
DRAFT

PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023) 1

Array API Specification

Aaron Meurer‡∗

F

Abstract—The array API standard (https://data-apis.org/array-api/) is a com-
mon specification for Python array libraries, such as NumPy, PyTorch, CuPy,
Dask, and JAX.

This standard will make it straightforward for array-consuming libraries, like
scikit-learn and SciPy, to write code that uniformly supports all of these libraries.
This will allow, for instance, running the same code on the CPU and GPU.

This proceedings paper will cover the scope of the array API standard, sup-
porting tooling which includes a library-independent test suite and compatibility
layer, what work has been completed so far, and the plans going forward.

Index Terms—Python, Arrays, Tensors, NumPy, CuPy, PyTorch, JAX, Dask

Introduction

TODO: Need more for the intro here, including a motivating
example.

There are three primary stakeholders involved in Python code
making use of arrays: array libraries, array library consumers, and
end users. Array libraries are Python libraries that implement
an array object and a namespace that conforms to the array
API standard. Examples of array libraries are NumPy, CuPy, and
PyTorch. Array library consumers are libraries that implement
functionality on top of array libraries. Examples of array library
consumers are SciPy and scikit-learn. End users are people such as
scientists, data scientists, machine learning practitioners, as well
as other higher level libraries, which make use of array libraries
and array consuming libraries to solve problems with their data.

In the present paradigm, array library consuming codes are
written against a single array library (typically NumPy). Using
the algorithms they provide with other array libraries is impos-
sible. This is because, firstly, the array library is hard-coded
into the functions with things like np.<function>, where np
is numpy. Secondly, even if np could be swapped out with a
different array library, different libraries provide different APIs,
so the code would be unlikely to run without modification.

However, if we examine the three stakeholders, we see that
each stakeholder adds its own set of strengths to the ecosystem.
Array libraries provide an array object and corresponding func-
tions that are optimized against a certain set of use-cases and
hardware. Array consumer libraries provide useful implementa-
tions of higher level algorithms. End users provide the actual data
and define the problem to be solved. The current paradigm is
misaligned, as end users are the ones who are most suitable to

* Corresponding author: asmeurer@quansight.com
‡ Quansight

Copyright © 2023 Aaron Meurer. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

choose the array library that best fits their needs. They may prefer
a battle-tested, highly portable library like NumPy, or a library that
has been optimized for deep learning workflows like PyTorch, or
a library that can scale to multiple machines like Dask. But if they
also want to make use of a high level array consumer library, that
choice of array library will be forced on them by whatever array
library it is implemented against.

The array API specification corrects this misalignment by
specifying a uniform API for array libraries to provide. Array
consumer libraries can then be written against this one uniform
API, allowing their functionality to work with arrays from any
conforming array library. End users are then able to chose their
array library without that choice restricting their choices of array
consumer libraries. The usability improvement from different
array libraries themselves having more consistent APIs and se-
mantics additionally provides a benefit to the whole ecosystem.

Motivating Example

TODO

History of the Consortium

TODO: Distill this blog post https://data-
apis.org/blog/announcing_the_consortium/, as well as more
recent history like the standard releases.

The Data APIs Consortium was formed in 2020, with the goal
of unifying API standards for Python array and dataframe libraries.

Goals and Non-Goals

The array API specification has the following goals:

• Make it possible for array-consuming libraries to start
using multiple types of arrays as inputs.

• Enable increased sharing and reuse of code built on top of
the core functionality in the API standard.

• For authors of new array libraries, provide a concrete API
that can be adopted as is, rather than each author having to
decide what to borrow from where and where to deviate.

• Make the learning curve for users less steep when they
switch from one array library to another one.

Additionally, the specification has several non-goals:

• Making array libraries identical for the purpose of merging
them. Each library will keep having its own particular
strength, whether it’s offering functionality beyond what’s
in the standard, performance advantages for a given use
case, specific hardware or software environment support,
or more.

https://data-apis.org/array-api/
mailto:asmeurer@quansight.com

DRAFT

2 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

• Implement a backend or runtime switching system to be
able to switch from one array library to another with a
single setting or line of code. This may be feasible, how-
ever it’s assumed that when an array-consuming library
switches from one array type to another, some testing and
possibly code adjustment for performance or other reasons
may be needed.

