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Abstract

The paper discusses issues of rule-based data transformation from arbitrary

spreadsheet tables to a canonical (relational) form. We present a novel table

object model and rule-based language for table analysis and interpretation. The

model is intended to represent a physical (cellular) and logical (semantic) struc-

ture of an arbitrary table in the transformation process. The language allows

drawing up this process as consecutive steps of table understanding, i. e. re-

covering implicit semantics. Both are implemented in our tool for spreadsheet

data canonicalization. The presented case study demonstrates the use of the

tool for developing a task-specific rule-set to convert data from arbitrary tables

of the same genre (government statistical websites) to flat file databases. The

performance evaluation confirms the applicability of the implemented rule-set

in accomplishing the stated objectives of the application.

Keywords: spreadsheet data transformation, table understanding, table

model, table analysis, table interpretation, rule-based programming

1. Introduction

Spreadsheets provide a popular way for creating and circulating arbitrary

tables (e. g. cross-tabulations, invoices, roadmaps, and data collection forms).
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They can be considered as a general form for representing tabular data with an

explicitly presented layout (cellular structure) and style (graphical formatting).

For example, HTML tables presented in web pages can be easily converted to

spreadsheet formats. The arbitrary tables can be a valuable data source in busi-

ness intelligence and data-driven research. However, difficulties that inevitably

arise with extraction and integration of the tabular data often hinder the inten-

sive use of them in the mentioned areas.

The number of genuine tables in the Web reaches hundreds of millions (Ca-

farella et al., 2008; Eberius et al., 2015; Lehmberg et al., 2016). Many of them

are relational tables that can be considered as flat databases. Nevertheless,

there are other popular types of tables (Crestan & Pantel, 2011; Chen & Ca-

farella, 2013; Lautert et al., 2013; Braunschweig, 2015) having layout features

designed for human understanding (e. g. merged cells, footnotes, and indenta-

tions). These include about 50% of tables presented in 0.4M spreadsheets of

ClueWeb09 Crawl1 (Chen & Cafarella, 2013) and 147M (61%) of 233M web

tables extracted from Common Crawl2 (Lehmberg et al., 2016). They lack ex-

plicit semantics required for computer programs to interpret their layout and

content.

Table understanding is to recover the missing semantics. The papers (Hurst,

2001; e Silva et al., 2006) defines the five consecutive stages of the table under-

standing: detection of a table in a document, recognition (segmentation) of its

cellular structure, functional and structural analysis for recovering its logical

structure, and interpretation that aspire to recover its semantics through link-

ing its content with target schema or domain concepts.

We regard the transformation of spreadsheet tabular data (Fig. 1, a) into the

relational form (Fig. 1, b) as a process of table understanding. In the general

case, this transformation includes all the enumerated stages:

1. Detection. A spreadsheet document can contain several arbitrary tables

1http://lemurproject.org/clueweb09
2http://commoncrawl.org
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surrounded by text and graphics.

2. Recognition. A human-readable structure of an arbitrary table can dif-

fer from its machine-readable structure presented in a spreadsheet, e. g.

one logical cell can be visually composed of several physical cells through

drawing their borders.

3. Role (functional) analysis. A spreadsheet cell stores a text, where a human

can distinguish one or more data items that play some functional roles in

a table (e. g. values or attributes). However, there are no spreadsheet

metadata that separate data items from a cell value and determine their

functional roles.

4. Structural analysis. A spreadsheet also contains no metadata for repre-

senting relationships between data items of a table.

5. Interpretation. A data item can be an instance of a concept (category),

but its spreadsheet does not explicitly associate it with a domain ontology

or a global taxonomy.

The paper covers the rule-based analysis and interpretation of arbitrary ta-

bles presented in spreadsheets. Our contribution consists of the following results:

1. We present a novel table object model designed for representing a physical

(cellular) and logical (semantic) structure of an arbitrary table in the

transformation process (Section 2). Our model associates roles with data

items instead of cells or cell regions (e. g. head, stub, or body). Moreover,

it provides data provenance for recovered semantics.

2. We propose CRL (Cells Rule Language), a domain-specific language for

expressing table analysis and interpretation rules (Section 3). A set of the

rules can be implemented for a specific task characterized by requirements

for source and target data.

3. We develope TabbyXL, a tool for rule-based transformation of arbitrary

tables presented in spreadsheets into the canonical (relational) form (Sec-

tion 4). The tool implements our table object model and rule language.
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Electronics

– Phones 11.2 23.7 12.6 32.2

– Computers 89.9 203.1 81.9 204.1

– TV 13.4 32.7 11.7 90.1

Books 12.3 21.6 11.8 24.5

Retail Sales Catalog Sales

FY2016

(thousands

of dollars)

FY2017

(thousands

of dollars)

FY2016

(thousands

of dollars)

FY2017

(thousands

of dollars)

DATA SALES CHANNEL FISCAL YEAR CURRENCY PRODUCT

11200 retail 2016 u.s. dollars electronics/phones

23700 retail 2017 u.s. dollars electronics/phones

12600 catalog 2016 u.s. dollars electronics/phones

32200 catalog 2017 u.s. dollars electronics/phones

1 2 3 4 5

1

2

3

4

8

c1 c2

c3

c4

c5
c6

PRODUCT

FISCAL YEARCURRENCY

Child

Label

Rows

Columns

Entry
a

b

Parent

Label

Label
SALES CHANNEL Category

Figure 1: A fragment of a source arbitrary table (a); a fragment of a target table in the

canonical form generated from the source table (b).

4. We evaluate an experimental application that is intended to convert data

from tables of the same genre (government statistical websites) to flat file

databases (Section 5). It exemplifies the use of our language for developing

a task-specific rule-set. The performance evaluation confirms the applica-

bility of the implemented rule-set in accomplishing the stated objectives

of this application.

2. Table Object Model

The table object model is designed for representing both a physical structure

and logical data items of an arbitrary table in the process of its analysis and

interpretation (Fig. 2). Our model adopts the terminology of Wang’s table

model (Wang, 1996). It includes two interrelated layers: physical (Section 2.1)

represented by the collection of cells and logical (Section 2.2) that consists of

three collections of entries (values), labels (keys), and categories (concepts).
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We deliberately resort to the two-way references between the layers to provide

convenient access to their objects in table analysis and interpretation rules.

Table

Cells

Cell

is the origin of

is the origin of

Entries

Labels

Label

is the child of

 
is associated with 

Entries Entry

Labels Label

is associated with Labels Label

originates from Cell

is the parent of   Labels Label

originates from Cell

Label

Category

Entry

Label

Categories

Category

is associated with Labels Label

Figure 2: Two-layered table object model.

2.1. Physical Layer

Cell object models common features of a cell that can be presented in tagged

documents of well-known formats, such as Excel, Word, or HTML. We define

Cell object as a set of the following attributes:

• Location: cl— left column, rt— top row, cr— right column, and rb—

bottom row. A cell located on several consecutive rows and columns covers

a few grid tiles, which always compose a rectangle. Moreover, two cells

cannot overlap each other.
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• Style: font — font features (name, color, height, etc.), bgColor and

fgColor— background and foreground colors, rotation— text rotation,

horzAlignment and vertAlignment— horizontal and vertical alignment,

leftBorder, topBorder, rightBorder, and bottomBorder— border fea-

tures (types, colors), and style encapsulates the listed attributes.

