
Configurable Table Structure Recognition
in Untagged PDF Documents

Alexey Shigarov
Matrosov Institute for System
Dynamics and Control Theory

of SB RAS
134 Lermontov st.

Irkutsk, Russia
shigarov@icc.ru

Andrey Mikhailov
Matrosov Institute for System
Dynamics and Control Theory

of SB RAS
134 Lermontov st.

Irkutsk, Russia
mikhailov@icc.ru

Andrey Altaev
Matrosov Institute for System
Dynamics and Control Theory

of SB RAS
134 Lermontov st.

Irkutsk, Russia
altaev@icc.ru

ABSTRACT
Today, PDF is one of the most popular document formats in the
web. Many PDF documents are not images, but remain untagged.
They have no tags for identifying the logical reading order, para-
graphs, figures, and tables. One of the challenges with these doc-
uments is how to extract tables from them. The paper discusses a
new system for table structure recognition in untagged PDF doc-
uments. It is formulated as a set of configurable parameters and
ad-hoc heuristics for recovering table cells. We consider two dif-
ferent configurations for the system and demonstrate experimental
results based on the existing competition dataset for both of them.

CCS Concepts
•Applied computing → Document analysis; Document manage-
ment and text processing;

Keywords
table extraction, table structure recognition, untagged PDF docu-
ments, PDF document analysis, PDF accessibility

1. INTRODUCTION
Today, PDF is one of the most popular document formats in the

web as can be measured by Google’s “filetype:pdf” search. Many
PDF documents are not images, but remain untagged. They have
no tags for identifying the logical reading order, paragraphs, figures
and tables. Nganji [4] estimates that 95.5% of scientific articles
published by four leading publishers are untagged PDF documents.
One of the important challenges with these documents is how to
extract tables from them.

Table extraction typically consists of two main steps: table de-
tection, i. e. recovering the bounding box of a table in a document,
and table structure recognition, i. e. recovering its rows, columns,
and cells. Many of existing methods for extracting tables from un-
structured documents traditionally deal with only images or plain-
text as source. They are considered in several surveys, including [1,

2]. These methods can be applied to PDF documents through con-
verting PDF to these formats. However, this process leads to the
loss of valuable information. Table extraction from PDF directly
can provide better results. PDF is a richer representation of docu-
ments in comparison with images and plain-text. PDF documents
can contain machine-readable text (text chunks with their positions,
font characteristics, and order of appearance in a file), as well as
vector graphics including table rulings. We expect that these fea-
tures can allow to extract tables more accurately.

Several methods and tools for PDF table extraction are proposed
in two last decades. Some of them are discussed in the surveys [1,
6, 7]. Ramel et al. [11] consider two techniques for detecting
and recognizing tables from documents in an exchange format like
PDF. The first is based on the analysis of ruling lines. The sec-
ond is to analyze the arrangement of text components. Hassan et
al. [5] expand these ideas for PDF table extraction. In the project
TableSeer, Liu et al. [8] propose methods for detecting tables in
PDF documents and extracting metadata (headers). They use text
arrangement, fonts, whitespace, and keywords (e. g. “Table”, “Fig-
ure”). Oro et al. [10] present PDF-TREX, a heuristic method where
PDF table extraction is realized as building from content elements
to tables in bottom-up way.

Yildiz et al. [15] propose a heuristic method for PDF table ex-
traction using the ‘pdftohtml’1 tool for generating its input. Ras-
tan et al. [12] consider a framework for the end-to-end table pro-
cessing including the task of table structure recognition. They also
use the ‘pdftohtml’ tool to prepare their input. However, this tool
occasionally makes mistakes in combining text chunks, which are
located too close to each other, thus the input can be corrupted.
Nurminen [9] in his thesis describes comprehensive PDF table de-
tection and structure recognition algorithms that have demonstrated
high recall and precision on “ICDAR 2013 Table Competition” [4].
Some of them are implemented in Tabula2 system.

In contrast to the existing methods, we suggest a configurable
system that is formulated as a set of customizable parameters and
ad-hoc heuristics for recovering table cells from text chunks and
rulings. We exploit features of table presentations in untagged PDF
documents. Most of them such as horizontal and vertical distances,
fonts, and rulings are well known and used in the existing methods.
Additionally, we propose to exploit the feature of appearance of
text printing instruction in PDF files.