• Making it possible to mix multiple array libraries in
function calls. Most array libraries do not know about
other libraries, and the functions they implement may try
to convert "foreign" input, or raise an exception. This
behavior is hard to specify. It is better to require the end
user to use a single array library that best fits their needs.
Note that specification of an interchange protocol is within
scope, but interchange between array libraries is only done
explicitly in the specification.

Design Principles

The array API standard has been developed with several design
principles in mind. The most important principle is that the
standard only specifies behavior that is already widely supported
by most existing array libraries. The goal is to minimize the
number of backwards incompatible changes required for libraries
to support the specification. This in particular leaves many things
out-of-scope if they are not already supported by all major array
libraries.

The standard has been developed based on the following core
principles:

• Don’t assume any dependency other than Python itself.
Different array libraries have independent codebases, and
link against varying backend libraries depending on what
hardware they support. There is no common array layer,
and array libraries do not need to know about each other.
Data can be interchanged between libraries using a proto-
col which does not require a dependency.

• Libraries may implement behaviors beyond what is speci-
fied. Except in a few special instances where avoiding bad
behavior is desired, the spec does not disallow libraries
to implement additional functions, methods, keyword ar-
guments, and allow additional input types. The onus is
on array library consumers to ensure they write portable
code (the strict minimal numpy.array_api module is
designed to help here).

• APIs should support accelerators. This means either not
specifying behaviors that are difficult to implement perfor-
mantly or making them optional.

• In a similar vein, APIs should support JIT compilers.
For example, the output type of any function should only
depend on its input types.

• The API is primarily functional (e.g., xp.any(x) instead
of x.any()). Outside of Python "dunder" operators, there
are only a few method defined on the array object. Func-
tional APIs are already preferred for most array libraries,
functional code is easier to read, especially for expressions
with many mathematical functions and operations, and
functions make it clearer that an operation returns a new
array rather than mutating the input array in-place, which
is avoided in the specification (see the next bullet point).

• Copy-view behavior and mutability is not required. Array
libraries may implement mutation but the behavior of

in-place mutation with views is not guaranteed by the
spec. Operations producing "views" on existing data is
considered an implementation detail and should not be
relied on for portability across libraries. The out keyword
is omitted from API definitions.

• No value-based casting. The output data type of any
function or operation should depend only on the input data
type(s), not the array values.

• No dimension dependent casting. The output data type of
any function or operation should function independently
of the input array dimensionality. This also means that 0-
D arrays are fully supported. Scalars as a separate concept
are not specified.

• Functions are generally only added to the specification
if they are already implemented by a wide range of
array libraries. There are only a few exceptions where
the consortium has decided to specify new functions that
are not implemented anywhere yet, because none of the
existing implementations were satisfactory (for example,
a new isdtype() function; see the Data Types section
below).

• Functions that can easily be implemented in terms of
existing standardized functions do not necessarily need to
be standardized.

• Functions with data-dependent output shapes are optional,
since graph-based libraries like JAX and Dask cannot
easily support them. This includes boolean indexing,
nonzero(), and the unique_* functions.

• Type annotations are defined in a basic way in the spec,
but libraries may extend them. Input types are designed
to be as simple as possible. For example, functions are
only required to accept array objects. Accepting "array
like" types like lists of numbers, as NumPy does, is
problematic because it complicates type signatures, and
calling asarray() at the top of every function adds
additional overhead. However, these type signatures are
not strict: libraries may choose to accept additional input
types outside of those that are specified.

• The accuracy and precision of numerical functions are not
specified beyond the basic IEEE 754 rules.

Scope

The scope of the array API specification includes:

• Functionality that needs to be included in an array library
for it to adhere to this standard.

• Names of functions, methods, classes and other objects.
• Function signatures, including type annotations.
• Semantics of functions and methods, i.e., expected outputs

and dtypes of numerical results.
• Semantics in the presence of nan’s, inf’s, and empty

arrays (i.e. arrays including one or more dimensions of
size 0).

• Casting rules, broadcasting, and indexing.
• Data interchange, i.e., protocols to convert one type of

array into another type, potentially sharing memory.
• Device support.