• Content : text — textual content, indent — indent, and type — its

literal data type (NUMERIC, DATE, STRING, etc.).

• Annotation: mark — a user-defined word or phrase to annotate the cell.

• Logical layer references: entries (a set of entries) and labels (a set of

labels) originated from this cell. Thus, a cell can contain several entries

and labels.

For example, an initial state of some cells (c1,. . . ,c6) shown in Fig. 1, a can

be represented as follows:

c1=(cl=1,rt=1,cr=1,rb=2,text=null)

c2=(cl=2,rt=1,cr=3,rb=1,text="Retail Sales")

c3=(cl=2,rt=2,cr=2,rb=2,text="FY2016 (thousands of dollars)")

c4=(cl=1,rt=3,cr=1,rb=3,style.font.bold=true,text="Electronics")

c5=(cl=1,rt=4,cr=1,rb=4,text="- Phones")

c6=(cl=2,rt=4,cr=2,rb=4,text="11.2",type=NUMERIC)

2.2. Logical Layer

Entry object serves to represent a data value of a table. It consists of the

following attributes: value— a value (text), labels— a set of labels associated

with this entry, and cell — the physical layer reference to a cell as its origin

that serves as data provenance. An entry can be associated with only one label

in each category.

Label represents a label (key) that addresses one or more entries (data

values). It is defined as follows: value — a value (text), children — a set of

labels which are children of this label, parent — its parent label, category —
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an associated category, cell— the physical layer reference to a cell as its origin

(data provenance).

Category models a category of labels as follows: name — an internal name,

uri — a uniform resource identifier representing this category (concept) in an

external vocabulary, labels — a set of its labels. Each label is associated with

only one category. Labels combined into a category can be organized as one or

more trees.

This layer allows representing items differently depending on target require-

ments of the table transformation. For example, one of the possible target can

generate the entry (e1), labels (l1,. . . ,l5), and categories (d1,. . . ,d4) for the

table shown in Fig. 1, a as follows:

e1=(value="11200", labels={l1,l2,l3,l5}, cell=c6)

l1=(value="retail", category=d1, cell=c2)

l2=(value="2016", category=d2, cell=c3)

l3=(value="u.s. dollars", category=d3, cell=c3)

l4=(value="electronics", children={l5,...}, category=d4, cell=c4)

l5=(value="phones", parent=l4, category=d4, cell=c5)

d1=(name="SALE CHANNEL", labels={l1,...})

d2=(name="FISCAL YEAR", labels={l2,...})

d3=(name="CURRENCY", labels={l3,...})

d4=(name="PRODUCT", labels={l4,l5,...})

They can be presented as a tuple of a target relational table (Fig. 1, b).

3. Table Analysis and Interpretation Rules

The rules expressed in our language are intended to map explicit features

(layout, style, and text of cells) of an arbitrary table into its implicit semantics

(entries, labels, and categories) Fig. 3 demonstrates its grammar in Extended

Backus-Naur form. A rule begins with the keyword rule and ends with end. A

number that follows the keyword rule determines the order of executing this
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rule       = 'rule' <a Java integer literal> 

             'when' condition 'then' action 'end' <EOL> {rule} <EOF>

condition  = query identifier [':' constraint {',' constraint}

             [',' assignment {',' assignment}]] <EOL> {condition}

constraint = <a Java boolean expression>

assignment = identifier ':' <a valid Java expression>

query      = 'cell' | 'entry' | 'label' | 'category' | 

             'no cells' | 'no entries' | 'no labels' | 'no categories' 

action     = merge | split | set text | set indent | set mark | 

             new entry | new label | add label | set parent | 

             set category <EOL> {action}

merge      = 'merge' identifier 'with' identifier

split      = 'split' identifier

set text   = 'set text' <a Java string expression> 'to' identifier

set indent = 'set indent' <a Java integer expression> 'to' identifier

set mark   = 'set mark' <a Java string expression> 'to' identifier

new entry  = 'new entry' identifier ['as' <a Java string expression>]

new label  = 'new label' identifier ['as' <a Java string expression>]

add label  = 'add label' identifier | (<a Java string expression> 'of' 

             identifier | <a Java string expression>) 'to' identifier

set parent   = 'set parent' identifier 'to' identifier

set category = 'set category' identifier | <a Java string expression>

               'to' identifier

identifier   = <a Java identifier>

Figure 3: Grammar of CRL in Extended Backus-Naur form.

rule. The left hand side (when) of a rule consists of one or more conditions that

enable to query available facts which are cells, entries, labels, and categories of

a table. Each of the conditions listed in the left hand side of a rule has to be

true to execute its right hand side (then) that contains actions to modify the

existed or to generate new facts about the table.

3.1. Conditions

We use two kinds of conditions. The first requires that there exists at least

one fact of a specified data type, which satisfies a set of constraints:

cell variable: constraints, assignments

entry variable: constraints, assignments

label variable: constraints, assignments

category variable: constraints, assignments
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The condition consists of three parts. In its order of occurrence, the first is a

keyword which denotes one of the following fact types: cell, entry, label, or

category. The second is variable, a variable of the specified fact type. The

third optional part begins with the colon character. It defines constraints for

restricting the requested facts and assignments for binding additional variables

with values. A constraint is a boolean expression in Java. The comma character

separating the constraints is the logical conjunction of them. An assignment

(variable: value) sets a value (Java expression) to a variable. A condition

without constraints allows querying all facts of specified type.

The second kind of conditions determines that there exist no facts of a

specified type, which satisfy a set of constraints:

no cells: constraints

no entries: constraints

no labels: constraints

no categories: constraints

The firt part of these conditions is a keyword for satisfying a type of facts. The

second part contains constraints on the facts.

3.2. Cell Cleansing

In practice, hand-coded tables often have messy layout (e. g. improperly

splitted or merged cells) and content (e. g. typos, homoglyphs, or errors in

indents). We address several actions to the issues of cell cleansing, that can be

used as the preprocessing stage.

3.2.1. Cell merging

Two cells can be merged when they share one border. The action combines

two adjacent cells $cell1 and $cell2 into the one merged cell:

merge $cell1 with $cell2

As a result, the addressee $cell2 becomes a merged cell with new coordinates

that span both cells.
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3.2.2. Cell splitting

This action allows dividing a merged cell $cell that spans n-tiles into n-cells.

split $cell

Each of the n-cells completely copies content and style from the merged cell and

coordinates from the corresponding tile.

Example 1. The table shown in Fig. 4, a contains the merged cells (‘1’, ‘4’,

and ‘5’). We can split them, using the following rule:

when

cell $cc: cl == 1, rt == 1, blank

cell $c: cl > $cc.cr, rt > $cc.rb

then

split $c

As a result, the table (Fig. 4, a) is transformed into the table (Fig. 4, b).

