
 In Seop Na :Table Detection from Document Image using Vertical Arrangement of Text Blocks 77

International Journal of Contents, Vol.11, No.4, Dec. 2015

Table Detection from Document Image
using Vertical Arrangement of Text Blocks

Dieu Ni Tran, Tuan Anh Tran, Aran Oh, Soo Hyung Kim, In Seop Na*

School of Electronics and Computer Engineering
Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea

ABSTRACT

Table detection is a challenging problem and plays an important role in document layout analysis. In this paper, we propose an
effective method to identify the table region from document images. First, the regions of interest (ROIs) are recognized as the table
candidates. In each ROI, we locate text components and extract text blocks. After that, we check all text blocks to determine if they
are arranged horizontally or vertically and compare the height of each text block with the average height. If the text blocks satisfy a
series of rules, the ROI is regarded as a table. Experiments on the ICDAR 2013 dataset show that the results obtained are very
encouraging. This proves the effectiveness and superiority of our proposed method.

Key words: Table Detection, Text Block, Expanding ROI, Vertical Arrangement.

1. INTRODUCTION

 Tables, as significant document components, store and
present relational information in a condensed way, i.g.
experimental results in scientific documents, statistical data in
financial reports, price lists, instruction manuals and catalogues
etc. Table detection is an important task of document image
analysis. Detected table correctly will improve document
analysis system and digital library system etc. Table detection
and extraction is a popular but difficult problem, primarily due
to the diversity of table styles. It is not easy for a single
algorithm to perform well on all the difference types of tables.

A wide variety of measures for table detection has been
proposed. Jing Fang et al. [1] found that the table headers are
one of the main characteristics of complex table styles. They
define the lines at the top of a table (header rows) or at the left
of the table (header columns) as the table headers. They
identify a set of features that can be used to segregated headers
from tabular data and build a classifier to detect table headers.
In [2], researchers design learning-based framework to identify
tables, it is a structured labeling problem, which learns the
layout of the document and labels its various entities as table
header, table trailer, table cell and non-table region. They
develop features which encode the foreground block
characteristics and the contextual information. These features
are provided to a fixed point model which learns the inter-
relationship between the blocks. The fixed point model attains a
contraction mapping and provides a unique label to each block.

* Corresponding author, Email: ypencil@hanmail.net
Manuscript received Aug. 26, 2015; revised Oct. 19, 2015;
accepted Oct. 26, 2015

Yalin Wang et al. [3] define the table detection problem as
a probability optimization problem. They proceed to compute a
set of probability measurements for each of the table entities.
The computation of the probability measurements takes into
consideration tables, table text separators and table neighboring
text blocks. Then, an iterative updating method is used to
optimize the page segmentation probability to obtain the final
result. Tanushree Dhiran et al. [4] divide tables into 3 type:
table have lines as row and column separator, table have
horizontals line for separating rows and space for separating
column and tables only space are used as both row and columns
separator. They use projection profile and hough line to
detected table.

Zhouchen Lin et al. [5] present a robust system which is
capable of detecting tables from freestyle online ink notes and
extracted their structure so that they could be further edited in
multiple ways. First, the primitive structure of tables, i.e.,
candidates for ruling lines and table bounding boxes, are
detected among drawing strokes. Second, the logical structure
of tables is determined by normalizing the table skeletons,
identifying the skeleton structure, and extracting the cell
contents. The detection process is similar to a decision tree so
that invalid candidates can be ruled out quickly.

In [6], authors proposed a method to detect table regions in
document images by identifying the column and row line
separators and their properties. The method employs a run
length approach to identify the horizontal and vertical lines
present in the input image. From each group of intersecting
horizontal and vertical lines, a set of 26 low-level features are
extracted and an SVM classifier is used to test if it belongs to a
table or not.

