Finding the central nodes in networks

Centrality measures

- Degree centrality
- PageRank

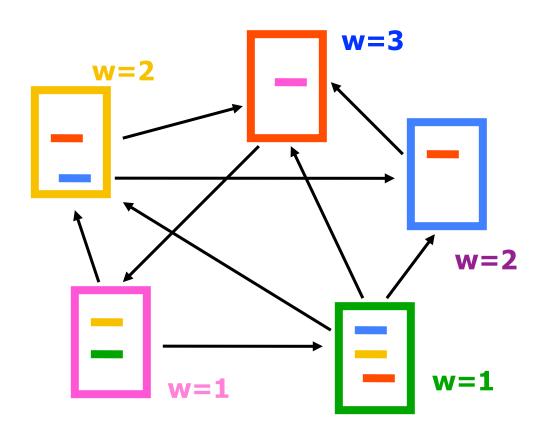
- Eigenvector centrality
- Betweenness centrality

Degree centrality

 Rank nodes by their degree/indegree/ outdegree

InDegree algorithm

• Rank pages according to in-degree $-w_i = |B(i)|$

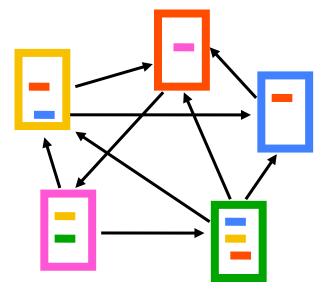


- **1. Red Node**
- 2. Yellow Node
- 3. Blue Node
- 4. Purple Node
- 5. Green Node

PageRank algorithm [BP98]

- Good authorities should be pointed by good authorities
- Random walk on the web graph
 - pick a page at random
 - with probability 1- α jump to a random page
 - with probability a follow a random outgoing link
- Rank according to the stationary distribution

•
$$\operatorname{PR}(p) = \alpha \sum_{q \to p} \frac{\operatorname{PR}(q)}{|F(q)|} + (1 - \alpha) \frac{1}{n}$$



- 1. Red Page
- 2. Purple Page
- 3. Yellow Page
- 4. Blue Page
- 5. Green Page

Markov chains

 A Markov chain describes a discrete time stochastic process over a set of states

 $S = \{s_1, s_2, \dots s_n\}$

according to a transition probability matrix

 $\mathsf{P} = \{\mathsf{P}_{ij}\}$

- P_{ij} = probability of moving to state j when at state i

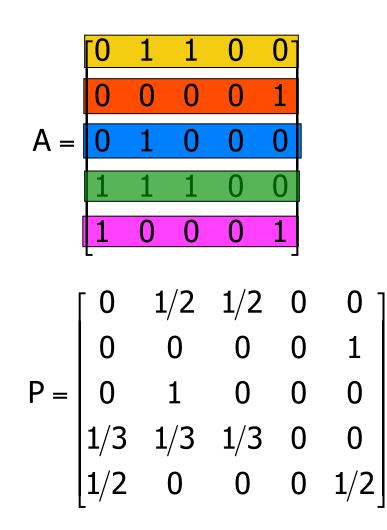
• $\sum_{j} P_{ij} = 1$ (stochastic matrix)

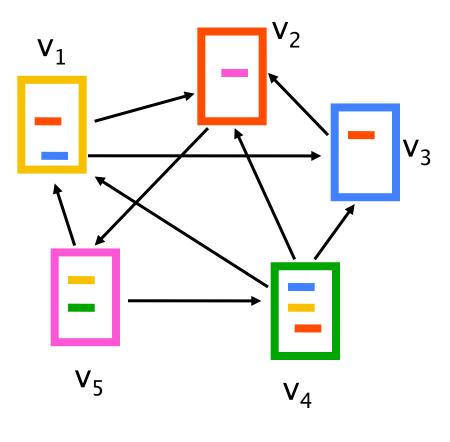
- Memorylessness property: The next state of the chain depends only at the current state and not on the past of the process (first order MC)
 - higher order MCs are also possible

Random walks

- Random walks on graphs correspond to Markov Chains
 - The set of states S is the set of nodes of the graph G
 - The transition probability matrix is the probability that we follow an edge from one node to another

An example





State probability vector

 The vector q^t = (q^t₁,q^t₂, ...,q^t_n) that stores the probability of being at state i at time t