3.2.3. Cell content modification

There are two actions modifying cell content. The first sets a new value

string_value to a cell $cell:

set text string_value to $cell

Some string processing (e. g. regular expressions and string matching algo-

rithms) implemented as Java-methods can be involved in the action.

The second one modifies the indent value integer_value of a cell $cell:

set indent integer_value to $cell

3.3. Role Analysis

This stage aims to recover entries and labels as functional data items pre-

sented in tables. We also enable associating cells with user-defined marks (tags)

that can assist in both role and structural analysis.
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a b 

c d c d

g 1 1 1 2

h 3 4 4 5

f g 6 4 4 5

e

a b

c d c d

g 2

h 3

f g 6

a b

e
1

4 5

Figure 4: Pivot tables with empty stub heads. We depict here entries as numbers and labels

as Latin characters.

3.3.1. Cell marking

The action provides marking a cell $cell with a word or phrase string_value:

set mark string_value to $cell

The assigned mark can substitute the corresponding constraints in subse-

quent rules. The typical practice is to set a mark to all cells, which play the

same role or are located in the same table functional region. Thereafter, we

can use these marks in subsequent rules instead of repeating constraints on cell

location in the regions.

Example 2. Looking at the pivot tables shown in Fig. 4, we can assume that

each of them has an empty cell (stub head region) located in the top-left corner.

It can be considered as a “critical cell” (Nagy, 2012) which determines three

functional regions: body, head, and stub.

The rule based on the assumption adds the mark (body) to each cell $c

located in the body.

when

cell $cc: cl == 1, rt == 1, blank

cell $c: cl > $cc.cr, rt > $cc.rb

then

set mark "body" to $c

Similarly, we can write rules for marking the corresponding cells with the words:

head and stub. As a result of matching these rules against the cells of the table

(Fig. 4, b), we recover the following facts:
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c1=(cl=3, rt=3, cr=3, rb=3, value="1", mark="body"),...,

c12=(cl=6, rt=5, cr=6, rb=5, value="5", mark="body"),

c13=(cl=3, rt=1, cr=4, rb=1, value="a", mark="head"),...,

c18=(cl=6, rt=2, cr=6, rb=2, value="d", mark="head"),

c19=(cl=1, rt=3, cr=1, rb=4, value="e", mark="stub"),...,

c23=(cl=2, rt=5, cr=2, rb=5, value="g", mark="stub")

3.3.2. Entry and label generating

Two actions presented below generate entries and labels in a cell $cell,

using string expressions entry_value and label_value usually obtained as a

result of string processing its textual content:

new entry $cell as entry_value

new label $cell as label_value

The following short form creates an entry and a label from the cell text:

new entry $cell

new label $cell

Example 3. The bilingual table (Fig. 5, a) duplicates labels in two languages

(Greek and Latin symbols). Assuming that the first label (word) in a cell is

written in one language and the second in other, we can use the rule below to

generate two labels from each cell located in the leftmost column or the topmost

row:

when

cell $c: cl==1 || rt==1, !blank

then

new label $c as token($c, 0)

new label $c as token($c, 1)

In this example, we expect that the function token is implemented as a Java-

method and imported into the rules. It returns a token (word) specified by an

index from text of a cell.
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a b

α β

a                 b

γ

c 1 2

δ

d 3 4

C1 C2 C3

a = 1 b = 2 c = 3

d = 4 e = 5 f = 6

g = 7 h = 8 i = 9

Figure 5: Tables with cells containing more than one entry or label: bilingual table, where

each non-empty cell has either two labels or two entries (a); text like as “key=value” in a cell

can be interpreted as a label-entry pair, where key-part is a label and value-part is an entry

(b).

For the table (Fig. 5, a) this rule generates 8 labels:

l1=(value="α"), l2=(value="a"),..., l7=(value="δ"), l8=(value="d")

For tables similar to the one shown in Fig. 5, b, where any cell under the

topmost row contains a text as “key=value”, the following rule creates a label

from the key-part and an entry from the value-part of the text:

when

cell $c: rt > 1

then

new label $c as left($c, ’=’)

new entry $c as right($c, ’=’)

The functions left and right are implemented as Java-methods. In the pre-

sented case, they extract substrings before and after the character ("=") respec-

tively.

For the table (Fig. 5, b) this rule generates 9 entries and 9 labels:

e1=(value="1"),..., e9=(value="9"),

l1=(value="a"),..., l9=(value="i")

3.4. Structural Analysis

The next stage recovers pairs of two kinds: entry-label and label-label.
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b
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a b

c

··c1

····c11 1 2

····c12 3 4
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····c21 5 6
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b1 1 2 3

b2 4 5 6

d

c d c d e

j 2 2 2 3

k

i l 6 7

h
1

4
5

a b

f g

Figure 6: The table with indentation in the stub for indicating a row label hierarchy (a); the

table where the gray fill color of the cell is used as a reference to the footnote ‘e’ (b); the table

containing two category names: ‘A’ and ‘B’ (c); the table with grouped labels (d).

3.4.1. Entry-label associating

The action below binds an entry $entry with a label $label:

add label $label to $entry

There are two additional ways to create an entry-label pair. The first asso-

ciates an entry $entry with a label specified by its value (label_value) from

a category indicated by its name (category_name):

add label label_value of category_name to $entry

The second creates a pair between them similarly but using a defined category

$category:

add label label_value of $category to $entry

In both cases, we try to find or create the label in the specified category.

Example 4. The table in Fig. 6, b depicts the use of a cell background color

(Color.GRAY3 in the cell B2) as a reference to the footnote (“e”). We can recover

this relationship, using the style features as follows:

when

entry $e: cell.style.bgColor == Color.GRAY

3https://docs.oracle.com/javase/7/docs/api/java/awt/Color.html
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then

add label "e" of "footnotes" to $e

We assume that the following facts exist before executing the rule:

c1=(style.bgColor=Color.GRAY, entries={e1}),

e1=(value="1", cell=c1)

As a result, we generate the new facts after its execution:

e1=(value="1", cell=c1, labels={l1}), l1=(value="e", category=d1),

d1=(name="footnotes", labels={l1})

3.4.2. Label-label associating

This action connects two labels $label1 as a parent and $label2 as its

child:

set parent $label1 to $label2

Example 5. A header located in the stub (leftmost column) often begins

with an indent presented as a series of spaces, dots, or other padding characters.

Usually, the indents denote hierarchical label-label pairs. For example, when

each level in a label hierarchy augments the indents with two additional dots

(Fig. 6 a), we can recover label-label pairs as follows:

when

cell $c1: cl == 1

cell $c2: cl == 1, rt > $c1.rt, indent == $c1.indent + 2

no cells: cl == 1, rt > $c1.rt, rt < $c2.rt, indent == $c1.indent

then

set parent $c1.label to $c2.label

As a result, we recover the following label-label pairs:

(c,c1), (c1,c11), (c1,c12), (c,c2), (c2,c21), (d,d1), (d1,d11)
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3.5. Interpretation

The stage includes actions for recovering label-category pairs.