Wonkyo Seo et al. [7] develop new junction detection and
labeling methods, where junction detection means to find

http://dx.doi.org/10.5392/IJoC.2015.11.4.077

78 In Seop Na :Table Detection from Document Image using Vertical Arrangement of Text Blocks

International Journal of Contents, Vol.11, No.4, Dec. 2015

candidates for the corners of cells, and junction labeling is to
infer their connectivity. They consider junctions as the
intersections of curves, and so we first develop a multiple curve
detection algorithm. After the junction detection, they encode
the connectivity information (including false detection)
between the junctions into 12 labels and design a cost function
reflecting pairwise relationships as well as local observations.
The cost function was minimized via the belief propagation
algorithm, and they locate tables and their cells from the
inferred labels.

Ying Liu et al. [8]-[11] proposed a method in PDF, they
noticed that almost all the table rows are sparse lines. By
filtering out the non-sparse lines initially, the table boundary
detection problem could be simplified into the sparse line
analysis problem easily. They design eight line label types and
apply two machine learning techniques, Conditional Random
Field (CRF) and Support Vector Machines (SVM), on the table
boundary detection field. In [12], B. Gatos et al. propose a
novel technique for automatic table detection in document
images that neither requires any training phase nor uses
domain-specific heuristics, thus, resulting to an approach
applied to a variety of document types. They propose a
workflow for table detection that comprises three distinct steps:
image pre-processing; horizontal and vertical line detection and
table detection.

Jing Fang et al. [13] propose a novel and effective table
detection method via visual separators and geometric content
layout information, targeting at PDF documents. The visual
separators refer to not only the graphic ruling lines but also the
white spaces to handle tables with or without ruling lines and
they detect page columns in order to assist table region
delimitation in complex layout pages.

Fig. 1. Example of the table

Due to the information which can be extracted easily from

PDF file, most of proposed method in table detection is proceed
on these files. However, text and non-text extraction is not
simple in scan document image. To solve this problem, we
extract the connected components in the binary image and give
some rules to separate text and non-text components.

We observed that the table contains the following
properties:

• Contained object: the table is the big object and
contains many other objects,

• Arrangement: horizontal lines and vertical lines are
usually arranged vertically and horizontally. Text blocks which
have the big gaps in same text line and are also arranged
vertically, see Fig. 1.

Our method includes the following steps: Firstly, we
binarize document image and use morphology to merge
neighbor objects. Then, we extract the connected component
and get the bounding box of them. After that, we table
boundary such as contained object, horizontal line, and vertical
line after expand, these are called region of interest (ROI). In
ROI, text components are recognized (the height of which is
equivalent to the average height). Then, we extract text
components in text blocks, which are called table cells. We
check text blocks if they are arranged horizontally and
vertically. If ROI has many text blocks in a text line and text
blocks are arranged horizontally and vertically, then ROI is a
real table.

Fig. 2. The flowchart of proposed system

No

Get connected
components (CCs)

Binary Image

Get table
boundary (ROIs)

Contain text
blocks?

Extracting text blocks

Are arranged
vertically?

Table Non-table

No

No

Yes

Yes

Extracting
the bounding box

Is CCs satisfying the
condition (2)?

Yes

Arranged vertically

Text blocks

 In Seop Na :Table Detection from Document Image using Vertical Arrangement of Text Blocks 79

International Journal of Contents, Vol.11, No.4, Dec. 2015

2. PROPOSED METHOD

Like most of image processing method, our method is also
implemented on the binary image. Therefore, if the input image
is colored, we convert it to the bi-level image by Sauvola
algorithm [14]. In this paper, we assign the pixels that belong to
the foreground is a value of 1 and background is a value of 0.
Then, we apply morphological closing [15] for the given binary
image to connect discrete components and reduce noise. Table
structure includes the following components: contained objects
which are the objects locate inside other objects, horizontal
lines and vertical lines, text block, etc. Proposed method uses
some equations to locate these properties and gives some
conditions to check if they are satisfied tabular attributes. The
block diagram of our approach is shown in Fig. 2.

