
Clustering nodes in graphs



Why graph clustering is 
useful?

• Distance matrices are graphs  as 
useful as any other clustering

• Identification of communities in social 
networks

• Webpage clustering for better data 
management of web data



Outline
• k-core decomposition of a graph
• Min s-t cut problem
• Min cut problem
• Spectral graph partitioning



k-core graph decomposition
• Assume an undirected graph G=(V,E)
• The core i of G, denoted by Gi, is a 

subgraph of G such that all nodes in 
Gi have degree at least i

• The core number of a node u is c(u), if 
u belongs in the c(u) core but not in 
core c(u)+1
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Min s-t cut
• Weighted graph G(V,E)

• An s-t cut C = (S,T) of a graph G = (V, E) 
is a cut partition of V into S and T such 
that s∈S and t∈T

• Cost of a cut: Cost(C) = Σe(u,v) uЄS, v ЄT w(e)

• Problem: Given G, s and t find the 
minimum cost s-t cut



Min-cut problem
• Connected, undirected graph G=(V,E)

• Assignment of weights to edges: w: ER+

• Cut: Partition of V into two sets: V’, V-V’. The set 
of edges with one end point in V and the other in 
V’ define the cut

• The removal of the cut disconnects G

• Cost of a cut: sum of the weights of the edges 
that have one of their end point in V’ and the 
other in V-V’



Min cut problem
• Can we solve the min-cut problem 

using an algorithm for s-t cut?



More on min-cut
• What does it mean that a set of nodes are well or 

sparsely interconnected?

• min-cut: the min number of edges such that when 
removed cause the graph to become disconnected
– small min-cut implies sparse connectivity
–  
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Measuring connectivity
• What does it mean that a set of nodes are well 

interconnected?

• min-cut: the min number of edges such that when 
removed cause the graph to become disconnected
– not always a good idea!

U UV-U V-U



Graph expansion
• Normalize the cut by the size of the smallest 

component
• Cut ratio:

• Graph expansion:

• We will now see how the graph expansion 
relates to the eigenvalue of the adjacency 
matrix A
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Spectral analysis
• The Laplacian matrix L = D – A where
– A = the adjacency matrix
– D = diag(d1,d2,…,dn)
• di = degree of node i

• Therefore
– L(i,i) = di

– L(i,j) = -1, if there is an edge (i,j)



Laplacian Matrix properties
• The matrix L is symmetric and positive 

semi-definite
– all eigenvalues of L are positive

• The matrix L has 0 as an eigenvalue, 
and corresponding eigenvector w1 = 
(1,1,…,1)
– λ1 = 0 is the smallest eigenvalue



The second smallest 
eigenvalue

• The second smallest eigenvalue (also 
known as Fielder value) λ2 satisfies

• The vector that minimizes λ2 is called 
the Fielder vector. It minimizes 
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Spectral ordering
• The values of x minimize

• For weighted matrices

• The ordering according to the xi values will group 
similar (connected) nodes together

• Physical interpretation: The stable state of springs 
placed on the edges of the graph  
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Spectral partition
• Partition the nodes according to the ordering 

induced by the Fielder vector
• If u = (u1,u2,…,un) is the Fielder vector, then 

split nodes according to a value s
– bisection: s is the median value in u
– ratio cut: s is the value that minimizes α
– sign: separate positive and negative values (s=0)
– gap: separate according to the largest gap in the 

values of u
• This works well (provably for special cases)