To contrast, the following are considered out-of-scope for the
array API specification

• Implementations of the standard are out of scope. Mem-
bers of the consortium have played a role in helping

DRAFT

ARRAY API SPECIFICATION 3

libraries like NumPy, CuPy, and PyTorch implement the
standard, but this work has been done independently of
the standard. In particular, the standard is completely
independent of any specific implementation and does not
make reference to or depend on any given implementation
or Python library (the array-api-compat library has
been produced as a compatibility layer on top of array
libraries such as NumPy, CuPy, and PyTorch, but this
library is provided only as a helper tool for array consumer
libraries. It is not in any way required to make use of the
array API).

• Execution semantics are out of scope. This includes single-
threaded vs. parallel execution, task scheduling and syn-
chronization, eager vs. delayed evaluation, performance
characteristics of a particular implementation of the stan-
dard, and other such topics.

• Non-Python API standardization (e.g., Cython or NumPy
C APIs).

• Standardization of dtypes not already supported by all ex-
isting array libraries is out of scope. This includes bfloat16,
extended precision floating point, datetime, string, object
and void dtypes.

• The following topics are out of scope: I/O, polynomials,
error handling, testing routines, building and packaging
related functionality, methods of binding compiled code
(e.g., cffi, ctypes), subclassing of an array class,
masked arrays, and missing data.

• NumPy (generalized) universal functions, i.e. ufuncs and
gufuncs.

• Behavior for unexpected/invalid input to functions and
methods.

For out-of-scope behavior, array libraries are free to implement
it or to raise an error. It is up to array consuming libraries to ensure
they write portable code that doesn’t depend on behaviors outside
of the specification. The numpy.array_api implementation,
discussed below, can be a useful tool for this.

Features

TODO: write an introduction here.

Data Interchange

As discussed in the non-goals section, array libraries are not
expected to support mixing arrays from other libraries. Instead,
there is an interchange protocol that allows converting an array
from one library to another.

To be useful, any such protocol must satisfy some basic
requirements:

• Interchange must be specified as a protocol, rather than
requiring a specific dependent package. The protocol
should describe the memory layout of an array in an
implementation-independent manner.

• Support for all dtypes in this API standard (see Data Types
below).

• It must be possible to determine on which device the array
to be converted resides (see Device Support below). It must
be possible to determine on what device the array that is
to be converted lives (see Device Support below). A sin-
gle protocol is preferable to having per-device protocols.
With separate per-device protocols it’s hard to figure out

unambiguous rules for which protocol gets used, and the
situation will get more complex over time as TPU’s and
other accelerators become more widely available.

• The protocol must have zero-copy semantics where possi-
ble, making a copy only if needed (e.g. when data is not
contiguous in memory).

• There must be both a Python-side and a C-side interface,
the latter with a stable C ABI. All prominent existing
array libraries are implemented in C/C++, and are released
independently from each other. Hence a stable C ABI is
required for packages to work well together. The protocol
must support low level access to be usable by libraries that
use JIT or AOT compilation, and it must be usable from
any language.

To satisfy these requirements, DLPack was chosen as the
data interchange protocol. DLPack is a standalone protocol with
a header-only C implementation that is ABI stable, meaning it
can be used from any language. It is designed with multi-device
support and supports all the data types specified by the standard.
It also has several considerations for high performance. DLPack
support has already been added to all the major array libraries, and
is the most widely supported interchange protocol across different
array libraries.

The array API specifies the following syntax for DLPack
support:

• A .__dlpack__() method on the array object, which
exports the array as a DLPack capsule.

• A .__dlpack__device__() method on the array
object, which returns the device type and device ID in
DLPack format.

• A from_dlpack() function, which converts an object
with a __dlpack__ method into an array for the given
array library.

Note that asarray() also supports the buffer protocol for
libraries that already implement it, like NumPy. But the buffer
protocol is CPU-only, meaning it is not sufficient for the above
requirements.

Device Support

The standard supports specifying what device an array should live
on. This is implemented by explicit device keywords in creation
functions, with the convention that execution takes place on the
same device where all argument arrays are allocated. This method
of specifying devices was chosen because it is the most granular,
despite its potential verbosity. Other methods of specifying devices
such as context managers are not included, but may be added in
future versions of the spec.

The primary intended usage of device support in the speci-
fication is geared towards array consuming libraries. End users
who create arrays from a specific array library may use that
library’s specific syntax for specifying the device relative to their
specific hardware configuration. For an array consuming library,
the important things they need to be able to do are

• Create new arrays on the same device as an array that’s
passed in.