2.1 Extracting connected components and bounding box

Fig. 3. The bounding box of connected component

Given the binary image, firstly, we extract the connected
component ܥܥ௦ and get their bounding box. Called ܥܥ௜ א
 .௜ is its bounding boxܤ ௦ is the ith connected component andܥܥ

The bounding rectangle is detected by xleft, xright, ytop,
ybot. ܥܥ׊௜ א ௦ܥܥ , we consider the number of ܥܥ௝ which
located inside the bounding box of ܥܥ௜ , see Fig. 5d. The ܥܥ௝ is
called located inside the ܥܥ௜ if ܤ௝ ؿ ௜ܤ :(௜ܤ ௝ located insideܤ) ,

௜ሻܥܥሺܿ݊ܫ ൌ ൛ܤ௝ ؿ ௜ܥܥ௜หܤ א ௦ሽ (1)ܥܥ

Fig. 3 shows an example of a bounding box. The word
“the” is a connected component and it is covered by a
bounding rectangle that is located by maxima positions. Fig. 3
also shows width and height of the connected component.

In this part, we compute the average height of all
connected components (avgHeight) to use for next steps.

Fig. 4. Expanding ROI using our method.

(a) Original document image; (b) The horizontal lines are located as blue lines on binary image; (c) The blue rectangle are located as
ROI by expanding the horizontal line and the table height(5*avgHeight); (d) Extracting text blocks and checking conditions on

section 2.3, 2.4 to ROI become a table; (e), (f) Repeating steps (c), (d)

(a) (b) (c)

(d) (e)
(f)

5*avgHeight

x
right

y
bottom

x
le

y
top

 width

heigh

80 In Seop Na :Table Detection from Document Image using Vertical Arrangement of Text Blocks

International Journal of Contents, Vol.11, No.4, Dec. 2015

Figure 5. An illustration of proposed method. We use an orange window to zoom out the result in some steps.

(a) Original document image; (b) Binarized document image using Sauvola algorithm; (c) We apply morphological closing for the
given binary image to connect discrete components and reduce noise; (d) Extracting bounding box of the connected component in

document image; (e) Region of interest (ROI) is detected as contained object; (f) Text blocks is extracting by clustering consecutive
text components whose distances are less than a threshold; (g) Verifying ROI is a table by checking vertical arrangement on text

blocks; (h) Table is detected.

2.2 Locating region of interest (ROI)
We found that table is an object which contained many

rectangle blocks and cells. The boundary of a table could be the
contained object or horizontal line, vertical line, etc. Contained
object is the big object and its bounding box contains other
bounding boxes, see Fig. 5e. This step recognizes contained
object from connected component defined as:

௝ܤ ؿ ௜ܤ ฻

ە
ۖ
۔

ۖ
௜ሻܥܥ௟௘௙௧ሺݔ ۓ ൑ ܦܰܣ ௝൯ܥܥ௟௘௙௧൫ݔ

௜ሻܥܥ௥௜௚௛௧ሺݔ ൒ ܦܰܣ ௝൯ܥܥ௥௜௚௛௧൫ݔ
௜ሻܥܥ௧௢௣ሺݕ ൑ ܦܰܣ ௝൯ܥܥ௧௢௣൫ݕ

௜ሻܥܥ௕௢௧ሺݕ ൒ ௝൯ܥܥ௕௢௧൫ݕ

(2)

where, ܤ௝ ؿ ௜. Besides, if ROIsܥܥ ௝ located insideܥܥ ௜ meansܤ
are adjacent or overlap, it will be merged together.

There are special cases where the boundary of a table
defined by horizontal lines, these tables are called parallel table,
Fig. 4a. In these cases, first, we will find these horizontal lines,

Fig, 4b, using the height and width of each component. In short,
we will use the following condition:

௜ሻܥܥሺ݄ݐ݀݅ݓ ൒ 100 כ ௜ሻ (3)ܥܥሺݐ݄݄݃݅݁

Where ݄ݐ݀݅ݓሺܥܥ௜ሻ ൌ ௜ሻܥܥ௥௜௚௛௧ሺݔ െ ,௜ሻܥܥ௟௘௙௧ሺݔ

௜ሻܥܥሺݐ݄݄݃݅݁ ൌ ௜ሻܥܥ௧௢௣ሺݕ െ ௜ሻܥܥ௕௢௧ሺݕ

We expand horizontal line from top to bottom using the
average height of all connected components. As we know, the
table usually has bigger size compared to other objects, hence
its height is much greater than the average height many times.
From practical experience, we found that table height is greater
than the average height at least 5 times.