3.5.1. Label categorizing

The action of label categorizing consists in associating a label $label with

a category $category:

set category $category to $label

Furthermore, a string expression category_name presenting the name of a

category can also be used as an argument:

set category category_name to $label

In the latter case, we try to find or create the category with this name.

Example 6. Some tables contain category names among their headings. The

stub head of the table shown in Fig. 6, c contains two category names: ‘A’ is for

the category of the column labels (‘a1’, ‘a2’, and ‘a3’) and ‘B’ is for the category

of the row labels (‘b1’ and ‘b2’). The names can be used to create corresponding

categories and to categorize labels. In case of tables similar to the one shown in

Fig. 6, a, we can assume that a cell in the top-left corner (stub head) contains

two category names: the first one describes column labels and the second one

addresses row labels.

The rule below creates a category from the first token (word) contained in

the top-left corner cell and uses it to categorize column labels:

when

cell $cc: cl == 1, rt == 1

label $l: cell.rt == 1

then

set category token($cc, 0) to $l

In case of the table (Fig. 6, c), we generate the following facts:

l1=(value="a1", category=d1), l2=(value="a2", category=d1),

l3=(value="a3", category=d1), d1=(name="A", labels={l1, l2, l3})
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3.5.2. Label grouping

Arbitrary tables often place all labels of one category in the same row or

column. Consequently, we can suppose that the labels belong to a category

without defining its name. In the cases, grouping two or more labels means

that they all belong to an undefined category. The action places two labels

$label1 and $label2 in one group:

group $label1 with $label2

All labels of a group can be associated with only one category.

Example 7. The stub of the pivot table (Fig. 6, d) consists of two columns.

We can suppose that all stub labels originated from one column belong to the

same undefined category. The rule below arranges its stub labels into two groups

({h, i} and {j, k, l}):

when

label $l1: cell.mark == "stub"

label $l2: cell.mark == "stub", cell.rt == $l1.cell.rt

then

group $l1 with $l2

4. Implementation

We develop TabbyXL4, a command-line tool for spreadsheet data canon-

icalization that implements our methodology. Its architecture is illustrated in

Fig. 7. The data structures for representing table facts (cells, entries, labels,

and categories) are Java classes developed in accordance with the naming con-

ventions of JavaBeans5 specification. Table facts are instances of these classes.

This allows using any rule engine implemented JSR 94: Java Rule Engine

API6 specification.

4https://github.com/cellsrg/tabbyxl
5http://www.oracle.com/technetwork/java/javase/tech/spec-136004.html
6http://jcp.org/en/jsr/detail?id=94
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Figure 7: Architecture of TabbyXL, the tool for spreadsheet data canonicalization.

We use Drools Expert7 rule engine. Table analysis and interpretation

rules can be expressed in DRL, the native format of Drools Expert, or CRL,

our domain-specific language. CRL rules are preliminarily translated into DRL,

using DSL specification with mappings from CRL to DRL constructs. Moreover,

CRL rules can be enriched by DRL rule attributes (e. g. for rule activation

lock-on-active or no-loop true) and commands for updating the working

memory (DRL method update).

The process of table canonicalization begins with loading tabular data from

Excel spreadsheets via Apache POI API8. Our tool requires that the pair

of tags $START and $END point out to location of each input table. It allows

avoiding detecting tables in a spreadsheet. Each table forms a set of initial

cells. They are asserted as facts in the working memory of the rule engine. The

input can also be enriched by categories as facts specified in YAML9 format.

Each input category consists of its name, a set of labels, and a set of constraints

7http://drools.jboss.org/drools-expert
8http://poi.apache.org
9http://yaml.org
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defining ranges of permissible label values (Shigarov et al., 2016b).

The rule engine matches available facts against loaded rules. As a result, we

generate new facts. Recovered semantics (entries, labels, and categories) allows

transforming source tabular data into the canonical form. The process ends

with that we export each canonical table to spreadsheet format.

The canonical form requires that the topmost row contains field (attribute)

names. Each of the remaining rows is a record (tuple). It obligatorily includes

the field named DATA that contains entries. Each extracted category constitutes

a field that contains its labels. Each record presents recovered relationships

between an entry and labels in each category.

4.1. User Study

We conducted a user study to evaluate how well potential users can develop

CRL rules. We invited 10 practitioners in software engineering, data manage-

ment, and data analytics to participate in our user study. Each of them had

a background of programming in at least one general-purpose language. Only

two participants used rule-based languages in their practice.

First, we introduced a tutorial that briefly explained our table object model

and demonstrated simple CRL rules for the table understanding stages. Second,

we asked each participant to develop a rule-set for transforming source tables

of one type (Fig. 8, a, c) into the target ones (Fig. 8, b, d). The presented source

tables were used in a real-world application of collecting information on electrical

and technical equipment in a power company.

We required that participants implemented only 7 rules for the following

tasks: (1) data cleansing, (2) entry generation, (3) label generation, (4) as-

sociating entries with column labels, (5) associating entries with row labels,

(6) categorizing column labels, and (7) categorizing row labels. The reference

rule-set is shown in Fig. 9.

Each participant developed a complete rule-set using a simple text editor.

Only 3 participants made 8 syntax errors, and 6 made 14 semantic errors. In

several cases, they also used syntactically and semantically correct but redun-
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a

b

b1 1 b4 4

b2 2 b5 NA

b3 b6 6

a1 a2

b1 b3 3 b5 5

b2 2 b4 NA b6 6

a1 a2 a3

DATA A B

1 a1 b1

2 a1 b2

4 a2 b4

6 a2 b6

DATA A B

2 a1 b2

3 a2 b3

5 a3 b5

6 a3 b6

c

d

Figure 8: Source tables (a, c) and their target canonical forms (b, d) used in the user study,

that satisfy the following assumptions: 1, . . . , n are entries, a1, . . . , am are column labels of

the category A, b1, . . . , bk are row labels of the category B.

(1)
when cell $c: text == "NA"

then set text "" to $c

(2)
when cell $c: (cl % 2) == 0, !blank

then new entry $c

(3)
when cell $c: (cl % 2) == 1

then new label $c

(4)

when

  entry $e

  label $l: cell.cr == $e.cell.cr

then add label $l to $e

(5)

when

  entry $e

  label $l: cell.rt == $e.cell.rt, cell.cl == $e.cell.cl - 1

then add label $l to $e

(6)
when label $l: cell.rt == 1

then set category "A" to $l
(7)

when label $l: cell.rt > 1

then set category "B" to $l

Figure 9: A reference rule-set for transforming the source tables (Fig. 8, a, c) to the target

canonical forms (Fig. 8, b, d).

dant constraints. In spite of only 3 users developed the rules without errors,

the rest participants were able to correct the errors in process of the rule-set

compilation and execution.

We believe that our tool is useful not only for computer scientists in the

area of table understanding but also for practitioners in data management and

analytics. The user study shows that qualified users such as database adminis-

trators or data analysts are able to design and implement programs (rule-sets)

for specific tasks of spreadsheet data transformation.