• Determine whether two input arrays are present on the
same device or not.

• Move an array from one device to another.
• Create output arrays on the same device as the input arrays.

DRAFT

4 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

• Pass on a specified device to other library code.

Consequently, the specified device syntax focuses primarily
on getting the device of a given array and setting the device
to the same device as another array. The specifics of how to
specify actual devices are left unspecified. These specifics differ
significantly between existing implementations, such as CuPy and
PyTorch.

The syntax that is specified is

• A .device property on the array object, which returns
a device object representing the device the data in the
array is stored on. Nothing is specified about the device
object other than that it must support basic == equality
comparison within the same library.

• A device=None keyword for array creation functions,
which takes an instance of a device object.

• A .to_device() method on the array object to copy
an array to a different device.

In other words, the only specified way to access a device object
is via the .device property of an existing array object. The
specifics of how to specify an actual device depends on the actual
array library used, and is something that will be done by end users,
not array library consumers.

This also means that the following are currently considered
out-of-scope for the array API specification:

• Identifying a specific physical or logical device across
libraries

• Setting a default device globally
• Stream/queue control
• Distributed allocation
• Memory pinning
• A context manager for device control

All functions should respect explicit device= assignment,
preserve the device whenever possible, and avoid implicit data
transfer between devices.

Functions and Methods

Signatures: All function signatures in the specification
make use of PEP 570 positional-only arguments for arguments
that are arrays. It should not matter if one library defines def
atan2(y, x): ..., for instance, and another library defines
def atan2(x1, x2): With positional-only arguments,
the function must be called by passing the arguments by position,
like atan2(a, b). The specific name given the arguments by
the library becomes separate from the API.

Additionally, most keyword arguments are keyword-only. For
example, ones((3, 3), int64) is not allowed—it must be
called as ones((3, 3), dtype=int64). This makes user
code more readable, and future-proofs the API by allowing addi-
tional keyword arguments to be added without breaking existing
function calls.

All signatures in the specification include type annotations.
These type annotations use generic types like array and dtype
type to represent a library’s array or dtype objects. These type
annotations represent the minimal types that are required to be
supported by the specification. A library may choose to accept
additional types, although any use of this functionality will be non-
portable. Functionally, type annotations serve no purpose other
than as documentation. Libraries are not required to implement

any sort of runtime type checking, or to actually include such
annotations in their own function signatures. The array API spec-
ification does not attempt extend type annotation syntax beyond
what is already specified by PEPs and supported by popular type
checkers such as Mypy. For instance, including dtype or shape
information in the annotated type signatures is considered out-of-
scope.

Here is an example type signature in the specification
def asarray(

obj: Union[
array, bool, int, float, complex,
NestedSequence, SupportsBufferProtocol

],
/,
*,
dtype: Optional[dtype] = None,
device: Optional[device] = None,
copy: Optional[bool] = None,

) -> array:
...

Array Methods and Attributes: All relevant Python double
underscore (dunder) methods (e.g., __add__, __mul__, etc.)
are specified for the array object, so that people can write array
code in a natural way using operators. Each dunder method has a
corresponding functional form (e.g., __add__ ↔ xp.add()).
For consistency, this is done even for operators that may seem
unnecessary, like __pos__ ↔ positive(). Operators and
their corresponding functions behave identically, except that oper-
ators accept Python scalars (see "type promotion" below), while
functions are only required to accept arrays.

In addition to the standard Python dunder methods, the stan-
dard adds a some new dunder methods:

• x.__array_namespace__() returns the correspond-
ing array API compliant namespace for the array x.
This solves the problem of how array consumer li-
braries determine which namespace to use for a given
input. A function that accepts input x can call xp =
x.__array_namespace__() at the top to get the
corresponding array API namespace xp, whose functions
are then used on x to compute the result, which will
typically be another array from the xp library.

• __dlpack__() and __dlpack_device__() (see
the "data interchange" section above).

Functions: Aside from dunder methods, the only meth-
ods/attributes defined on the array object are x.to_device(),
x.dtype, x.device, x.mT, x.ndim, x.shape, x.size,
and x.T. All other functions in the specification are defined as
functions. These functions include

• Elementwise functions. These include functional forms of
the Python operators (like add()) as well as common nu-
merical functions like exp() and sqrt(). Elementwise
functions do not have any additional keyword arguments.