So, we locate ROI which is detected by the horizontal line
as the width and expand from top to down with the height
(5*avgHeight), see Fig. 4c.

Given ROI, we go to the section 2.3 and 2.4 to verify if
ROI is a table, as Fig. 4d. If ROI is not the table, we stop this
process. If ROI is the table, we expand again started from the

(b) (c) (d)

(e) (f) (g) (h)

(a)

 In Seop Na :Table Detection from Document Image using Vertical Arrangement of Text Blocks 81

International Journal of Contents, Vol.11, No.4, Dec. 2015

bottom of the latest rectangle (ROI) or the position of latest text
blocks, see Fig. 4e-f. These steps are repeated until ROI is not a
table.

Therefore, all ROIs, which are detected as the table, are
merged together to a united table.

Note that, the expanding process is combined with the
locating region of interest process. This means, after every
expanding step, the text components inside ROI are checked if
they satisfy conditions to become a table. Otherwise, we stop
the expanding ROI, see Fig. 4. The detailed condition is given
in next step.

2.3 Extracting text blocks

In this step, we determine text components inside ROI.
Text elements are components text elements are components
whose heights equal to the average height and widths are not
too large. We suppose function F guarantees that the two
connected components are in the same text line:

,௜ܥܥ൫ܨ ௝൯ܥܥ ൌ ቐ
1 ݂݅ ௧ܻ௢௣ሺܥܥ௜ሻ ൑ ௕ܻ௢௧൫ܥܥ௝൯ ܦܰܣ

 ௕ܻ௢௧ሺܥܥ௜ሻ ൒ ௧ܻ௢௣൫ܥܥ௝൯
݁ݏ݅ݓݎ݄݁ݐ݋ 0

(4)

,௜ܥܥ ׊ ,௝ܥܥ ௞ܥܥ ; if ܨሺܥܥ௜, ௞௝ሻܥܥ ൌ 1 and ܨሺܥܥ௝, ௞ሻܥܥ ൌ 1

then ܨሺܥܥ௜, ௞ሻܥܥ ൌ 1 ; i.e., transitive property holds on relation
for connected components.

In each text line, we compute distance of consecutive text
components ܦ൫ܥܥ௜, :௝൯, by using the following equationܥܥ

,௜ܥܥ൫ܦ ௝൯ܥܥ ൌ minሺߠ௜݆, ௝݅ሻ (5)ߠ

where ߠ௜௝ ൌ ௜ሻܥܥ௟௘௙௧ሺݔ| െ |௝൯ܥܥ௥௜௚௛௧൫ݔ

If the distance of two consecutive text components is less
than a gap (threshold), they should be clustered together. We
figure out the threshold using below steps:
• Compute the distance of text components in each text line

of whole documents.
• Remove values around the mode value of the distances set.

The mode value is the distance between consecutive
characters.

• Compute the mode value of the rest again and remove
values around it. This mode value is the distance between
consecutive words.

• Compute the variance value of the rest of distances set, ߛ,
this value is the threshold.
Text blocks are text components which are separated by γ.

Therefore, each text line has many text blocks and they are also
called table cells, see Fig. 5f.