20



5. Case Study

The purpose of the experiment is to show a possibility of using our tool10

for tables, which originate from various sources produced by different authors

but pertain to the same document genre. The experiment includes two parts:

(i) designing and implementing an experimental rule-set for tables of the same

genre, and (ii) evaluating the performance of the rule-set on a set of these tables.

All data and rules for reproducing the experiment results are available as the

published dataset11 (Shigarov, 2017).

5.1. Dataset

Troy200 (Nagy, 2016), the existing dataset of tables, satisfies the purpose

of our experiment. It contains 200 arbitrary tables as CSV (Comma-Separated

Values) files collected from 10 different sources of the same genre, government

statistical websites predominantly presented in English language. We use its

earlier version12 that stores these tables with style features (fonts, alignment,

and indentation) as spreadsheets.

Each table of the dataset contains four cell regions, which correspond to three

roles: category names, labels, and entries (Fig. 10). A region can have one of

the appropriate layouts shown in Fig. 10. Table 1 presents the distribution of

these tables by the layouts.

5.2. Source and Target

The role and structural analysis depend on both features of source tables

and objectives of table processing. Our examination reveals that most tables

presented in the dataset meet the following source requirements:

1. A table consists of four cell regions having different functions and sepa-

rated by two invisible perpendicular lines as shown in Fig. 10, a: (i) each

10TabbyXL v0.1, https://github.com/cellsrg/tabbyxl/releases
11https://data.mendeley.com/datasets/448jdx7gcr/1
12http://tango.byu.edu/data
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plain layout
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layout
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Row label cells (3)
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e
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h
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Figure 10: Cell regions (a) and their layouts (b–j ) in tables of the experiment dataset.

non-empty cell of the top-left region contains a category name; (ii) each

non-empty cell of the top-right region contains a column label; (iii) each

non-empty cell of the bottom-left region contains a row label; (iv) each

non-empty cell of the bottom-right region contains an entry.

2. Each cell region has one of the appropriate layouts as shown in Fig. 10

and enumerated in Table 1.

3. Head cells can form a hierarchy of labels when their columns span and

nest (Fig. 10, e and f ).

4. Row labels located in the leftmost column can form a hierarchy (Fig. 10, g).

Three typographical ways can denote the presence of a label hierarchy:

(i) each level of label nesting appends one additional indent equaled two

spaces; (ii) hyphen char (‘-’) at the beginning of a label indicates that

the label is nested; (iii) text highlighted by the bold font can signalize

spanning label.

5. Data cells contain either numeric values or special words (e. g. ‘#’, ‘x’).

Our aim consists in transforming the tablular data to a general-purpose

target representation that can go through a further interpretation. It provides

the following target requirements:

1. All labels originated from head cells are placed into one hierarchical cat-
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Table 1: Using cell region layouts in tables of the experiment dataset

Region Layout Fig. 10 Cases

(1) Category name cells One-column one-row b 94.5%

Multi-column one-row c 5.5%

(2) Column label cells One-row plain d 65.5%

Multi-row plain e 26%

Multi-row hierarchical f 8.5%

(3) Row label cells One-column hierarchical g 47.5%

One-column plain h 47%

Multi-column plain i 5.5%

(4) Entry cells Multi-column multi-row j 100%

egory (CalCat fields in Fig. 11, b and d).

2. All labels obtained from the same column of a stub are placed into a

separate hierarchical category (RowCat fields in Fig. 11, b and d).

3. Footnotes and superscript text are ignored.

5.3. Rule-Set

We have designed and implemented a rule-set that transforms the tables of

the dataset into the canonical form according to the presented target require-

ments. It includes 16 rules that can be grouped as follows:

1. Preprocessing. Rule-1 replaces each cell value matching “#” or “s” on “0”.

Rule-2 replaces each cell value such as “F”, “x”, “NA”, horizontal ellipsis,

or dash on null. Rule-3 replaces dashes or hyphens at the beginning of

a negative number on the regular minus symbol.

2. Generating and associating column labels. We use two rules to generate

and associate labels in a head. The first Rule-4 generates labels from non-

empty cells of the topmost row. The second Rule-5 searches for head rows

top down beginning from the topmost one, examining pairs of neighbor

rows. It expects that column labels in the pair form a hierarchy (Fig. 10, e
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a11 a12

b1 1 2 3

····b11 4 5 6

····b12 7 8 9

B
a1

a2

Data ColCat RowCat

1 a1 | a11 b1

2 a1 | a12 b1

3 a2 b1

4 a1 | a11 b1 | b11

5 a1 | a12 b1 | b11

6 a2 b1 | b11

7 a1 | a11 b1 | b12

8 a1 | a12 b1 | b12

9 a2 b1 | b12

b

c

d

a

Data ColCat RowCat1 RowCat2 RowCat3

1 a1 b1 c1 d1

2 a2 b1 c1 d1

3 a3 b1 c1 d1

4 a1 b2 c2 d2

5 a2 b2 c2 d2

6 a3 b2 c2 d2

7 a1 b3 c3 d3

8 a2 b3 c3 d3

9 a3 b3 c3 d3

B C D a1 a2 a3

b1 c1 d1 1 2 3

b2 c2 d2 4 5 6

b3 c3 d3 7 8 9

Figure 11: Two arbitrary tables (a and c) and their canonical forms that satisfy the experi-

mental target requirements (b and d).

and f ). If a non-empty cell c located on i-row in the top-right region spans

several columns and non-empty cells c1,. . . ,cn are located in these nested

columns on i + 1-row, then the cell c contains a parent label for labels

produced from the cells c1,. . . ,cn.

3. Generating row labels. Rule-6 creates labels from non-empty cells in the

leftmost column. Rule-7 continues to generate labels from cells located

below the head in case when their values are not numbers.

4. Generating entries. Rule-8 generates entries from numeric values of the

remaining cells located below the head.

5. Associating row labels. First, we use Rule-9 to fix indentation. It sets up

the indent for each cell when its string value begins from a hyphen-minus
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character. The next two rules recover a hierarchy of row labels located in

the leftmost column (Fig. 10, g). Rule-10 searches for parent-child pairs

among row labels assuming that each new level of a hierarchy appends one

additional indent (two spaces) in cells of nested labels. Rule-11 associates

a child label with parent one when the parent cell with a boldface text is

located above the child cell with a regular text. Exceptions are made for

third cases where a parent candidate is “Total”, ”All”, or “I alt”. They

are ignored.

6. Categorizing labels. The three rules (Rule-12, Rule-13 and Rule-14)

place labels into synthetic categories: ColCat, RowCat1,. . . , RowCatN.

7. Associating entries. Rule-15 associates an entry with a terminal label

when they are originated from cells located in the same column. Rule-16

connects an entry and all labels when their cells are in the same row.

5.4. Performance Evaluation

The case study includes the ground-truth data that we have collected from

Troy200 tables. The performance evaluation is based on comparing the ground-

truth data with the tables generated by executing the presented rule-set for the

experiment dataset.

5.4.1. Ground-Truth Data

The collected ground-truth data covers both role and structural analysis.