• Creation functions. This includes standard array creation
functions including ones(), linspace, arange, and
full, as well as the asarray() function, which con-
verts "array like" inputs like lists of floats and object
supporting the buffer protocol to array objects. Creation
functions all include a dtype and device keywords
(see the "Device" section above). The array type is
not specified anywhere in the spec, since different li-
braries use different types for their array objects, meaning

https://peps.python.org/pep-0570/

DRAFT

ARRAY API SPECIFICATION 5

asarray() and the other creation functions serve as the
effective "array constructor".

• Data type functions are basic functions to manipu-
late and introspect dtype objects such as finfo(),
can_cast(), and result_type(). Notable among
these is a new function isdtype(), which is used
to test if a dtype is among a set of predefined dtype
categories. For example, isdtype(x.dtype, "real
floating") returns True if x has a real floating-point
dtype like float32 or float64. Such a function did
not already exist in a portable way across different array
libraries. One existing alternative was the NumPy dtype
type hierarchy, but this hierarchy is complex and is not
implemented by other array libraries such as PyTorch.
The isdtype() function is a rare example where the
consortium has specified a completely new function in the
array API specification—most of the specified functions
are already widely implemented across existing array li-
braries.

• Linear algebra functions. Only basic manipulation func-
tions like matmul() are required by the specification.
Additional linear algebra functions are included in an
optional linalg extension (see below).

• Manipulation functions such as reshape(), stack(),
and squeeze().

• Reduction functions such as sum(), any(), all(), and
mean().

• Four new functions unique_all(),
unique_counts(), unique_inverse(), and
unique_values(). These are based on the
np.unique() function but have been split into
separate functions. This is because np.unique()
returns a different number of arguments depending on the
values of keyword arguments. Functions like this whose
output type depends on more than just the input types are
hard for JIT compilers to handle, and they are also harder
for users to reason about.

Note that the unique_* functions, as well as nonzero()
have a data-dependent output shape, which makes them difficult to
implement in graph libraries. Therefore, such libraries may choose
to not implement these functions.

Data Types: Data types are defined as named dtype objects
in the array namespace, e.g., xp.float64. Nothing is specified
about what these objects actually are beyond that they should obey
basic equality testing. Introspection on these objects can be done
with the data type functions (see above).

The following dtypes are defined:

• Boolean: bool.
• Integer: int8, int16, int32, int64, uint8,

uint16, uint32, and uint64.
• Real floating-point: float32 and float64.
• Complex floating-point: complex64 and complex128.

These dtypes were chosen because they are the most widely
adopted set across existing array libraries. Additional dtypes may
be considered for addition in future versions of the standard.

Additionally, a conforming library should have "default" in-
teger and floating-point dtypes, which is consistent across plat-
forms. This is used in contexts where the result data type is
otherwise ambiguous, for example, in creation functions when

no dtype is specified. This allows libraries to default to 64-bit
or 32-bit data types depending on the use-cases they are aiming
for. For example, NumPy’s default integer and float dtypes are
int64 and float64, whereas, PyTorch’s defaults are int64
and float32.

See also the "Type Promotion" section below for information
on how dtypes combine with each other.

Broadcasting

All elementwise functions and operations that accept more than
one array input apply broadcasting rules. The broadcasting rules
match the commonly used semantics of NumPy, where a broad-
casted shape is constructed from the input shapes by prepending
size-1 dimensions and broadcasting size-1 dimensions to other-
wise equal non-size-1 dimensions (for example, a shape (3,
1) and a shape (2, 1, 4) array would broadcast to a shape
(2, 3, 4) array by virtual repetition of the array along the
broadcasted dimensions). Broadcasting rules should be applied
independently of the input array data types or values.

Indexing

Arrays should support indexing operations using the standard
Python getitem syntax, x[idx]. The indexing semantics defined
are based on the common NumPy array indexing semantics,
but restricted to a subset that is common across array libraries
and does not impose difficulties for array libraries implemented
on accelerators. Basic integer and slice indexing is defined as
usual, except behavior on out-of-bounds indices is left unspecified.
Multiaxis tuple indices are defined, but only specified when all
axes are indexed (e.g., if x is 2-dimensional, x[0, :] is defined
but x[0] may not be supported). A None index may be used in
a multiaxis index to insert size-1 dimensions (xp.newaxis is
specified as a shorthand for None). Boolean array indexing (also
sometimes called "masking") is specified, but only for instances
where the boolean index has the same dimensionality as the
indexed array. The result of a boolean array indexing is data-
dependent, and thus graph-based libraries may choose to not
implement this behavior.