2.4 Checking vertical arrangement

We observed that text blocks (table cells) are always
arranged vertically (left side, right side or center), see Fig. 5g.
We suppose function G guarantees that the two text blocks in
others text line are vertical arrangements:

G(ܥܥ௜, =(௝ܥܥ

ە
ۖ
۔

ۖ
1ۓ ݂݅ |ሺ ௟ܺ௘௙௧ሺܥܥ௜ሻ െ ௟ܺ௘௙௧൫ܥܥ௝൯| ൑ ߬ ܱܴ

|ሺܺ௖௘௡௧௘௥ሺܥܥ௜ሻ െ ܺ௖௘௡௧௘௥൫ܥܥ௝൯| ൑ ߬ ܱܴ
|ሺܺ௥௜௚௛௧ሺܥܥ௜ሻ െ ܺ௥௜௚௛௧൫ܥܥ௝൯| ൑ ߬

0 ݁ݏ݅ݓݎ݄݁ݐ݋

(6)

where ܺ௖௘௡௧௘௥ሺܥܥ௜ሻ ൌ ௑೗೐೑೟ሺ஼஼೔ሻା ௑ೝ೔೒೓೟ሺ஼஼೔ሻ
ଶ

 , ߬ is deviation.
Note that for any three text blocks ,௜ܥܥ ,௜ܥܥ ௜ܥܥ ; if

,௜ܥܥሺܩ ௝ሻܥܥ ൌ 1 and ܩሺܥܥ௝, ௞ሻܥܥ ൌ 1 then ܩሺܥܥ௜, ௞ሻܥܥ ൌ 1 ;
i.e., transitive property holds on relation for connected
components. In proposed method, we give value of deviation
τ=3.

If ROI has many text lines and text blocks in text lines are
arranged vertically, ROI were real table - see Fig. 5h.

The final result contains the location of table boundary and
all text cells inside table. All steps of proposed method are
shown in Fig. 5.

3. EXPERIMENTS AND RESULTS

In this section, we present the experimental results of our
table detection algorithm. The proposed method is able to
handle the different table types and give the encourage results.

For the testing, we use the dataset of ICDAR2013 table
competition dataset [15] because this dataset is published and
very well-known in our field. This dataset contains 77 PDF files
table (Fig. 6a), and parallel table which has only horizontal lines
(Fig. 6b) or the non-ruling line table, etc.

As mentioned above, our system is implemented on the
image instead of PDF file or text file which is given by the
competition organizer. Therefore, firstly, we convert all pdf files
to images where one page of PDF is one image. Totally, we
collect 238 document images (approximate 3 megapixels) with
various layouts and different types of table structure.

The evaluation that was proposed by [15] is based on the
text regions which located inside the table and the ground truth.

Table 1 shows a result of table detection methods that we
refer from ICDAR 2013 Table Competition [15].

Silva et al. [17] give an algorithm that works on textual
files line-by-line, and the PDF dataset was therefore converted
into text format, resulting in loss of information.

Anssi Nurminen [15] developed the Tabler system that
processes born-digital PDF documents using the Poppler
library and combines raster image processing techniques with
heuristics working on object-based text information obtained
from Poppler in a series of processing steps.

Burcu Yildiz developed the pdf2table system [18] which
employs several heuristics to recognize tables in PDF files
having a single column layout. For multi-column documents,
the user can specify the number of columns in the document via
a user interface; however, such user input was not allowed in
the competition. The approach was able to handle most of the
documents where the tables span the entire width of the page.

82 In Seop Na :Table Detection from Document Image using Vertical Arrangement of Text Blocks

International Journal of Contents, Vol.11, No.4, Dec. 2015

Fig. 6. Examples of proposed method, the table detection are marked by red rectangle.

(a) Fig. 6a shows a normal case of table detection using contained object to locate the ROI; (b) There is parallel table, which of table
are boundary by only horizontal lines. We process expanding the horizontal line and identify the tabular characteristics until cannot
find them anymore. Finally, all ROIs, which are detected as the table, are merged together to a united table; (c) With color table, the

images after binary are lost a lot of information about text block. However, we provide a robust method to determine what is table for
the rest; (d) Fig. 6d shows some table near each other but the distances not too close and our system detect correctly; (e) Fig. 6e

shows a failure case of our method. This table have no boundary information, hence we cannot locate ROI due verify this region is a
table.

