Lecture outline

- Support vector machines
- Boosting

Support Vector Machines

Find a linear hyperplane (decision boundary) that will separate the data

Support Vector Machines

- One Possible Solution

Support Vector Machines

- Another possible solution

Support Vector Machines

- Other possible solutions

Support Vector Machines

- Which one is better? B1 or B2?
- How do you define better?

Support Vector Machines

- Find hyperplane maximizes the margin $=>$ B1 is better than B2

Support Vector Machines

Support Vector Machines

- We want to maximize: $\operatorname{Margin}=\frac{2}{\|w\|^{2}}$
- Which is equivalent to minimizing: $L(w)=\frac{\|w\|^{2}}{2}$
- But subjected to the following constraints:

$$
f\left(\vec{x}_{i}\right)=\left\{\begin{array}{cc}
1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \geq 1 \\
-1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \leq-1
\end{array}\right.
$$

- This is a constrained optimization problem
- Numerical approaches to solve it (e.g., quadratic programming)

Support Vector Machines

- What if the problem is not linearly separable?

Support Vector Machines

- What if the problem is not linearly separable?
- Introduce slack variables
- Need to minimize:
- Subject to:

$$
L(w)=\frac{\|\vec{w}\|^{2}}{2}+C\left(\sum_{i=1}^{N} \xi_{i}^{k}\right)
$$

$$
f\left(\vec{x}_{i}\right)=\left\{\begin{array}{cc}
1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \geq 1-\xi_{\mathrm{i}} \\
-1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \leq-1+\xi_{\mathrm{i}}
\end{array}\right.
$$

Nonlinear Support Vector Machines

- What if decision boundary is not linear?

Nonlinear Support Vector Machines

- Transform data into higher dimensional space

Ensemble Methods

- Construct a set of classifiers from the training data
- Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

Why does it work?

- Suppose there are 25 base classifiers
- Each classifier has error rate, $\varepsilon=0.35$
- Assume classifiers are independent
- Probability that the ensemble classifier makes a wrong prediction:

$$
\sum_{i=13}^{25} \epsilon^{i}(1-\epsilon)^{25-i}=0.06
$$

Examples of Ensemble Methods

- How to generate an ensemble of classifiers?
- Bagging
- Boosting

Bagging

- Sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample
- Each sample has probability $1-(1-1 / n)^{n}$ of being selected

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
- Initially, all N records are assigned equal weights
- Unlike bagging, weights may change at the end of boosting round

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

Example: AdaBoost

- Base classifiers: $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{T}}$
- Data pairs: $\left(x_{i}, y_{i}\right)$
- Error rate:
$\epsilon_{i}=\frac{1}{N} \sum_{j=1}^{N} w_{j} \delta\left(C_{i}\left(x_{j}\right) \neq y_{j}\right)$
- Importance of a classifier:

$$
\alpha_{i}=\frac{1}{2} \log \left(\frac{1-\epsilon_{i}}{\epsilon_{i}}\right)
$$

Example: AdaBoost

- Classification:

$$
C^{*}=\arg \max _{y} \sum_{j=1}^{T} \alpha_{j} \delta\left(C_{j}(x)=y\right)
$$

- Weight update for every iteration t and classifier j :

$$
w_{i}^{(t+1)}=\frac{w_{i}^{(t)}}{Z_{t}} \begin{cases}\exp ^{-\alpha_{j}} & \text { if } C_{j}\left(x_{i}\right)=y_{i} \\ \exp ^{\alpha_{j}} & \text { if } C_{j}\left(x_{i}\right) \neq y_{i}\end{cases}
$$

where Z_{j} is the normalization factor

- If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to $1 / n$