Their form is designed for human readability. Moreover, they are independent

of the presence of critical cells in tables.

Each table from the dataset was accompanied by two recordsets: ENTRIES

and LABELS. The first specifies entries. Each record is a triple: an entry, its

provenance (cell address in its source table), and a set of associated labels. For

example, a fragment of ENTRIES recordset is shown below:

ENTRY PROVENANCE LABELS

243 T11 "2002 [B11]", "balance [T4]"

2871 S11 "2002 [B11]", "imports [S4]"
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Table 2: Experiment results on the role analysis stage.

type of instances

entries labels both

Number of

correct instances 16602 4849 21451

existing instances 16918 4859 21777

recovered instances 16602 5178 21780

Recall 0.9813 0.9979 0.9850

Precision 0.1000 0.9365 0.9849

Each record in the second recordset presents a label, including a reference to its

parent. We demonstrate an example of LABELS recordset below:

LABEL PROVENANCE PARENT

balance T4 other ict goods [R3]

imports S4 other ict goods [R3]

5.4.2. Measures

To evaluate our rule-set we adapt the well-known measures: recall and preci-

sion. When R is a set of instances in the result table and S is a set of instances

in the corresponding source table, then:

recall =
|R ∩ S|
|S|

precision =
|R ∩ S|
|R|

An instance refers to an entry, label, entry-label pair, or label-label pair. So,

these measures can be separately calculated for each type of instances (entries,

labels, entry-label pairs, or label-label pairs) as well as for combinations of these

types.

5.4.3. Experiment Results

To evaluate the role analysis we calculate the recall and precision for entries,

labels, and the sum of these both types (Table 2). The performance evaluation at

the structural analysis stage is determined as measuring the recall and precision
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Table 3: Experiment results on the structural analysis stage.

type of instances

entry-label pairs label-label pairs both

Number of

correct instances 34270 1951 36221

existing instances 35066 2078 37144

recovered instances 34386 1994 36380

Recall 0.9773 0.9389 0.9751

Precision 0.9966 0.9784 0.9956

for entry-label pairs, label-label pairs, and pairs of both types (Table 3). The

presented results have been obtained automatically through our command-line

application included in TabbyXL as Evaluator.class13.

5.4.4. Errors

Among 200 tables of the dataset, only 25 are processed with errors (1249

false negatives in 25 tables, and 488 false positives in 14 ones). Notice that, one

table14 is not processed. It results in 948 false negative and 316 false positive

errors, which amount to about 73% of all errors. Its entries are not recovered

because they are not numeric as it is assumed in the used rule-set.

For the rest of cases, the errors came from a stub or head. Their examples

are illustrated in Fig. 12. We classify them according to their causes. There are

five types of the causes originated from stub (Fig. 12 a).

1. Cut-in. A header in a row, where all rest cells are empty, can be a root

for other headers or just a leaf.

2. Multi-cell header. Text parts of a header can be placed into several neigh-

bor cells.

13https://github.com/cellsrg/tabbyxl/blob/master/src/main/java/ru/icc/cells/

ssdc/evaluation/Evaluator.java
14file C10082.csv in Troy200 dataset
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Figure 12: Causes of errors in stubs (a) and heads (b) and (c).

3. Indentation. A header hierarchy can be constituted by untidy indents

(e. g. padding characters differently aligned).

4. Emphasis. The boldface font can be used to emphasize a root in a header

hierarchy or data aggregation.

5. Repeating. A header hierarchy has one or more sets of repeating headers

without visual emphasizing its levels.

The errors from a head are produced for the following causes (Fig. 12 b

and c).

1. Layout. A layout of cells is not expected in our rule-set (e. g. a spanning

header located under nested ones).

2. Duplication. There are two or more headers with the same text, i. e.

additional headers are needed to read them.

Table 4 shows the distribution of the errors that arise in subs or heads.

Among 24 tables processed with errors only one has two types of error causes

(“indentation” and “multi-cell header”). Each of the remaining tables is accom-

panied by only one of the enumerated types.

The presented results show that stubs and heads are complex objects for an

automatic analysis and interpretation. On the one hand, the same layout or style

features of two stubs or two heads can have different meaning (e. g. the emphasis
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Table 4: Causes of errors originated from stubs or heads.

Origin Amount of tables False negatives False positives

Stub 21 153 84

Cut-in 10 34 3

Multi-cell header 4 48 41

Indentation 4 30 14

Emphasis (boldface) 2 30 26

Repeating 2 11 0

Head 3 148 88

Layout 2 130 70

Duplication 1 18 18

Total 24 301 172

referencing to a header hierarchy or data aggregation). On the other hand, the

absence of the features also leads to errors in the table understanding. Perhaps,

these objects require rigorous studying and developing specialized algorithms

for their analysis.

6. Comparison with Others

We experimentally compare our tool with two state of the art solutions for

spreadsheet table understanding:

• MIPS (Minimum Indexing Point Search), an algorithm for table segmen-

tation into the functional cell regions, proposed by Embley et al. (2016) as

a part of their algorithmic solution for end-to-end transforming “header-

indexed” tables converted in CSV format to a relational form (“category

tables”).

• Senbazuru, a spreadsheet database management system, proposed by

(Chen & Cafarella, 2014; Chen, 2016) for extracting relational data from

spreadsheets (“data frames”).
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Their goals are similar to ours. Both solutions aim to transform spreadsheet

tables with a complex structure into a relational form. They also involve the

stages of role and structural analysis. Both rely on similar functional cell regions.

Embley et al. (2016) define four regions StubHeader (stub head), ColHeader

(head), RowHeader (stub), and Data (body). Chen & Cafarella (2014) focus on

data frames, a common data model in spreadsheets. A data frame consists of

three regions: top annotation (head), left annotation (stub) and data (body).

Both systems also support hierarchical relationships of headings (labels).

The considered systems limit a range of tables, which can be processed

successfully, by the assumptions on the functional cell regions. In contrast to

these systems, we clearly divide physical and logical table structures on the

object level (Section 2). Our model associates roles with data items (entries

and labels) instead of cells or regions (e. g. head, stub, or body). Therefore, our

tool does not have the limitations of the comparable systems.

We demonstrate the experimental results that are close to ones of the state of

the art systems on the existing datasets of real-world tables. Unlike these solu-

tions, our tool allows developing and executing rule-sets to process others types

of tables, which do not fit in the presented models (“header-indexed tables” or

“data frames”).

6.1. Role Analysis

We compare our tool with MIPS in role analysis. MIPS exploits the assump-

tion that there exists MIP (Minimum Indexing Point) in a table that determines

boundaries of its regions: stub, head, and body. They successfully identify roles

of the cell region when MIPS finds MIP correctly.

Embley et al. (2016) evaluate only table segmentation into the functional cell

regions on Troy200 dataset (Nagy, 2016) (briefly described in Section 5.1).

They report that one of the 200 Troy200 tables is trivial (it contains only

one data column). Among the 199 non-trivial tables, MIP is correctly detected

in 197 cases. Therefore, the accuracy of automatic table segmentation (i. e.

detection of a stub, head, and body) by MIPS reaches 0.9899 (197/199) on
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Troy200 dataset.