Table 1. Result for table detection

Author Type
Per-document averages Tables found (total=156)

Recall Precision F1-measure Complete Pure
Proposed Image 0.9636 0.9521 0.9578 147 141
Silva [17] PDF 0.9831 0.9292 0.9554 149 137
Nitro [15] PDF 0.9323 0.9397 0.9360 124 144

Nurminen [15] PDF 0.9077 0.9210 0.9143 114 151
Acrobat [15] PDF 0.8738 0.9365 0.9040 110 141
Yildiz [18] PDF 0.8530 0.6399 0.7313 100 94

Stoffel [19]-[20] PDF 0.6991 0.7536 0.7253 79 66
Liu et al [11] PDF 0.4601 0.3666 0.4080 39 95
Hsu et al [15] Image 0.2697 0.7496 0.3967 28 41

(a) (b) (c)

(d) (e)

 In Seop Na :Table Detection from Document Image using Vertical Arrangement of Text Blocks 83

International Journal of Contents, Vol.11, No.4, Dec. 2015

Andreas Stoffel et al. [19]-[20] participated with a
trainable system for the analysis of PDF documents based on
the PDFBox library. After initial column and reading-order
detection, logical classification is performed on the line level.
In order to detect tables, the system was trained on the practice
dataset using a sequence of a decision-tree classifier and a
conditional random field (CRF) classifier. Consecutive lines
labelled as tabular content were then grouped together and
output as a table.

William H. Hsu et al. [15] proposed The Kansas Yielding
Template Heuristic Extractor (KYTHE) which is designed to
process scanned documents by using an OCR tool such as
Tesseract. The approach combines automatic preprocessing
(using lists of expected attributes and template-based
constraints) with interactive post-processing, enabling the
system to be adapted for a specific data source.

The TableSeer system [11] was developed by Ying Liu.
The algorithm uses a heuristic approach by first joining
together adjacent text lines with uniform font size, before using
whitespace and textual cues to determine which blocks contain
a table.

There are many commercial systems join this competition
such as Adobe Acrobat XI Pro, Nitro Pro 8, etc. Acrobat
system loads each document and saved as HTML. The region
result file was manually generated based on the content of the
result tables. Max Gobel et al. [15] use The “To Excel”
conversion function of Nitro outputs all detected tables in Excel
format (one file per document; one worksheet per page). The
given results are very encouraging.

As shown at Table 1, for image documents, we get higher
detection rates compared to the other methods. The F1-measure
for all text cells is 95.78%, while the Recall is 96.36% and
Precision is 95.21%. Our system detects 147 complete tables
and 141 pure tables. The correctly table is 140 tables which are
both complete tables and pure tables.

ଵܨ െ ݁ݎݑݏܽ݁݉ ൌ 2.
.݊݋݅ݏ݅ܿ݁ݎܲ ܴ݈݈݁ܿܽ

݊݋݅ݏ݅ܿ݁ݎܲ ൅ ܴ݈݈݁ܿܽ
(7)

In table a region is classified as complete [16] if it includes

all sub-objects in the ground truth region; a region is classified
as pure if it does not include any sub-objects which are not also
in the ground truth region. A correctly detected region is,
therefore, both complete and pure.

Some results of table detection using our method are
shown in Fig. 6. Fig. 6a shows a normal case of table detection
using contained object to locate the ROI. In case of Fig. 6b,
there is a parallel table, which of table is boundary by only
horizontal lines. We process expanding the horizontal line and
identify the tabular characteristics until cannot find them
anymore. Finally, all ROIs, which are detected as the table, are
merged together to a united table. With color tables are shown
in Fig. 6c, the images after binary are lost a lot of information
about text block. However, we provide a robust filter to
determine what a table for the rest is. Fig. 6d shows some table
near each other but the distances not too close and our system
detect correctly. Fig. 6e shows a failure case of our method.
The table on this image does not have any boundary
information, so our system cannot locate ROI.

