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ABSTRACT

This paper presents a methodology for the evaluation of
table understanding algorithms for PDF documents. The
evaluation takes into account three major tasks: table de-
tection, table structure recognition and functional analy-
sis. We provide a general and flexible output model for
each task along with corresponding evaluation metrics and
methods. We also present a methodology for collecting
and ground-truthing PDF documents based on consensus-
reaching principles and provide a publicly available ground-
truthed dataset.

Categories and Subject Descriptors: 1.7.5
[Document and Text Processing]: Document Capture—
document analysis; H.3.4 [Information Storage and Re-
trieval]: Systems and Software—performance evaluation

Keywords: Table processing, metrics, ground-truth
dataset, performance evaluation, document analysis, doc-
ument understanding

1. INTRODUCTION

The problem of table understanding has attracted much
interest in previous years from the database as well as the
document engineering communities. On the Web, discover-
ing structured data is a tremendous challenge [1] and PDF
documents represent the most common document format
after HTML. It is commonly recognized that table under-
standing consists of three tasks of increasing complexity:

e table detection: locating the regions of a document
with tabular content;

e table structure recognition: reconstructing the cellular
structure of a table;

e table interpretation: rediscovering the meaning of the
tabular structure. This includes:

(a) functional analysis: determining the function of
cells and their abstract logical relationships;

(b) semantic interpretation: understanding the se-
mantics of the table in terms of the entities repre-
sented in the table, their attributes, and the mu-
tual relationships between such entities.
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The comparative evaluation of different table understand-
ing algorithms is a non-trivial matter. Currently available
datasets for table understanding algorithms suffer from the
following limitations: (i) the documents in these datasets
are scanned images, not natively digital PDF (PDF Normal
or Formatted Text and Graphics) documents; (i7) in such
cases where ground truth is provided, only the tabular re-
gions are present; (744) custom performance measures make
it very difficult to appreciate fine differences between the
algorithms being compared.

In order to overcome the limitations of existing datasets
and evaluation approaches, we provide:

e a model and corresponding evaluation metric for each
output of the three stages of table understanding. At
the interpretation stage, we address only functional
analysis because the semantic interpretation of a table
is domain specific, and we believe it is premature to
include it in a generic benchmarking dataset;

e a consensus-based methodology for collecting and
ground-truthing natively digital PDF documents;

e an initial open-access and extensible ground-truthed
dataset of PDF documents containing tables.

2. RELATED WORK

Common problems in the comparative evaluation of dif-
ferent table understanding algorithms are the lack of stan-
dardized datasets, benchmarking procedures and measures
in experimental evaluation. This section discusses previ-
ous work in the: (i) creation of ground-truthed datasets,
(%) modelling of tabular information and (74) definition of
evaluation metrics.

Ground-truthed datasets. The lack of availability of
ground truth datasets has proved to be a major hindrance to
the comparative evaluation of table recognition algorithms.

Publicly available datasets containing tabular content in
monochrome page images, such as the UW datasets [11], and
UNLV', have long been available in the OCR community.
The ground truth has been generated interactively by using
visual tools [4, 12]. However, only the tabular regions, and
no higher-level information, is provided.

The first publicly-available dataset containing natively
digital PDF documents was used to test the PDF-TREX
system [10]. However, it contains mostly Italian financial
tables and does not include ground-truth information. As
our goal was to create a multi-domain database in the En-

'UNLV dataset originally at http://www.isri.unlv.edu/
ISRI/OCRtk. No longer available; accessed at web.archive.org



glish language, we decided to begin the document collection
process from scratch.

Table models. There are a number of different levels at
which table understanding can operate, a fact that is re-
flected in a variety of table models. In particular, we can
distinguish between structural models, used for representing
region and cell structures of tables, and conceptual models,
enabling the abstraction of content from presentation.

Interesting structural models have been proposed in [5, 7,
12]. In particular Hu et al. [5] modelled a table as a directed
acyclic attributed graph (table DAG) where columns, rows,
cells and relations among them are represented. Hurst [7]
presents an approach to deriving an abstract geometric
model of a table from a physical representation based on
spatial relations among cells named proto-links, which exist
between immediate neighbouring cells. Shahab et al. [12] use
an image-based representation to describe the cell structure,
adopting different colour channels to represent different row
and column positions. As discussed in Section 3.2, for com-
paring two cell structures of a table we use a model inspired
by Hurst’s proto-links, which enables an effective and simple
evaluation measure to be defined.