We evaluate the rule-set presented in Section 5.3. It enables transforming

Troy200 tables into the canonical form. We also annotate not blank cells by

tags ColumnHeading, RowHeading, and DataCell, which can be considered as

tags for cells of a head, stub, and body respectively. Therefore, we identify

which of cells belong to each of these functional regions.

In our experiment, total 7 tables are processed with errors of role analysis.

However, only 2 of them are processed with errors, when our rule-set does

not detect a head, stub, and body successfully. The accuracy of our table

segmentation is 0.9950 (198/199) on Troy200 dataset without one trivial table

noted by Embley et al. (2016). It amounts 0.9900 (198/200) for all tables.

The presented metrics conditionally show the correctness of role analysis.

However, some errors can occur in cases when tables are successfully segmented

(Section 5.4.4). We propose to evaluate recall and precision of recovering entries

and labels. We demonstrate the following results of recovering entries and labels

on Troy200 dataset (Section 5.4.3): recall = 0.9850, precision = 0.9849, and

F1 = 0.9849.

6.2. Structural Analysis

We compare our tool with the automatic extractor of Senbazuru in struc-

tural analysis. Senbazuru extracts parent-child pairs of labels located in a head

(top annotation region) and stub (left annotation region) based on an undirected

graphical model. It exploits graphical style features (e. g. font, alignment, and

indentation) as well as correlated extraction decisions.

Chen & Cafarella (2014) evaluated accuracy of the automatic extraction in

predicting correct parent-child relationships by using standard metrics of recall,

precision, and F1. Their experiment is based on two spreadsheet corpora15.

One of them is SAUS (The 2010 Statistical Abstract of the United States) that

consists of 1369 spreadsheets. They randomly selected 200 tables from SAUS

15http://web.eecs.umich.edu/∼michjc/structuredweb/index.html
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and then split them into two equal parts for training and testing the automatic

extractor. They reached the following results: recall = 0.8860, precision =

0.8860, and F1 = 0.8860.

Our experiment exploits a subset of 200 SAUS tables randomly selected and

listed by Nagy (2016). We randomly split this subset into two equal parts.

The first part was used to develop a rule-set for processing SAUS tables. This

rule-set includes 14 rules, 7 of which recover parent-child pairs of labels. We

evaluate the rule-set only in recovering parent-child pairs using the second part

of the subset.

The process of evaluation is implemented as follows. Two experts inde-

pendently compare source tables and their automatically generated canonical

forms. They examine that each parent-child pair is processed successfully or

not. When they make opposite decisions on a pair, then a final decision is

a consensus between them. We have obtained the following results: recall =

0.7879 (3217/4083), precision = 0.9606 (3217/3349), and F1 = 0.8657.

Our result (F1) is less only by 0.0233 than one shown by the specialized sys-

tem Senbazuru. The many errors caused by inaccurate table markup (physical

cell structure) reduce the recall of our tool. There are two main failure reasons

in our experiment: (i) in table heads, one human-readable (visual) cell is placed

in several physical cells, (ii) in table stubs, the content of one label is distributed

in several consecutive cells.

We believe that physical cell structure cleansing (repair) as a preprocessing

stage will allow avoiding many of the errors and significantly improve the recall

in recovering label-label pairs for tables similar to SAUS ones. We obtain re-

call = 0.9389, precision = 0.9784, and F1 = 0.9582 for recovering parent-child

(label-label) pairs on Troy200 dataset (Section 5.4.3), where tables have more

accurately markup, i. e. the human-readable (visual) head structure conforms

physical one.
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7. Related work

Many methods and tools, where table analysis and interpretation serve to

extract and transform tabular data to a machine-interpretable representation,

e. g. relational databases, RDF16, or OWL17, were suggested in recent years.

7.1. Table analysis and interpretation methods

The methods for table analysis are proposed in the papers (Pivk et al., 2007;

Abraham & Erwig, 2007; Kim & Lee, 2008; Tao & Embley, 2009; Seth & Nagy,

2013; Mauro et al., 2013; Adelfio & Samet, 2013; Chen & Cafarella, 2013; Chen

et al., 2013; Chen & Cafarella, 2014; Embley et al., 2014; Nagy et al., 2014;

Embley et al., 2016; Rastan et al., 2016; Goto et al., 2016; Koci et al., 2016).

Each of them is designed for a few widespread types or features of arbitrary

tables.

Pivk et al. (2007) involve heuristics on structure and textual content of a ta-

ble, which are designed for three typical table types. Abraham & Erwig (2007)

combine different heuristic-based algorithms that classify spreadsheet cells into

four functional groups (roles). Kim & Lee (2008) use the analysis of spatial,

style, and textual information from web tables based on embedded rules and

regular expressions for five table types. Tao & Embley (2009) assume that all

content in one cell is either a label or an entry. Several works (Mauro et al.,

2013; Nagy et al., 2015; Embley et al., 2016; Nagy & Seth, 2016) use the critical

cells that allow dividing a table into four functional regions (head, stub, stub-

head, and body) (Nagy, 2012). Adelfio & Samet (2013) exploit common table

patterns based on sequences of row labels which correspond to roles (header,

data, aggregate, etc). The papers (Chen & Cafarella, 2013, 2014; Rastan et al.,

2016; Goto et al., 2016) focus on the structural analysis for hierarchical headers

in the stub. Koci et al. (2016) propose the classification approach to identify five

16https://www.w3.org/RDF
17https://www.w3.org/OWL
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typical functional blocks of tables, using a wide range of cell features presented

in spreadsheets.

The methods listed above are based on various assumptions about layout,

style and textual content of widespread tables. Typically, they implement the

assumptions as rules or heuristics incorporated in their algorithms. We think

that there are many specific features beyond the types covered by these methods.

Our table model does not determine any mandatory functional regions like head,

stub, stubhead, or body. We also do not bind a cell with a role (heading

or data value). Content that forms an entry, label, or category name can be

located anywhere in a table. Instead of determining a few popular table types

in algorithms, we propose to specify their features via external rules expressed

in our domain-specific language.

The methods for table interpretation are mainly knowledge-based. They

try to bind text in tables with some external concepts, using the following

techniques: extraction ontologies (Embley et al., 2005), data frames (Tijerino

et al., 2005), databases with facts (classes and relations) automatically collected

from the Web (Venetis et al., 2011), Linked Open Data like YAGO (Limaye

et al., 2010), Wikitology (Mulwad et al., 2010), Freebase (Deng et al.,

2013), DBpedia (Muñoz et al., 2014), or general purpose knowledge taxonomy,

ProBase (Wang et al., 2012). There are also several studies that propose to use

contextual information that surrounds tables (Braunschweig, 2015; Govindaraju

et al., 2013; Zhang, 2014; Yoshida et al., 2016).

These methods rely on textual content of tables and their context but ne-

glect their style features. In practice tabular data can be expressed via not only

text but also style (e. g. different fonts or colors in cells can also have inter-

pretable meanings). In contrast to them, our tool enables to specify and use

both layout and style features. Our work slightly concerns table interpretation.

