of

nodes. It is surprising seeing that, the iteration time of Hadoop

on the 1GB data set (Figure 3(a), 3(c) and 3(e)) fluctuates

around a mean value. Adding more computing nodes does not

help decreasing the iteration time, even leading to an increase

of iteration time. Also, from Figure 3(b) and Figure 3(d), we

can see a reverse of iteration time when the number of nodes

increases from 25 to 29. The reason is twofold: first, when

more nodes are added to the cluster, the complex runtime

system of Hadoop has to consume more time on maintaining

the tracking and scheduling tasks; second, an imbalanced data

replication may lead to an imbalanced data processing.

VI. CONCLUSIONS

In this paper, we have provided theoretical support for

the feasibility of parallel EM based GMM learning via dis-

tributed computing, and proposed three optimization strategies

to improve the efficiency of learning process. Based on the

theoretical analysis and optimization strategies, we have pro-

posed and implemented a comprehensively optimized parallel

learning system on multicore clusters for GMM model, named

Distrim. Our system promotes memory sharing among threads,

maximizes the usage of computational resources of multicore

cluster and decreases time and space consumption. The exper-

imental results demonstrated that Distrim outperforms Hadoop

by a large margin in terms of both efficiency and scalability

w.r.t the number of computing nodes.

ACKNOWLEDGEMENTS

This work is supported by Shenzhen Key

Laboratory of High Performance Data Mining(grant no.

CXB201005250021A).

(a) 1GB (b) 10GB

Fig. 2. Iteration time comparison between Distrim and Hadoop

(a) 10 dimension, 1GB (b) 10 dimension, 10GB (c) 50 dimension, 1GB (d) 50 dimension, 10GB

(e) 100 dimension, 1GB (f) 100 dimension, 10GB

Fig. 3. Scalability Comparison between Hadoop and Distrim

REFERENCES

[1] G. J. Mclachlan and K. E. Basford. Mixture models: inference and
applications to clustering. 1988.

[2] Douglas A. Reynolds and Richard C. Rose. Robust text-independent
speaker identification using gaussian mixture speaker models. IEEE
Transactions on Speech and Audio Processing, 3:1, January 1995.

[3] L. Rabiner and B.H. Juang. Fundamentals of Speach Recognition.
Prentice Hall Signal Processing Series, 1993.

[4] Rahman Farnoosh and Behnam Zarpak. Image segmentation using
gaussian mixture model. IUST International Journal of Engineering
Science, 19:29–32, 2008.

[5] Aoying Zhou, Feng Cao, Ying Yang, Chaofeng Sha, and Xiaofeng He.
Distributed data stream clustering: A fast em-based approach. In IEEE
23rd International Conference on Data Engineering, April 2007.

[6] A. P. Dempster, N. M. Laird, and D.B.Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), 39(1):1–38, 1977.

[7] K. Lange. A gradient algorithm locally equivalent to the em algo-rithm.
1995.

[8] Hestenes Magnus R. and Stiefel Eduard. Methods of conjugate gradients
for solving linear systems. Journal of Research of the National Bureau
of Standards, 1952.

[9] Björck. Numerical methods for least squares problems. Society for
Industrial and Applied Mathematics, 1996.

[10] J. B. MacQueen. Some methods for classification and analysis of
multivariate observations. Proceedings of 5th Berkeley Symposium on
Mathematical Statistics and Probability, 1, 1967.

[11] Claudia Plant and Christian Bhm. Parallel em-clustering: Fast conver-
gence by asynchronous model updates. IEEE Internet Computing, pages
178–185, 2010.

[12] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. In Proceedings of the 6th Symposium
on Operating System Design and Implementation, pages 137–150, San
Francisco, California, USA, December 6-8 2004. USENIX Association.

[13] Cheng tao Chu, Sang Kyun Kim, Yi an Lin, Yuanyuan Yu, Gary Bradski,
Andrew Y. Ng, and Kunle Olukotun. Map-reduce for machine learning
on multicore. In Advances in Neural Information Processing Systems
19, pages 281–288, 2007.

[14] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, 2009.
[15] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael Ernst.

Haloop: Efficient iterative data processing on large clusters. Proceedings
of The Vldb Endowment, 3:285–296, 2010.

[16] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-
Hee Bae, Judy Qiu, and Geoffrey Fox. Twister: a runtime for iterative
mapreduce. In IEEE International Symposium on High Performance
Distributed Computing, pages 810–818, 2010.

[17] Pedro E. Lpez de teruel, Jos M. Garca, and Manuel E. Acacio. The
parallel em algorithm and its applications in computer vision. In Parallel
and Distributed Processing Techniques and Applications, pages 571–
578, 1999.

[18] N. S. L. Phani Kumar, Sanjiv Satoor, and Ian Buck. Fast parallel
expectation maximization for gaussian mixture models on gpus using
cuda. In High Performance Computing and Communications, pages
103–109, 2009.

[19] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J.
Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur,
Brian Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel,
Richard L. Graham, and Timothy S. Woodall. Open MPI: Goals,
Concept, and Design of a Next Generation MPI Implementation. 2004.