Integer array indexing is not specified, however a basic
take() is specified and put() will be added in the 2023 version
of the spec.

Note that views are not required in the specification. Libraries
may choose to implement indexed arrays as views, but this should
be treated as an implementation detail by array consumers. In
particular, any mutation behavior that affects more than one array
object is considered an implementation detail that should not be
relied on for portability.

As with other APIs, extensions of these indexing semantics,
e.g., by supporting the full range of NumPy indexing rules, is
allowed. Array consumers using these will only need to be aware
that their code may not be portable across libraries.

It should be noted that both 0-D arrays (i.e., "scalar" arrays
with shape () consisting of a single value), and size-0 arrays (i.e.,
arrays with 0 in their shape with no values) are fully supported
by the specification. The specification does not have any notion
of "array scalars" like NumPy’s np.float64(0.), only 0-D
arrays. Scalars are a NumPy-only thing, and it is unnecessary from
the point of view of the specification to have them as a separate
concept from 0-D arrays.

DRAFT

6 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

bool

bool
(Python)

float
(Python)

float32 float64

int
(Python)

uint8 uint16 uint32 uint64

int8 int16 int32 int64

complex
(Python)

complex64 complex128

Fig. 1: The dtypes specified in the spec with required type promotions,
including promotions for Python scalars in operators. Cross-kind
promotion is not required and is discouraged.

Type Promotion

Elementwise functions and operators that accept more than one
argument perform type promotion on their inputs, if the input
dtypes are compatible.

The specification requires that all type promotion should
happen independently of the input array values and shapes. This
differs from the historical NumPy behavior where type promotion
could vary for 0-D arrays depending on their values. For example
(in NumPy 1.24):

>>> a = np.asarray(0., dtype=np.float64)
>>> b = np.asarray([0.], dtype=np.float32)
>>> (a + b).dtype
dtype('float32')
>>> a2 = np.asarray(1e50, dtype=np.float64)
>>> (a2 + b).dtype
dtype('float64')

This behavior is bug prone and confusing to reason about. In the
array API specification, any float32 array and any float64
array would promote to a float64 array, regardless of their
shapes or values. NumPy is planning to deprecate its value-based
casting behavior for NumPy 2.0 (see below).

Additionally, automatic cross-kind casting is not specified.
This means that dtypes like int64 and float64 are not required
to promote together. It also means that functions are not required
to accept dtypes that imply a cross-kind cast: for instance floating-
point functions like exp() or sin() are not required to accept
integer dtypes, and arithmetic functions and operators like + and
* are not required to accept boolean dtypes. Array libraries are not
required to error in these situations, but array consumers should
not rely on cross-kind casting in portable code. Cross-kind casting
is better done explicitly using the astype() function. Automatic
cross-kind casting is harder to reason about, can result in loss of
precision, and often when it happens it indicates a bug in the user
code.

Single argument functions and operators should maintain the
same dtype when relevant, for example, if the input to exp() is
a float32 array, the output should also be a float32 array.

For Python operators like + or *, Python scalars are allowed.
Python scalars cast to the dtype of the corresponding array’s
dtype. Cross-kind casting of the scalar is allowed in this spe-
cific instance for convenience (for example, float64_array

+ 1 is allowed, and is equivalent to float64_array +
asarray(1., dtype=float64)).

Optional Extensions

In addition to the above required functions, there are two optional
extension sub-namespaces. Array libraries may chose to imple-
ment or not implement these extensions. These extensions are
optional because they typically require linking against a numerical
library such as a linear algebra library, and therefore may be
difficult for some libraries to implement.

• linalg contains basic linear algebra functions, such as
eigh, solve, and qr. These functions are designed to
support "batching" (i.e., functions that accept matrices also
accept stacks of matrices as a single array with more than 2
dimensions). The specification for the linalg extension
is designed to be implementation agnostic. This means
that things like keyword arguments that are specific to
backends like LAPACK are omitted from the specified
signatures (for example, NumPy’s use of UPLO in the
eigh() function). BLAS and LAPACK no longer hold
a complete monopoly over linear algebra operations given
the existence of specialized accelerated hardware, so these
sorts of keywords are an impediment wide implementation
across all array libraries.

