Clustering nodes in graphs

Why graph clustering is useful?

- Distance matrices are graphs \rightarrow as useful as any other clustering
- Identification of communities in social networks
- Webpage clustering for better data management of web data

Outline

- k-core decomposition of a graph
- Min s-t cut problem
- Min cut problem
- Spectral graph partitioning

k-core graph decomposition

- Assume an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- The core i of G, denoted by Gi, is a subgraph of G such that all nodes in Gi have degree at least i
- The core number of a node u is $c(u)$, if u belongs in the $c(u)$ core but not in core c(u)+1

Min s-t cut

- Weighted graph G(V,E)
- An s-t cut $C=(S, T)$ of a graph $G=(V, E)$ is a cut partition of V into S and T such that $\mathbf{s} \in \mathbf{S}$ and $\mathbf{t} \in \mathbf{T}$
- Cost of a cut: $\operatorname{Cost}(C)=\Sigma_{e(u, v) u \in S, v \in T} w(e)$
- Problem: Given G, s and t find the minimum cost s-t cut

Min-cut problem

- Connected, undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Assignment of weights to edges: w: $\mathrm{E} \rightarrow \mathrm{R}^{+}$
- Cut: Partition of V into two sets: V', V-V'. The set of edges with one end point in V and the other in V' define the cut
- The removal of the cut disconnects G
- Cost of a cut: sum of the weights of the edges that have one of their end point in V^{\prime} and the other in $\mathrm{V}-\mathrm{V}^{\text {, }}$

Min cut problem

- Can we solve the min-cut problem using an algorithm for s-t cut?

More on min-cut

- What does it mean that a set of nodes are well or sparsely interconnected?
- min-cut: the min number of edges such that when removed cause the graph to become disconnected
- small min-cut implies sparse connectivity
$-\min _{U} E(U, V \backslash U)=\sum_{i \in U} \sum_{j \in V \backslash U} A[i, j]$

Measuring connectivity

- What does it mean that a set of nodes are well interconnected?
- min-cut: the min number of edges such that when removed cause the graph to become disconnected
- not always a good idea!

Graph expansion

- Normalize the cut by the size of the smallest component
- Cut ratio: $\quad \alpha=\frac{}{\text { - Graph expansion: }}$

$$
\alpha(G)=\min _{U} \frac{E(U, V \backslash U)}{\min \{|U|,|V \backslash U|\}}
$$

- We will now see how the graph expansion relates to the eigenvalue of the adjacency matrix A

Spectral analysis

- The Laplacian matrix L = D - A where - A = the adjacency matrix
$-\mathrm{D}=\operatorname{diag}\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{n}}\right)$
- $d_{i}=$ degree of node i
- Therefore
$-L(i, i)=d_{i}$
$-L(i, j)=-1$, if there is an edge (i, j)

Laplacian Matrix properties

- The matrix L is symmetric and positive semi-definite
- all eigenvalues of L are positive
- The matrix L has 0 as an eigenvalue, and corresponding eigenvector $\mathrm{w}_{1}=$ ($1,1, \ldots, 1$)
$-\lambda_{1}=0$ is the smallest eigenvalue

The second smallest eigenvalue

- The second smallest eigenvalue (also known as Fielder value) λ_{2} satisfies

$$
\lambda_{2}=\min _{\|x\|=1, x \perp w_{1}} x^{T} L x
$$

- The vector that minimizes λ_{2} is called the Fielder vector. It minimizes
$\lambda_{2}=\min _{x \neq 0} \frac{\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i} x_{i}^{2}}$ where $\sum_{i} x_{i}=0$

Spectral ordering

- The values of x minimize

$$
\min _{\substack{x \neq 0}} \frac{\sum_{(i, j) \in E}\left(x_{i}-x j\right)^{2}}{\sum_{i} x_{i}^{2}} \quad \sum_{i} x_{i}=0
$$

- For weighted matrices

$$
\min _{x \neq 0} \frac{\sum_{(i, j)} A[i, j]\left(x_{i}-x j\right)^{2}}{\sum_{i} x_{i}^{2}} \quad \sum_{i} x_{i}=0
$$

- The ordering according to the x_{i} values will group similar (connected) nodes together
- Physical interpretation: The stable state of springs placed on the edges of the graph

Spectral partition

- Partition the nodes according to the ordering induced by the Fielder vector
- If $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is the Fielder vector, then split nodes according to a value s
- bisection: s is the median value in u
- ratio cut: s is the value that minimizes α
- sign: separate positive and negative values ($s=0$)
- gap: separate according to the largest gap in the values of u
- This works well (provably for special cases)