Usually, when a table printed in a PDF document originally was
an object (e.g. a table in a Word-document) then 1) one printing
instruction forms a part or a whole of textual content of only one

1http://pdftohtml.sourceforge.net
2http://tabula.technology

A table is a collection of related data a

A table is a collection of related data b

A table is a collection of related data c

d e

f g

Figure 1: Preprocessing of text chunks (a–c) and rulings (d–g).

physical cell; 2) printing instructions forming a text inside each
physical cell appear in the PDF file in the order that coincides with
the human reading order of this text. We notice that it is true for
many PDF generators. This feature can be especially useful in case
of multi-row cells in table heads without rulings.

We also consider two configurations for the system and demon-
strate experimental results based on the existing competition
dataset, “ICDAR 2013 Table Competition”, for both of them.

2. TABLE STRUCTURE RECOGNITION
We present the process of table structure recognition as three

consecutive steps:

1. preprocessing: generating and preparing text chunks and rul-
ings from a source document;

2. text block recovering: combining text chunks into text
blocks;

3. cell recovering: dividing table space into rows, columns, and
cells via text blocks.

2.1 Preprocessing
We operate two kind of objects: text chunks and rulings. A text

chunk is defined as c = (b, f ,o,w), where

• b = (xl ,yt ,xr,yb) — bonding box with four coordinates:
xl = xl(c) — left, yt = yt(c) — top, xr = xr(c) — right, and
yb = yb(c) — bottom, xl ,yt ,xr,yb ∈ R, the x-coordinate in-
creases from left to right, and y-coordinate increases from
top to bottom;

• f = (f f , fs, fb, fi) — font with the attributes: f f = f f (c) —
family (string value), fs = fs(c) — size in points, fb = fb(c):
fb ∈ {true, false} — bold or not, fi = fi(c): fi ∈ {true, false}
— italic or not;

• o = o(c) : o ∈ N — index number in the order of the appear-
ance of text chunks in the source PDF file.

• w = w(c) : w ∈ R — space width.

Initially each text chunk corresponds to one instruction of text
printing. The same text can be presented in PDF by different print-
ing instructions, depending on the used PDF generator, as shown
in Fig. 1, a–c. At first, we split all text chunks (Fig. 1, a) into one-
character chunks (Fig. 1, b) and merge them into word chunks with
removing space characters and reindexing the order of their appear-
ance (Fig. 1, c).

On this stage our system enables applying two ad-hoc heuristics
for eliminating some kinds of “insular” text chunks from the further
processing:

• H1, eliminating itemization text chunks: if a text chunk con-
tains only one character marking itemized lists (e. g. bullet,
square), then it is excluded;

a

b

Fiscal

year

R&D

expenditures

(bn yen)

1996 a) 15.079

GDP
2)

(bn yen)

506.480

1

2

3

4

5

6

7 8

13 14 16

18

Ratio of R&D

expenditures to

GDP

a) 2.98

12

17

7

8 9

10 11

15

Fiscal

year

R&D

expenditures

(bn yen)

1996 a) 15.079

GDP
2)

(bn yen)

506.480

Ratio of R&D

expenditures to

GDP

a) 2.98

Figure 2: Text chunks and the order of their appearance (a),
and text blocks constructed from them (b).

• H2, eliminating padding text chunks: if a text chunk consists
only of a series of padding characters (e. g. series of dots),
then it is excluded.

Often, the two kinds of text chunks are visually detached from the
rest of text chunks by long spaces. This lead to improperly re-
covered columns. Thus, eliminating them, we try to prevent some
errors.

A ruling is defined as a bonding box with four coordinates:
r = (xl ,xr,yt ,yb). Visual rulings can be originally presented by
printing instructions for lines and rectangles. We merge all seg-
ments of one visual line (Fig. 1, d) into one ruling (Fig. 1, e). We
also split each rectangle (Fig. 1, f) into four rulings corresponding
to its boundaries (Fig. 1, g).

