
Finding the central nodes in 
networks



Centrality measures

• Degree centrality

• PageRank

• Eigenvector centrality

• Betweenness centrality 
•



Degree centrality
• Rank nodes by their degree/indegree/

outdegree 
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InDegree algorithm
• Rank pages according to in-degree

– wi = |B(i)|

1. Red Node
2. Yellow Node
3. Blue Node
4. Purple Node
5. Green Node

w=1 w=1

w=2

w=3
w=2



PageRank algorithm [BP98]
• Good authorities should be 

pointed by good authorities
• Random walk on the web graph

– pick a page at random
– with probability 1- α jump to a 

random page
– with probability α follow a random 

outgoing link
• Rank according to the stationary 

distribution
•  

1. Red Page
2. Purple Page 
3. Yellow Page
4. Blue Page
5. Green Page
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Markov chains
• A Markov chain describes a discrete time stochastic 

process over a set of states

 according to a transition probability matrix

– Pij = probability of moving to state j when at state i
• ∑jPij = 1 (stochastic matrix)

• Memorylessness property: The next state of the 
chain depends only at the current state and not on 
the past of the process (first order MC)
– higher order MCs are also possible

S = {s1, s2, … sn}

P = {Pij}



Random walks
• Random walks on graphs correspond 

to Markov Chains
– The set of states S is the set of nodes of 

the graph G
– The transition probability matrix is the 

probability that we follow an edge from 
one node to another



An example
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State probability vector
• The vector qt = (qt

1,qt
2, … ,qt

n) that 
stores the probability of being at state 
i at time t
– q0

i
 = the probability of starting from state i

qt = qt-1 P



An example
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Stationary distribution
• A stationary distribution for a MC with transition 

matrix P, is a probability distribution π, such that π 
= πP

• A MC has a unique stationary distribution if 
– it is irreducible

• the underlying graph is strongly connected
– it is aperiodic

• for random walks, the underlying graph is not bipartite
• The probability πi is the fraction of times that we 

visited  state i as t → ∞
• The stationary distribution is an eigenvector of 

matrix P
– the principal left eigenvector of P – stochastic matrices have 

maximum eigenvalue 1



Computing the stationary 
distribution

• The Power Method
– Initialize to some distribution q0

– Iteratively compute qt = qt-1P
– After enough iterations qt ≈ π
– Power method because it computes qt = q0Pt

• Why does it converge?
– follows from the fact that any vector can be 

written as a linear combination of the 
eigenvectors
• q0 = v1 + c2v2 + … cnvn

• Rate of convergence
– determined by λ2t



The PageRank random walk
• Vanilla random walk

– make the adjacency matrix stochastic and 
run a random walk



The PageRank random walk
• What about sink nodes?

– what happens when the random walk 
moves to a node without any outgoing 
inks?



The PageRank random walk
• Replace these row vectors with a vector v

– typically, the uniform vector

P’ = P + dvT



The PageRank random walk
• How do we guarantee irreducibility?

– add a random jump to vector v with prob α
• typically, to a uniform vector

P’’ = αP’ + (1-α)uvT,  where u is the vector of all 1s



Effects of random jump
• Guarantees irreducibility
• Motivated by the concept of random 

surfer
• Offers additional flexibility 

– personalization
– anti-spam

• Controls the rate of convergence
– the second eigenvalue of matrix P’’ is α



Random walks on undirected graphs

• In the stationary distribution of a 
random walk on an undirected graph, 
the probability of being at node i is 
proportional to the (weighted) degree 
of the vertex

• Random walks on undirected graphs 
are not “interesting”



Effects of random jump
• Guarantees irreducibility
• Motivated by the concept of random 

surfer
• Offers additional flexibility 

– personalization
– anti-spam

• Controls the rate of convergence
– the second eigenvalue of matrix P’’ is α



Eigenvector centrality
• The centrality of a node u is defined as

•        : the neighbors of u
•   : a constant

• This equation can be rewritten as
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Eigenvector centrality

• If it is required that all centralities are 
positive, then only the greatest 
eigenvalue of A is the required 
centrality
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A~x = �~x



Betweenness centrality
• Dependency of (s, t) pair on v: fraction of 

shortest paths between s and t that contain v 

• Betweenness of v: sum of all dependencies of v 
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