We also test on the dataset of 44 images that are scanned
from printed paper. The proposed method detects 62/67 tables.
The global performance metric for all images is 92.53%. In this
dataset, some of images are blurry, so binary images have
noises and lose most of the information about boundaries.

4. CONCLUSIONS

In this paper, we have proposed an algorithm for detecting
tables from scanned documents. Our system has the advantage
of better time consuming and results on the ICDAR 2013’s
dataset.

Proposed method works on scanned document image
instead of PDF file as some previous approaches, so it is more
challenging. Our method focuses on ROI instead of the whole
document due to it have better time consuming. Our system
also handles in case of parallel tables which have only
horizontal lines as table boundaries. Our method also has a
good result on images with multi-column. We proposed a new
approach that checks vertical arrangement of text blocks to
verify a table.

Proposed method base on a boundary of a table so it has a
bad result detect in cases tables without boundary or complex
backgrounds such as a color table, table overlap with text or
image.

In the future, we extend method in cases of a table which
has no boundary information. In addition, we handle cases
touching among text component and table boundary. With the
color table, we will binary the color region using multi-
threshold to get the clear result.

ACKNOWLEDGEMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology (2015-018993) and Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT & Future
Planning (NRF-2015R1C1A1A02036495).

REFERENCES

[1] Jing Fang, Prasenjit Mitra, Zhi Tang, and C. Lee Giles,
“Table Header Detection and Classification,”
Association for the Advancement of Artificial
Intelligence, 2012, pp. 599-605.

[2] Anukriti Bansal, Gaurav Harit, and Sumantra Dutta Roy,
“Table Extraction from Document Imag es using Fixed
Point Model,” Indian Conference on Computer Vision
Graphics and Image Processing, 2014, Article no. 67.

[3] Yalin Wang, Ihsin T. Phillips, and Robert M. Haralick,
“Table Detection via Probability Optimization,”
Document Analysis Systems V, pp. 272-282.

[4] Tanushree Dhiran and Rakesh Sharma, “Table Detection
and Extraction from Image Document,” International

84 In Seop Na :Table Detection from Document Image using Vertical Arrangement of Text Blocks

International Journal of Contents, Vol.11, No.4, Dec. 2015

Journal of Computer & Organization Trends, vol. 3, issue
7, Aug. 2013, pp. 275-278.

[5] Zhouchen Lin, Junfeng He, Zhicheng Zhong, and
Rongrong Wang, “Table detection in online ink notes,”
IEEE Trans Pattern Anal Mach Intell, 2006, pp. 1341-1346.

[6] T Kasar, P Barlas, S Adam , C Chatelain, and T Paquet,
“Learning to Detect Tables in Scanned Document Images
Using Line Information,” Document Analysis and
Recognition (ICDAR), 2013, pp. 1185-1189.

[7] Wonkyo Seo, Hyung Il Koo, and Nam Ik Cho, “Junction-
based table detection in camera-captured document
images,” International Journal on Document Analysis and
Recognition 2015, pp. 47-57.

[8] Ying Liu, “A Fast Preprocessing Method for Table
Boundary Detection: Narrowing Down the Sparse Lines
using Solely Coordinate Information,” Document Analysis
Systems, DAS '08, The Eighth IAPR International
Workshop on, 2008, pp. 431-438.

[9] Liu Ying, Mitra Prasenjit, and Giles C. Lee, “Identifying
table boundaries in digital documents via sparse line
detection,” 17th ACM conference on Information and
knowledge management, pp. 1311-1320.

[10] Ying Liu, Kun Bai, Prasenjit Mitra, and C. Lee Giles,
“Improving the Table Boundary Detection in PDFs by
Fixing the Sequence Error of the Sparse Lines,”
Document Analysis and Recognition, 2009- ICDAR '09,
pp. 1006-1010.

[11] Ying Liu, Kun Bai, Prasenjit Mitra, and C. Lee Giles,
“TableSeer: automatic table metadata extraction and
searching in digital libraries,” JCDL '07 Proceedings of
the 7th ACM/IEEE-CS joint conference on Digital
libraries, pp. 91-100.