2.2 Text Block Recovering
We define a text block as a set of chunks. On this step all text

chunks are combined into blocks (Fig. 2). One chunk can be in-
cluded only in one text block.

Text chunks are handled in pairs. We make a decision for each
pair of chunks: to combine them or not. Two text chunks can be
combined into one block when they satisfy the following condi-
tions, in case of horizontal combining:

• P1, word spacing: the horizontal distance between the chunks
is less than a configurable threshold;

• P2, vertical projections: there is a configurable intersection
of their vertical projections;

or in case of vertical combining:

• P3, line spacing: the vertical distance between the chunks is
less than a configurable threshold;

• P4, horizontal projections: there is a configurable intersec-
tion of their horizontal projections.

Moreover, a configuration can specify that two combining
chunks c1 and c2 have to satisfy some or all of the ad-hoc heuristics
listed below:

• H3, adjacency in the order of the appearance: they are adja-
cent in the order of their appearance in the source PDF file,
o(c1) = o(c2)+1;

• H4, no rulings in text blocks: there are no rulings in the rect-
angle between the chunks defined as

b(c1,c2) =
(
xl(c1,c2),yt(c1,c2),xr(c1,c2),yb(c1,c2)

)
,

where

– xl(c1,c2) = min
(
xl(c1),xl(c2)

)
,

– yt(c1,c2) = min
(
yt(c1),yt(c2)

)
,

– xr(c1,c2) = max
(
xr(c1),xr(c2)

)
,

– yb(c1,c2) = max
(
yb(c1),yb(c2)

)
;

• H5, identical font family: f f (c1) = f f (c2);

• H6, identical font size: fs(c1) = fs(c2);

• H7, identical font bold attribute: fb(c1) = fb(c2);

• H8, identical font italic attribute: fi(c1) = fi(c2).

We suppose that each text block is a textual content of one cell,
and each non-empty cell contains only one block. Thus, we try
to recover non-empty cells without their arrangement in rows and
columns.

2.3 Cell Recovering
In this step we construct rows and columns that constitute an ar-

rangement of cells. The system provides two algorithms for slicing
a table space into rows and columns. A configuration can use one
of them.

The first (A1) is based on the whitespace analysis. We use the
algorithm [14] to recover horizontal and vertical gaps between text
blocks. Each whitespace gap corresponds to a ruling. Thus, we try
to recover all rulings, which separate cells in a table.

The second (A2) is the analysis of connected text blocks. To
generate columns, we first exclude each multi-column text block
located in more than one column. We decide that a text block is
multi-column when its horizontal projection intersects with the pro-
jections of two or more text blocks located in the same line. Each
column is considered as an intersection of horizontal projections
of one-column text blocks. Similarly, rows are constructed from
vertical projections of one-row text blocks.

In this step we also recover empty cells. Some of them can be
erroneous, i. e. they absent in the source table. The system provides
the ad-hoc heuristic to dispose of erroneous empty cells:

• H9, cell singleton: if a column contains only one non-empty
cell then the column is merged with the nearest column to the
left.

3. TWO CONFIGURATIONS
In the paper, we consider two configurations for our system. The

main difference between them consists in estimation of word (P1)
and line (P3) spacing, as well as used algorithm for cell construc-
tion.

The first C1-configuration is the following settings:

• P1, word spacing: sw = w ∗ kw where w is a space width of
the left chunk, and kw: kw ∈ R, kw > 0 is a width factor;

• P2, vertical projections: yt(c1)≤ yt(c2)≤ yb(c1) or yt(c1)≤
yb(c2)≤ yb(c1).

• P3, line spacing: sl = h∗ kh, where h is a height of the upper
chunk, and kh: kh > 0 is a height factor;

• P4, horizontal projections: xl(c1) ≤ xl(c2) ≤ xr(c2) or
xl(c1)≤ xr(c2)≤ xr(c2).

• Cell constructing: A1-algorithm (whitespace analysis).

• Ad-hoc heuristics: H1, H3–H9;

• Default values: kw = 1 and kh = 1.