We believe that many of the mentioned techniques can allow to extend our tool

for annotating and conceptualization of table content.
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7.2. Tabular data extraction and transformation tools

The methods (Han et al., 2008; Langegger & Wöß, 2009; O’Connor et al.,

2010; Mulwad et al., 2012; Fiorelli et al., 2015; Galkin et al., 2015; Ermilov &

Ngomo, 2016) for generating linked data in RDF or OWL formats from spread-

sheets or web tables include table analysis and interpretation. Some of them

(Langegger & Wöß, 2009; O’Connor et al., 2010) work with various layouts of

tables that differ from relational tables and propose domain-specific languages

for specifying mappings of their data into structured representations. Langegger

& Wöß (2009) present XLWrap, a spreadsheet-to-RDF wrapper where map-

pings are specified by XLWrap expressions. O’Connor et al. (2010) describe

M2, a mapping language for converting data from arbitrary tables presented in

spreadsheets to OWL format. Our aim in contrast to the mentioned techniques

consists in generating only relational tables.

Data transformation tools typically deal only with tables, which have a sim-

ple “matrix” layout, where there are no merged cells, hierarchical headers, or

footnotes. Potter’s Wheel (Raman & Hellerstein, 2001), Wrangler (Kan-

del et al., 2011), and OpenRefine18 supply own domain-specific languages for

cleaning messy values and reformatting tabular structures. HaExcel frame-

work enables bidirectional mapping between a spreadsheet and a relational

database (Cunha et al., 2009). MDSheet framework also implements a tech-

nique that automatically infers relational schemes from spreadsheets (Cunha

et al., 2016). The methodology (Gulwani et al., 2012) based on programming

by examples includes a domain-specific language and algorithms for synthesis of

table layout and content transformations. One of the the latest work (Jin et al.,

2017) develops Foofah, a system to synthesize data transformation programs

by examples. In contrast to the mentioned techniques, we work with arbitrary

tables with complex layout. Our tool transforms them to relational tables and

ETL (Extract, Transform, Load) tools can be used in further data normalization

and cleansing.

18http://openrefine.org
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Hung et al. (2011) propose TranSheet, a spreadsheet-like formula language

for specifying mappings between source spreadsheet data and a target schema.

Their language is expressive and flexible for supporting practical spreadsheet-

based data transformation in many cases. However, the mappings strictly de-

termine correspondences between absolute cell addresses of source data and a

target schema. Our language supports both absolute and relative cell address-

ing in comparison to TranSheet. Moreover, it allows formulating conditions

for selecting cells through text and style features.

Barowy et al. (2015) introduce the extraction language Flare that extends

regular expressions with geometric constructs. Interpretation of Flare con-

straints allows extracting and transforming tabular data from spreadsheets.

Their tool, FlashRelate, synthesizes a program in Flare by a small set of ex-

amples (output relational tuples). The earlier study (Harris & Gulwani, 2011)

presents TableProg, a language that can express practical transformations

over tabular data in spreadsheets. It is also designed for end-user programming

by examples (input and output tables). Unlike them, we express transforma-

tions as table analysis and interpretation rules.

Chen et al. (2016) focus on the problem of spreadsheet property (e. g. aggre-

gation rows or hierarchical header) detection, identifying when a corresponding

transformation program should be applied. They aim to convert any kind of

spreadsheet data into relational tables. Their framework constructs trained

property detectors based on rule-assisted active learning. It also uses crude

user-provided rules on how a property can be detected for generating training

data.

The recent works (de Vos et al., 2017; Cao et al., 2017) develop domain-

specific solutions. de Vos et al. (2017) propose algorithms and accompanying

software for automatic annotation of natural science spreadsheet tables. They

combine structural properties of the tables (basic assumptions) and external

vocabularies. Their algorithms implement a domain-specific set of classifica-

tion rules and heuristics on these properties. The other tool (Cao et al., 2017)

extracts RDF data from french government statistical spreadsheets and popu-
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lates instances of their conceptual model. Both of these works limit ranges of

processable tables by the considering domains.

To the best of our knowledge, there are no other domain-specific languages

for tabular data transformation in terms of table understanding. Our language is

based on the well-known terminology of Wang’s model (Wang, 1996). In contrast

to the existing mapping languages, we draw up this process as consecutive steps:

role analysis, structural analysis, and interpretation.

7.3. Our previous work

We propose an approach to table understanding based on executing rules for

table analysis and interpretation with a business rule engine (Shigarov, 2015b).

We briefly introduce the preliminary version of our domain-specific rule language

first in (Shigarov, 2015a). The prototype of our tool for canonicalization of

arbitrary tables in spreadsheets is discussed in (Shigarov et al., 2016b). This

paper combines and significantly expands our previous results. We explain in

details our language in terms of the stages of table understanding. Moreover,

this work revises and improves its syntax. We consider the original experiment

application for transforming arbitrary tables of the same genre (government

statistical tables). The performance evaluation has been done automatically for

both role and structural analysis with the prepared ground-truth data first.

8. Conclusions

The work shows new possibilities in spreadsheet data transformation from

arbitrary to relational tables based on rule-based programming for the table

understanding stages.

The presented two-layered table object model combines the physical and

logical table structure. Our model supports common layout and style spread-

sheet features. Unlike others, it is not based on using functional cell regions.

The functional items can be placed anywhere in a table. Therefore, the model
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can represent any table type satisfying the spreadsheet layout constraints. An-

other difference from existed representations is that the model provides data

provenance for recovered semantics.

CRL, our domain-specific language, enables to express table analysis and

interpretation rules. In contrast to the existing mapping languages, we draw

up this process as consecutive steps: role analysis, structural analysis, and in-

terpretation. There are no other domain-specific languages for tabular data

transformation in terms of table understanding. Although, a general-purpose

rule language can also express table analysis and interpretation rules. However,

our language allows focusing on the logic of table understanding without exces-

sive details. CRL defines a set of the essential actions for table understanding

stages.

TabbyXL, our tool for spreadsheet data canonicalization, implements both

the model and the language. The experiment demonstrates that the tool can

be used for developing programs for transformation of spreadsheet data into

the relational form. One rule-set can process a wide range of tables of the

same genre, e. g. government statistical websites. Our tool can be used for

populating databases from arbitrary tables, which share common features. It

also can serve as a part of data extraction from tables (e. g. in tabular document

processing (Yang et al., 2017)).

The work focuses on rather table analysis than issues of interpretation. We

only recover categories as sets of labels, without binding it with a taxonomy

of concepts. The further work on table content conceptualization can over-

come this limitation. Moreover, we observe that arbitrary tables can contain

messy (e. g. non-standardized values or typos) and useless (e. g. aggregations

or padding characters) data. It seems to be interesting for the further work to

incorporate additional techniques of data cleansing in our tool. Another devel-

opment direction is to integrate the presented results with tools for extracting

tables from documents (e. g. untagged PDF documents (Shigarov et al., 2016a))

in end-to-end systems for table understanding.
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