Possibly the most well-known and cited conceptual model
has been proposed by Wang [13] and extended by Hurst [6].
Wang defines a table divided into four main regions: (i) the
stub that contains the row headings; () the borhead that
contains the column headings; (744) the stub head that con-
tains the index sets in the stub and (iv) the body that con-
tains entries (also named data cells). At the lowest level,
a table can be seen as being composed of two types of cell:
the data cell, and the access cell (or label). The data cells
comprise the core of the table, whereas the access cells occur
within headers and are further classified into categories that
are organized hierarchically. In Section 3.3 we use many of
these concepts in defining our functional model.

Evaluation metrics. In order to evaluate the results of
table understanding algorithms, several metrics for table
structure recognition have been proposed. However, well
defined evaluation metrics do not yet exist for the results of
table interpretation.

Performance measures from the information retrieval do-
main such as recall, precision [9] and combined F-measure
have also found their way into evaluating table recognition
algorithms [8, 10]. Results of the PDF-TREX system [10]
were given using separate precision and recall values for ta-
ble areas and cell structures. In [2] the concepts of com-
pleteness and purity, based on the definitions of recall and
precision, were introduced as well-defined evaluation metrics
for any segmentation task. Whereas these measures can in-
tuitively be adopted for the table (region) recognition phase,
they are not so applicable for table (cell) structure recogni-
tion. In table structure recognition, a variety of errors can
occur that need to be considered separately (e.g. cells can
be split in one direction, merged in another; entire blank
columns can appear) and classifying these errors can lead to
ambiguities [3]. An alternative approach, which uses several
precision and recall measures at several levels, including cell,
row, column and region, is proposed in [12].

Hurst [7] sidestepped these problems by evaluating preci-
sion and recall at the proto-link level.

3. MODELLING THE GROUND TRUTH

The ground-truth enables a fair comparison between dif-
ferent approaches to the table understanding problem. In
order to be considered in our dataset, a table must have a
meaningful representation in each of the output models of
the three understanding tasks: (1) the region model for ta-
ble detection, (2) the cell structure model for table structure
recognition, (3) and the functional model for functional anal-
ysis. More precisely, a table in our dataset has the following
characteristics:

(i) it consists of (rectangular) cells belonging to an unam-
biguous two-dimensional row-and-column structure.
Cells may span more than one row or column;

(%) the contents of the table must fit within a rectangu-
lar bounding box that must not contain any further
textual content (titles, captions and footnotes are not
considered to be part of the table);

(i4i) it has a clear functional model based on clearly defined
access cells and data cells. Each data cell must be
accessed by at least two access dimensions.

3.1 Table regions

Region model. Table regions are defined as rectangular ar-
eas of a given page by their coordinates. Since a table can
span more than one page, several regions can belong to the
same table. For each region, we store the textual operator
(and, if necessary, operand) IDs of their originating PDF
text instructions (i.e. Tj and TJ), which point back to the
particular point in the PDF file where the text was drawn.
Each region in the ground truth is set to the minimal bound-
ing box that bounds all textual objects within.

Comparing regions. In order to compare a table region
against the ground truth, we can use two methods:

(i) if comparing algorithms that can be adapted to re-
turn the internal PDF operators, we can compare each
character with reference to the particular operator re-
sponsible for drawing the text on the page;

(i) for other (e.g. “black-box”) algorithms, bounding boxes
and content are used. A region is correct if it contains
the minimal bounding box of the ground truth without
intersecting additional content.

For comparing tabular regions, we use the measures com-
pleteness and purity [2] as they are well defined in the con-
text of segmentation. In order to obtain the best mapping
between two sets of regions, which may also differ from each
other, a correspondence matrix [12] is used.

3.2 Cell structure

Cell structure model. The cell structure of a table is de-
fined as a matrix of cells. The ground truth provides its
textual content and its start and end column and row posi-
tions. Blank cells are not represented in the grid. A benefit
of such a representation is that each cell is independent from
what has previously occurred in the table definition.