The second C2-configuration consists of the following settings:

• P1, word spacing:

sw =

w, if wmin < |d| ≤ wmax

wmin, if |d| ≤ wmin

w∗ kw, otherwise;

where w is a space width of the left chunk, kw: 0 < k < 1 is a
width factor, d is the horizontal distance between the chunks,
wmin: t1 ∈R, wmin > 0 is a threshold (the minimum width of
a space), wmax: wmax ∈ R, wmax > wmin is a threshold (the
maximum width of the space);

• P2, vertical projections: yb(c1) = yb(c2);

• P3, line spacing: sl = t2: t2 ∈ R, t2 > 0 is a threshold;

• P4, horizontal projections: xl(c1) ≤ xl(c2) ≤ xr(c2) or
xl(c1)≤ xr(c2)≤ xr(c2);

• Cell constructing: A2-algorithm (connected text block anal-
ysis);

• Ad-hoc heuristics: H1–H8;

• Default values: kw = 0.5, wmin = 4, and wmax = 56.

4. EXPERIMENTAL EVALUATION
To evaluate both configurations we use the methodology for al-

gorithms for table understanding in PDF documents proposed in
the paper [3]. We also use the existing competition dataset3, “IC-
DAR 2013 Table Competition” [4]. It contains 156 tables in 67
PDF documents collected from EU and US government websites.

The evaluated prototype of our system uses the iText4 library for
PDF interpretation to extract PDF objects from source documents
and to generate the text chunks and rulings. In the evaluation, the
parameters for both configurations have been set up by default val-
ues without searching for their optimal values. The experimental
results are shown in Table 1. The highest F-score reaches more
than 0.93.

Note that the evaluation was performed automatically using Nur-
minen’s Python scripts5 for comparing ground-truth and result files
that implement this methodology with slight modifications. There-
fore our results shown in Table 1 should not be matched directly
with others demonstrated on “ICDAR 2013 Table Competition”.
Nevertheless, we can declare that the experimental results show the
high performance of our system on the recognized dataset of PDF
tables.

Table 1: Experimental results
Configuration C1 C2
recall 0.9121 0.9233
precision 0.9180 0.9499
F-score 0.9150 0.9364

Moreover, we can improve F-score via setting optimal values for
the configuration parameters. In both configurations, the numeric
thresholds and factors can be set as the result of searching for maxi-
mum of F-score on a target dataset. For example, we have searched
3http://www.tamirhassan.com/dataset.html
4https://sourceforge.net/projects/itext
5http://tamirhassan.com/competition/dataset-tools.html

1

2

3

4

0.75

0.8

0.85

0.9

1

2

3

4

F-score

the height

factor
the width factor

kw kh

1

2

3

4

75

1

22

3

44

core

the height

factor
e width factor

kw kh

Figure 3: Searching for factor values to maximize F-score in
C1-configuration.

for the maximum of F-score as the function of two variables (the
width and height factors) in the C1-configuration on the competi-
tion dataset “ICDAR 2013 Table Competition” (Fig. 3). We have
evaluated 2500 tests, where both kw and kh have increased from 0
to 5 with the step 0.1. The F-score have reached the maximum
(0.9189) when the width factor kw is 0.9 and the height factor is
1.0.

5. CONCLUSION AND FURTHER WORK
Unlike the existing solutions, our system enables the advanced

configuration options which allow to adapt it to different sources.
We have formulated a set of valuable ad-hoc heuristics that can be
enhanced in the future. It is important to note, that it was for the first
time, that we have examined the possibility of applying the order
of the appearance of text chunks in PDF files for table structure
recognition.

The main applications of our system are in the field of data ac-
cessibility, information extraction, and unstructured data integra-
tion. Particularly, we develop an experimental web-application6

for PDF table extraction based on the prototype of our system. In
the current state, this tool enables only manual table selection in a
page of a PDF document and automatic table structure recognition.
As the result of this process, an extracted table is accessible in the
editable format, HTML or spreadsheet, that can be used as input in
our rule-based spreadsheet data canonicalization system7 for fur-
ther transforming data from arbitrary tables to relational ones [13].

The further work is in progress on expanding the set of ad-hoc
heuristics. We believe the involvement of the additional features
such as text alignment, superscript, and subscript will allow to im-
prove our system. We also expect an advancement in the prepro-
cessing step for excluding “messy” rulings, which originate from
underlined or striked text. In the future, our system also can be
extended for supporting automatic PDF table detection.