- $q_i^0 = the probability of starting from state i$ $<math>q_i^t = q_i^{t-1} P$

An example

$$\mathsf{P} = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$

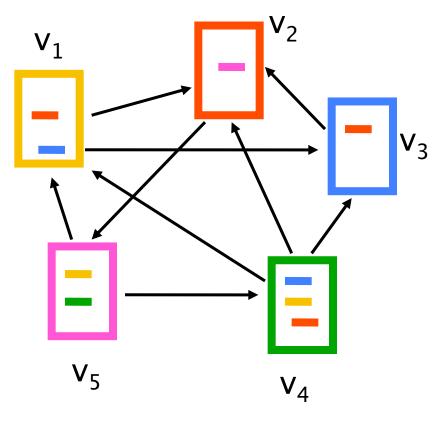
$$q^{t+1}_{1} = 1/3 q^{t}_{4} + 1/2 q^{t}_{5}$$

$$q^{t+1}_{2} = 1/2 q^{t}_{1} + q^{t}_{3} + 1/3 q^{t}_{4}$$

$$q^{t+1}_{3} = 1/2 q^{t}_{1} + 1/3 q^{t}_{4}$$

$$q^{t+1}_{4} = 1/2 q^{t}_{5}$$

$$q^{t+1}_{5} = q^{t}_{2}$$



Stationary distribution

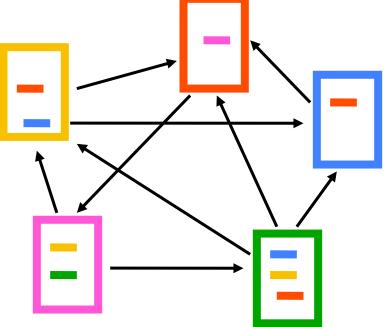
- A stationary distribution for a MC with transition matrix P, is a probability distribution π , such that $\pi = \pi P$
- A MC has a unique stationary distribution if
 - it is irreducible
 - the underlying graph is strongly connected
 - it is aperiodic
 - for random walks, the underlying graph is not bipartite
- The probability π_i is the fraction of times that we visited state i as $t \to \infty$
- The stationary distribution is an eigenvector of matrix P
 - the principal left eigenvector of P stochastic matrices have maximum eigenvalue 1

Computing the stationary distribution

- The Power Method
 - Initialize to some distribution q⁰
 - Iteratively compute $q^t = q^{t-1}P$
 - After enough iterations $q^t \approx \pi$
 - Power method because it computes $q^t = q^0 P^t$
- Why does it converge?
 - follows from the fact that any vector can be written as a linear combination of the eigenvectors
 - $q^0 = v_1 + c_2 v_2 + \dots + c_n v_n$
- Rate of convergence – determined by λ_2^{t}

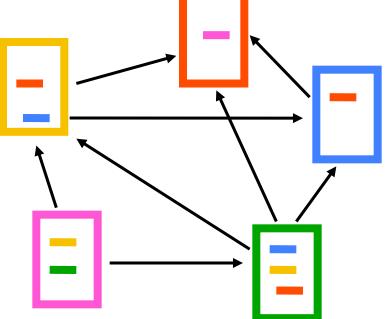
- Vanilla random walk
 - make the adjacency matrix stochastic and run a random walk

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$



- What about sink nodes?
 - what happens when the random walk moves to a node without any outgoing inks?

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$



 Replace these row vectors with a vector v - typically, the uniform vector

$$P' = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$

$$P' = P + dv^{T} \qquad d = \begin{cases} 1 & \text{if is sink} \\ 0 & \text{otherwise} \end{cases}$$

- How do we guarantee irreducibility?
 - add a random jump to vector v with prob a
 - typically, to a uniform vector

$$\mathsf{P''} = \alpha \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 1/2 \end{bmatrix} + (1 - \alpha) \begin{bmatrix} 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \end{bmatrix}$$

 $P'' = \alpha P' + (1-\alpha)uv^T$, where u is the vector of all 1s

Effects of random jump

- Guarantees irreducibility
- Motivated by the concept of random surfer
- Offers additional flexibility
 - personalization
 - anti-spam
- Controls the rate of convergence

 the second eigenvalue of matrix P'' is a

Random walks on undirected graphs

- In the stationary distribution of a random walk on an undirected graph, the probability of being at node i is proportional to the (weighted) degree of the vertex
- Random walks on undirected graphs are not "interesting"

Effects of random jump

- Guarantees irreducibility
- Motivated by the concept of random surfer
- Offers additional flexibility
 - personalization
 - anti-spam
- Controls the rate of convergence

 the second eigenvalue of matrix P'' is a

Eigenvector centrality

The centrality of a node u is defined as

$$x_u = \frac{1}{\lambda} \sum_{t \in N(u)} x_t$$

- $\bullet N(u)$: the neighbors of u
- λ : a constant

• This equation can be rewritten as

$$A\vec{x} = \lambda\vec{x}$$

Eigenvector centrality

$$A\vec{x} = \lambda\vec{x}$$

 If it is required that all centralities are positive, then only the greatest eigenvalue of A is the required centrality

Betweenness centrality

• Dependency of (s, t) pair on v: fraction of shortest paths between s and t that contain v

$$\delta(s,t \mid v) = \frac{\sigma(s,t \mid v)}{\sigma(s,t)}$$

Betweenness of v: sum of all dependencies of v

$$C(v) = \sum_{s,t \in V} \delta(s,t \mid v)$$