Comparing cell structures. For comparing two cell struc-
tures, we use a method inspired by Hurst’s proto-links [6]:
for each table region we generate a list of adjacency relations
between each content cell and its nearest neighbour in hor-
izontal and vertical directions. No adjacency relations are
generated between blank cells or a blank cell and a content
cell. This 1-D list of adjacency relations can be compared
to the ground truth by using precision and recall measures,
as shown in Figure 1. If both cells are identical and the



Description +Initial balance +lncrease +Decrease +Final balance
L L L i L

Accrued income 1 669 0 1 269+ 400
i L L L

Deferred income + 26 676+ 0+ 26 079+ 597
i i i i

Accrued expenses + 49 734+ 0+ 14 467 35267

(a) Original table as in ground truth

Description +lnitial balance +Increase d::]Decrease +Final balance
L L i L

Accrued income 1 669#:‘9 0+ 1 269+ 400
. L L L

Deferred income + 26 676#:‘9 0+ 26 079+ 597
Ll L]

Accrued expenses + 49 734#::] 0+ 14 467+ 35267

(b) Incorrectly recognized cell structure with split column

B Correct adjacency relations [0 Incorrect adjacency relations
correct adjacency relations 24

Recall = - - = — =774%
total adjacency relations 31
. correct adjacency relations 24
Precision = - - = — =85.7%
detected adjacency relations 28

Figure 1: Comparison of an incorrectly detected cell
structure with the ground truth

direction matches, then it is marked as correctly retrieved;
otherwise it is marked as incorrect. Using neighbourhoods
makes the comparison invariant to the absolute position of
the table (e.g. if everything is shifted by one cell) and also
avoids ambiguities arising with dealing with different types
of errors (merged/split cells, inserted empty column, etc.).

3.3 Table interpretation

Functional model. Our functional model focuses on ex-
pressing the most important relations of a table, which re-
flect the way a naive human reader would use the table to
look up information. As in [13, 6], our functional model
consists of a set of access relations defined as follows: Let
I ={IL,...,I,} be a collection of access dimensions and FE
the set of data cells. An access function f: @I — E maps
the unordered cartesian product of access dimension sets to
the set of entry values. Given a set of access cells as input,
an access function returns a data cell.

A table’s functional representation cannot usually be fully
rediscovered from the layout alone. For example, in Figure 2
domain-specific knowledge is required to discover that the
cell Nationality of parent: is a heading for the cells below
it, and not the cells to its right. Dot notation is used to
represent access cells arranged hierarchically. Although the
physical structure of a table is 2-D, often more dimensions
are projected into this 2-D space. For instance, in Figure 2
there are three dimensions that allows for describing a data
cell: years, nations and the set given by the cells Activity,
Passivity and Net position (which are repeated for each year).

It is not always clear which cells serve as access cells and
which cells are the data cells in a table. For instance, in
Figure 3 both the airline name and airline code could be
used to look up the airline’s turnover; thus both columns
serve simultaneously as access cells to the figures. A further
example is that of a conversion table between e.g. metric
and imperial units, which could be read in either direction.

It is worth nothing that, in contrast to the cell structure
model which is purely physical, in the functional model it is
important to represent blank data cells. For instance, the
table in Figure 3 includes a blank data cell that represents
a null value.

Comparing functional representations. As with the cell
structure model, we compute precision and recall measures
for all the access relations within the functional representa-

INTERNATIONAL ASSETSAND LIABILITIESOF BISREPORTING
BANKSBY NATIONALITY OF PARENT
(outstanding amounts in billions of dollars)

1997 1998

Nationality of parent: Net Net

Activity Passivity position Activity Passivity position

USA ... 9619 10084 —46.5 11053 11730 -67.7
Canada ................... 2115 2195 -8.0 2391 2373 18
Japan ............ ... ... 20451 1598.0 4471 17582 13121 4461
Europe ................... 5025.7 52183 -192.6 5789.3 6064.1 -184.38
of which: Germany ........ 13469 13451 18 16303 16382 -7.9
France .......... 903.6 968.7 651 1021.7 10601 -38.4

United Kingdom . . . 4788 5391 603 5588 6323 -735

taly ............ 419.0 416.8 22 4431 4340 91
Switzerland ... ... 709.4  706.0 34 8365 8365 9.6

Other regions . ............ 539.0 522.7 16.3  626.7 515.1 1116
Total ...... 87832 8566.9 2163 95186 93016 217.0

Source: BIS

Source: Adapted from the PDF-TREX dataset [10]

Functional representation:

[Nationality of parent.USA],[1997],[Activity] — [961.9],
[Nationality of parent.USA],[1997],[Passivity] — [1 008.4],
[Nationality of parent.USA],[1997],[Net position] — [—46.5],
[Nationality of parent.USA],[1998],[Activity] — [1 105.3],

f‘iéure 2: A financial table and its functional model

Turnover ($bn)
2008 | 2009 | 2010
AA American Airlines 17.5 18.1 17.2
AF Air France 11.6 10.8 11.9
KL | KLM Royal Dutch Airlines 8.3 9.5 9.4
LH Lufthansa 12.8 14.1 13.8
NA New Airline 2.1 2.4