6. ACKNOWLEDGMENTS
We thank Tamir Hassan for the detailed discussion and explana-

tion of the methodology for evaluating algorithms for table under-
standing in PDF documents [3] in the part of table structure recog-
nition. We also thank Anssi Nurminen for providing his Python
scripts, which have allowed us to automate the evaluation process.

This work was financially supported by the Russian Foundation
for Basic Research (grants 15-37-20042, 14-07-00166) and Coun-
6available at http://cells.icc.ru/pdfte
7available at http://cells.icc.ru/ssdc

cil for Grants of the President of Russian Federation (grant NSh-
8081.2016.9). Our web-application for PDF table extraction is per-
formed on resources of the Shared Equipment Center of Integrated
Information and Computing Network for Irkutsk Research and Ed-
ucational Complex8.

7. REFERENCES
[1] B. Coüasnon and A. Lemaitre. Handbook of Document

Image Processing and Recognition, chapter Recognition of
Tables and Forms, pages 647–677. Springer London, 2014.

[2] A. C. e Silva, A. M. Jorge, and L. Torgo. Design of an
end-to-end method to extract information from tables.
International Journal of Document Analysis and Recognition
(IJDAR), 8(2):144–171, 2006.

[3] M. Göbel, T. Hassan, E. Oro, and G. Orsi. A methodology
for evaluating algorithms for table understanding in PDF
documents. In Proc. of the 2012 ACM Symposium on
Document Engineering, pages 45–48, New York, NY, USA,
2012.

[4] M. Göbel, T. Hassan, E. Oro, and G. Orsi. ICDAR 2013 table
competition. In Proc. of the 12th Int. Conf. on Document
Analysis and Recognition, pages 1449–1453, 2013.

[5] T. Hassan and R. Baumgartner. Table recognition and
understanding from PDF files. In Proc. of the 9th Int. Conf.
on Document Analysis and Recognition - Volume 02, pages
1143–1147, Washington, DC, USA, 2007. IEEE Comp. Soc.

[6] J. Hu and Y. Liu. Analysis of Documents Born Digital, pages
775–804. Springer London, London, 2014.

[7] S. Khusro, A. Latif, and I. Ullah. On methods and tools of
table detection, extraction and annotation in PDF documents.
J. Inf. Sci., 41(1):41–57, Feb. 2015.

[8] Y. Liu, K. Bai, P. Mitra, and C. L. Giles. TableSeer:
Automatic table metadata extraction and searching in digital
libraries. In Proc. of the 7th ACM/IEEE Joint Conf. on
Digital Libraries, pages 91–100, 2007.

[9] A. Nurminen. Algorithmic extraction of data in tables in
PDF documents. Master’s thesis, Tampere University of
Technology, Tampere, Finland, 2013.

[10] E. Oro and M. Ruffolo. PDF-TREX: An approach for
recognizing and extracting tables from PDF documents. In
Proc. of the 10th Int. Conf. on Document Analysis and
Recognition, pages 906–910, 2009.

[11] J. Y. Ramel, M. Crucianu, N. Vincent, and C. Faure.
Detection, extraction and representation of tables. In Proc. of
the 7th Int. Conf. on Document Analysis and Recognition,
pages 374–378 vol.1, 2003.

[12] R. Rastan, H.-Y. Paik, and J. Shepherd. Texus: A task-based
approach for table extraction and understanding. In Proc. of
the 2015 ACM Symposium on Document Engineering, pages
25–34, 2015.

[13] A. Shigarov. Table understanding using a rule engine. Expert
Systems with Applications, 42(2):929–937, 2015.

[14] A. Shigarov and R. Fedorov. Simple algorithm page layout
analysis. Pattern Recognition and Image Analysis,
21(2):324–327, 2011.

[15] B. Yildiz, K. Kaiser, and S. Miksch. pdf2table: A method to
extract table information from PDF files. In Proc. of the 2nd
Indian Int. Conf. on Artificial Intelligence, Pune, India,
pages 1773–1785, 2005.

8http://net.isc.irk.ru