[12] B. Gatos, D. Danatsas, I. Pratikakis, and S. J. Perantonis,
“Automatic Table Detection in Document Images, Pattern
Recognition and Data Mining,” Lecture Notes in
Computer Science, vol. 3686, 2005, pp. 609- 618.

[13] Jing Fang, Liangcai Gao, Kun Bai, Ruiheng Qiu, Xin Tao,
and Zhi Tang, “A Table Detection Method for Multipage
PDF Documents via Visual Seperators and Tabular
Structures,” 2011 International Conference on Document
Analysis and Recognition, pp. 799-783.

[14] J. Sauvola and M. PietikaKinen, “Adaptive document image
binarization,” Pattern Recognition 33, 2000, pp. 225-236.

[15] Max Gobel, Tamir Hassan, Ermelinda Oro, and Giorgio
Orsi, “ICDAR 2013 Table Competition,” 2013 12th
International Conference on Document Analysis and
Recognition, pp. 1449-1453.

[16] Rafael C. Gonzalez, Richard E. Woods, and Prentice
Hall, Digital Image Processing (3rd Edition), 3 edition
(August 31, 2007), Chapter 9 Morphological Image
Processing, pp. 627-680.

[17] A. C. e Silva, Parts that add up to a whole: a framework
for the analysis of tables, Ph.D. dissertation, The
University of Edinburgh, 2010.

[18] B. Yildiz, K. Kaiser, and S. Miksch, “pdf2table: A method
to extract table information from pdf files,” in IICAI, 2005,
pp. 1773-1785.

[19] H. Strobelt, D. Oelke, C. Rohrdantz, A. Stoffel, D. A.
Keim, and O. Deussen, “Document cards: A top trumps

visualization for documents,” IEEE Trans. Vis. Comput.
Graph, vol. 15, no. 6, 2009, pp. 1145-1152.

[20] A. Stoffel, D. Spretke, H. Kinnemann, and D. A. Keim,
“Enhancing document structure analysis using visual
analytics,” in SAC, 2010, pp. 8-12.

Dieu Ni Tran
She received the B.S in Mathematics &
Computer Science from Ho Chi Minh
City University of Science, Vietnam in
2013. Her main research interests include
pattern recognition, image processing,
text recognition, document segmentation.

Tuan Anh Tran
He received the BS degree in
Mathematics and Computer Science,
University of Science, Ho Chi Minh city,
Viet Nam, in 2010 and the MS degree in
Apply Mathematic in MAPMO,
University of Orleans, France, in 2011.
He is currently researching as a Ph.D

student at Electronics and Computer Engineering, Chonnam
National University, Korea. His research interests include
document layout analysis, pattern recognition, machine
learning, and mathematics application.

A Ran Oh
She received her B.S. degree in school of
Computer Statistics from Chosun
University, Korea in 2009, She is
currently researcher at Department of
Computer Science Chonnam National
University, Korea.

Soo Hyung Kim
He received his B.S. degree in Computer
Engineering from Seoul National
University in 1986, and his M.S. and
Ph.D degrees in Computer Science from
Korea Advanced Institute of Science and
Technology in 1988 and 1993,
respectively. From 1990 to 1996, he was

a senior member of research staff in Multimedia Research
Center of Samsung Electronics Co., Korea. Since 1997, he has
been a professor in the Department of Computer Science,
Chonnam National University, Korea. His research interests are
pattern recognition, document image processing, medical image
processing, and ubiquitous computing.

 In Seop Na :Table Detection from Document Image using Vertical Arrangement of Text Blocks 85

International Journal of Contents, Vol.11, No.4, Dec. 2015

In Seop Na
He received his B.S., M.S. and Ph.D.
degree in Computer Science from
Chonnam National University, Korea in
1997, 1999 and 2008, respectively. Since
2012, he has been a research professor in
Department of Computer Science,
Chonnam National University, Korea.

His research interests are image processing, pattern recognition,
character recognition and digital library.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