• fft contains functions for performing Fast Fourier trans-
formations.

Current Status of Implementations

Two versions of the array API specification have been released,
v2021.12 and v2022.12. v2021.12 was the initial release with all
important core array functionality. The v2022.12 release added
complex number support to all APIs and the fft extension. A
v2023 version is in the works, although no significant changes are
planned so far. In 2023, most of the work around the array API
has focused on implementation and adoption.

Strict Minimal Implementation (numpy.array_api)

The experimental numpy.array_api submodule is a stan-
dalone, strict implementation of the standard. It is not intended
to be used by end users, but rather by array consumer libraries to
test that their array API usage is portable.

The strictness of numpy.array_api means it will raise
an exception for code that is not portable, even if it would
work in the base numpy. For example, here we see that
numpy.array_api.sin(x) fails for an integral array x,
because in the array API spec, sin() is only required to work
with floating-point arrays.

>>> import numpy.array_api as xp
<stdin>:1: UserWarning: The numpy.array_api submodule
is still experimental. See NEP 47.
>>> x = xp.asarray([1, 2, 3])
>>> xp.sin(x)
Traceback (most recent call last):
...
TypeError: Only floating-point dtypes are allowed in
sin

In order to implement this strictness, numpy.array_api em-
ploys a separate Array object, distinct from np.ndarray.

>>> a
Array([1, 2, 3], dtype=int64)

DRAFT

ARRAY API SPECIFICATION 7

This makes it difficult to use numpy.array_api along-
side normal numpy. For example, if a consumer library
wanted to implement the array API for NumPy by using
numpy.array_api, they would have to first convert the user’s
input numpy.ndarray to numpy.array_api.Array, per-
form the calculation, then convert back. This is in conflict with the
fundamental design of the array API specification, which is for
array libraries to implement the API and for array consumers to
use that API directly in a library agnostic way, without converting
between different array libraries.

As such, the numpy.array_api module is only useful as
a testing library for array consumers, to check that their code is
portable. If code runs in numpy.array_api, it should work in
any conforming array API namespace.

array-api-compat

As discussed above, numpy.array_api is not a suitable way
for libraries to use numpy in an array API compliant way.
However, NumPy, as of 1.24, still has many discrepancies from
the array API. A few of the biggest ones are:

• Several elementwise functions are renamed from NumPy.
For example, NumPy has arccos(), etc., but the stan-
dard uses acos().

• The spec contains some new functions that are not yet
included in NumPy. These clean up some messy parts of
the NumPy API. These include:
TODO: How complete do we need to be here?

– np.unique is replaced with four different
unique_* functions so that they always have a
consistent return type.

– np.transpose is renamed to permute_dims.
– matrix_transpose is a new function that only

transposes the last two dimensions of an array.
– np.norm is replaced with separate

matrix_norm and vector_norm functions in
the linalg extension.

– np.trace operates on the first two axes of an
array but the spec linalg.trace operates on
the last two.

There are plans in NumPy 2.0 to fully adopt the spec, including
changing the above behaviors to be spec-compliant. But in order to
facilitate adoption, a new library array-api-compat has been
written. array-api-compat is a small, pure Python library
with no hard dependencies that wraps array libraries to make
the spec complaint. Currently NumPy, CuPy, and PyTorch are
supported.

array-api-compat is to be used by array consumer li-
braries like scipy or scikit-learn. The primary usage is like
from array_api_compat import array_namespace

def some_array_function(x, y):
xp = array_api_compat.array_namespace(x, y)

Now use xp as the array library namespace
return xp.mean(x, axis=0) + 2*xp.std(y, axis=0)

array_namespace is a wrapper around
x.__array_namespace__(), except whenever x is a
NumPy, CuPy, or PyTorch array, it returns a wrapped module
that has functions that are array API compliant. Unlike
numpy.array_api, array_api_compat does not use

separate wrapped array objects. So in the above example, the if
the input arrays are np.ndarray, the return array will be a
np.ndarray, even though xp.mean and xp.std are wrapped
functions.