Functional representation:

[AA],[Turnover ($bn).2008] — [17.5],
[American Airlines],[Turnover ($bn).2008] — [17.5],
[AA],[Turnover ($bn).2009] — [18.1],
[American Airlines],[Turnover ($bn).2009] — [18.1],

[NA],[Turnover ($bn).2008] — [,
Figure 3: A table with two alternative access paths

tion of a table. An access relation is marked as correctly
detected if it is identical to the ground truth, i.e. all levels
of each access path are present. However, in cases where
the heading structure has only been partly recovered but
the lowest level access cells have all been correctly detected,
the relation is marked as partially detected. If we consider
an algorithm that analyses a table with multiple-level head-
ings correctly, but misses some of the higher-level headings,
the result is still likely to be useful. Thus, our evaluation
measure better reflects the usefulness of the result.

Precision and recall can be calculated from the number of
correctly detected access relations, the total number of cor-
rect access relations and the number of incorrectly detected
(or false positive) access relations.

For an access relation that has had all of its lowest-level
access cells and its data cell correctly recognized, the number
of correctly detected access relations is incremented by the
following fraction:

number of correctly detected entities

total number of entities

where entity refers to access or data cell. Access cells



are counted as having been correctly detected if the access
path from the lowest level upwards is identical to the ground
truth; otherwise they are considered as false positives, even
if they are pointing to the correct cell.

Likewise, for an access relation that has had all of its
lowest-level access cells and its data cell correctly recognized,
the number of incorrectly detected (false positive) access
relations is incremented by the following fraction:

number of incorrectly detected entities
total number of entities

Here, any incorrectly detected access cells above the low-
est level are counted as incorrectly detected entities. If the
data cell or any access cell at the lowest level is incorrect,
the number of incorrectly detected access relations is incre-
mented by 1.

4. THE DATASET

In order to build an objective dataset of freely dis-
tributable PDF documents from several domains, we per-
formed a Google search and inspected each returned docu-
ment in sequence. We used the following search terms in or-
der to obtain documents from government sites whose pub-
lications are known to be in the public domain: (a) file-
type:pdf site:europa.eu (b) filetype:pdf site:*.gov

The size of documents and the number of tables contained
within the documents varied greatly. For longer documents
(more than 5 pages), excerpts of pages containing tables
were extracted, with approximately 2 pages of non-tabular
content before and after the tables of interest. Thus, we also
include non-tabular pages, giving the opportunity to also
test each algorithm against its resistance to false positives.

Core dataset. Our core dataset, which is freely download-
able at http://www.tamirhassan.com/dataset/, contains
59 excerpts as individual PDF files, with a total of 117
tables, with ground truth information corresponding to all
three tasks defined in Section 3. Each of these files has a
domain-generic model, specified as an XML Schema Defini-
tion (XSD), enabling the output of existing systems to easily
be converted for comparison with the ground truth. Table 1
gives overall statistics on the tables we have gathered.

The ground truth has been created interactively using a
visual tool for annotating table regions and cells. Since the
nature and the content of tables is often a subjective mat-
ter, the construction of the ground truth has followed a strict
consensus-reaching methodology. Document excerpts have
been collected and ground truth has been generated inde-
pendently and then validated by a group of three experts.
If it was not possible to reach consensus on any aspect of
the ground truth or the representation in any of the mod-
els was considered ambiguous by at least one expert, the
excerpt was excluded from our dataset. Because of the dif-
ficulties and increased ambiguity in the functional analysis
of “one-dimensional” tables such as conversion tables, and
tables with two “primary keys” (Figure 3), we decided not
include to such typologies of tables in our dataset.

5. CONCLUSION

In this paper we have presented an evaluation methodol-
ogy for table understanding algorithms. Although we have
focused on PDF documents, we believe that the same mod-
els can be easily adapted and applied to other formats such
as scanned images and web documents (e.g. HTML). We
invite researchers and practitioners from the web data man-

Data source EU | US Gov.
Number of documents 12 15
containing:
single-column layout 12 11
multi-column or complex layout 0 4
Number of excerpts 34 28
Number of pages 101 74
Number of tables 74 38
of which:
are split across more than one page 0 5
contain indentations 9 1
are partly ruled 45 17
are fully ruled 19 34
are laid out using monospaced text 0 0

Table 1: Summary of the tables in the core dataset

agement and document engineering communities to join our
initiative and collaborate on the enrichment of the initial
dataset that we provided. In addition, our models have been
defined to be extensible and we expect them to be adapted
to embrace more cases than those defined in this paper.
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