diff --git a/docs/cn/guides/54-query/00-sql-analytics.md b/docs/cn/guides/54-query/00-sql-analytics.md index 8aa1eb616b..995cada4b1 100644 --- a/docs/cn/guides/54-query/00-sql-analytics.md +++ b/docs/cn/guides/54-query/00-sql-analytics.md @@ -101,8 +101,8 @@ SELECT f.frame_id, obj.value['type']::STRING AS detected_type, obj.value['confidence']::DOUBLE AS confidence FROM frame_events AS f -JOIN frame_payloads AS p ON f.frame_id = p.frame_id, - LATERAL FLATTEN(input => p.payload['objects']) AS obj +JOIN frame_metadata_catalog AS meta ON meta.doc_id = f.frame_id, + LATERAL FLATTEN(input => meta.meta_json['detections']['objects']) AS obj WHERE f.event_tag = 'pedestrian' ORDER BY confidence DESC; ``` diff --git a/docs/cn/guides/54-query/02-vector-db.md b/docs/cn/guides/54-query/02-vector-db.md index 5f3e691fe9..30e8404ff9 100644 --- a/docs/cn/guides/54-query/02-vector-db.md +++ b/docs/cn/guides/54-query/02-vector-db.md @@ -4,7 +4,7 @@ title: 向量搜索 > **场景:** CityDrive 把每个帧的嵌入直接存放在 Databend,语义相似搜索(“找出和它看起来像的帧”)便可与传统 SQL 分析一同运行,无需再部署独立的向量服务。 -`frame_embeddings` 表与 `frame_events`、`frame_payloads`、`frame_geo_points` 共用同一批 `frame_id`,让语义检索与常规 SQL 牢牢绑定在一起。 +`frame_embeddings` 表与 `frame_events`、`frame_metadata_catalog`、`frame_geo_points` 共用同一批 `frame_id`,让语义检索与常规 SQL 牢牢绑定在一起。 ## 1. 准备嵌入表 生产模型通常输出 512–1536 维,本例使用 512 维方便直接复制到演示集群。 diff --git a/docs/en/guides/54-query/00-sql-analytics.md b/docs/en/guides/54-query/00-sql-analytics.md index d22f068ac7..ae1d8ad852 100644 --- a/docs/en/guides/54-query/00-sql-analytics.md +++ b/docs/en/guides/54-query/00-sql-analytics.md @@ -101,8 +101,8 @@ SELECT f.frame_id, obj.value['type']::STRING AS detected_type, obj.value['confidence']::DOUBLE AS confidence FROM frame_events AS f -JOIN frame_payloads AS p ON f.frame_id = p.frame_id, - LATERAL FLATTEN(input => p.payload['objects']) AS obj +JOIN frame_metadata_catalog AS meta ON meta.doc_id = f.frame_id, + LATERAL FLATTEN(input => meta.meta_json['detections']['objects']) AS obj WHERE f.event_tag = 'pedestrian' ORDER BY confidence DESC; ``` diff --git a/docs/en/guides/54-query/02-vector-db.md b/docs/en/guides/54-query/02-vector-db.md index e224a996f4..6bb174830c 100644 --- a/docs/en/guides/54-query/02-vector-db.md +++ b/docs/en/guides/54-query/02-vector-db.md @@ -4,7 +4,7 @@ title: Vector Search > **Scenario:** CityDrive keeps per-frame embeddings in Databend so semantic similarity search (“find frames that look like this”) runs alongside traditional SQL analytics—no extra vector service required. -The `frame_embeddings` table shares the same `frame_id` keys as `frame_events`, `frame_payloads`, and `frame_geo_points`, which keeps semantic search and classic SQL glued together. +The `frame_embeddings` table shares the same `frame_id` keys as `frame_events`, `frame_metadata_catalog`, and `frame_geo_points`, which keeps semantic search and classic SQL glued together. ## 1. Prepare the Embedding Table Production models tend to emit 512–1536 dimensions. The example below uses 512 so you can copy it straight into a demo cluster without changing the DDL.