While the long-term goal is for array libraries to be completely
array API compliant, array-api-compat allows consumer
libraries to use the array API in the shorter term against libraries
like NumPy, CuPy, and PyTorch that are "nearly complaint".

array-api-compat has already been successfully used in
scikit-learn’s LinearDiscriminantAnalysis API (https://
github.com/scikit-learn/scikit-learn/pull/22554).

Compliance Testing

The array API specification contains over 200 function and method
definitions, each with its own signature and specification for
behaviors for things like type promotion, broadcasting, and special
case values.

To facilitate adoption by array libraries, as well as to aid in
the development of the minimal numpy.array_api implemen-
tation, a test suite for the array API has been developed. The
array-api-tests test suite is a fully featured test suite that
can be run against any array library to check its compliance against
the array API specification. The test suite does not depend on any
array library—testing against something like NumPy would be
circular when it comes time to test NumPy itself. Instead, array-
api-tests tests the behavior specified by the spec directly.

When running the tests, the array library is specified using the
ARRAY_API_TESTS_MODULE environment variable.

This is done by making use of the hypothesis Python library.
The consortium team has upstreamed array API support to hypoth-
esis in the form of the new hypothesis.extra.array_api
submodule, which supports generating arrays from any array API
compliant library. The test suite uses these hypothesis strategies to
generate inputs to tests, which then check the behaviors outlined
by the spec automatically. Behavior that is not specified by the
spec is not checked by the test suite, for example the exact numeric
output of floating-point functions.

Utilizing hypothesis offers several advantages. Firstly, it allows
writing tests in a way that more or less corresponds to a direct
translation of the spec into code. This is because hypothesis is
a property-based testing library, and the behaviors required by
the spec are easily written as properties. Secondly, it makes it
easy to test all input combinations without missing any corner
cases. Hypothesis automatically handles generating "interesting"
examples from its strategies. For example, behaviors on 0-D or
size-0 arrays are always checked because hypothesis will always
generate inputs that match these corner cases. Thirdly, hypothesis
automatically shrinks inputs that lead to test failures, producing the
minimal input to reproduce the issue. This leads to test failures that
are more understandable because they do not incorporate details
that are unrelated to the problem. Lastly, because hypothesis gen-
erates inputs based on a random seed, a large number of examples
can be tested without any additional work. For instance, the test
suite can be run with pytest --max-examples=10000 to
run each test with 10000 different examples (the default is 100).
These things would all be difficult to achieve with an old-fashioned
"manual" test suite, where explicit examples are chosen by hand.

The array-api-tests test suite is the first example known to these
authors of a full featured Python test suite that runs against multi-
ple different libraries. It has already been invaluable in practice for
implementing the minimal numpy.array_api implementation,

https://github.com/scikit-learn/scikit-learn/pull/22554
https://github.com/scikit-learn/scikit-learn/pull/22554

DRAFT

8 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

the array-api-compat library, and for finding presidencies
from the spec in array libraries including NumPy, CuPy, and
PyTorch.

Future Work

The focus of the consortium for 2023 is on implementation and
adoption.

NumPy 2.0, which is planned for release in late 2023, will
have full array API support. This will include several small
breaking changes to bring NumPy inline with the specification.
This also includes, NEP 50, which fixes NumPy’s type promotion
by removing all value-based casting. A NEP for full array API
specification support will be announced later this year.

SciPy 2.0, which is also being planned, and will include full
support for the array API across the different functions. For end
users this means that they can use CuPy arrays or PyTorch tensors
instead of NumPy arrays in SciPy functions, and they will just
work as expected, performing the calculation with the underlying
array library and returning an array from the same library.

Scikit-learn has implemented array API specification support
in its LinearDiscriminantAnalysis class and plans to add
support to more functions.

Work is underway on an array API compliance website.
(TODO)

There is a similar effort being done by the same Data APIs
Consortium to standardize Python dataframe libraries. This work
will be discussed in a future paper and conference talk.

TODO: Add references

Conclusion

TODO

	Introduction
	Motivating Example

	History of the Consortium
	Goals and Non-Goals
	Design Principles
	Scope
	Features
	Data Interchange
	Device Support
	Functions and Methods
	Broadcasting
	Indexing
	Type Promotion
	Optional Extensions

	Current Status of Implementations
	Strict Minimal Implementation (numpy.array_api)
	array-api-compat
	Compliance Testing

	Future Work
	Conclusion

