
Dimensionality reduction 
with SVD



Dimensionality reduction

• Dataset X consisting of n points in a d-dimensional 
space

• Data point xiєRd (d-dimensional real vector): 
 xi = [xi1, xi2,…, xid]



Datasets in the form of matrices

We are given n objects and d features describing the objects. 
(Each object has d numeric values describing it.)

Dataset
An n-by-d matrix A, Aij shows the “importance” of feature j for 
object i.
Every row of A represents an object.

Goal
1. Understand the structure of the data, e.g., the underlying 

process generating the data.
2. Reduce the number of features representing the data



Market basket matrices

n 
customers

d products 
(e.g., milk, bread, wine, etc.)

Aij = quantity of j-th product 
purchased by the i-th 
customer

Find  a subset of the products that 
characterize customer behavior



Social-network matrices

n users

d groups 
(e.g., BU group, opera, etc.)

Aij = partiticipation of 
the i-th user in the  j-th 
group

Find  a subset of the groups that accurately 
clusters social-network users



Document matrices

n 
documents

d terms 
(e.g., theorem, proof, etc.)

Aij = frequency of the j-th 
term in the i-th document

Find  a subset of the terms that accurately 
clusters the documents



Recommendation systems

n 
customers

d products 

Aij = frequency of 
the j-th  product is 
bought by the i-th 
customer

Find  a subset of the products that 
accurately describe the behavior or the 

customers



The Singular Value 
Decomposition (SVD)

Data matrices have n rows (one for 
each object) and d columns (one 
for each feature).

Rows: vectors in a Euclidean space,

Two objects are “close” if the angle 
between their corresponding 
vectors is small. 



SVD: Example
Input: 2-d dimensional 
points

Output: 

1st (right) 
singular vector

1st (right) singular vector: 
direction of maximal 
variance,

2nd (right) 
singular 
vector

2nd (right) singular vector: 
direction of maximal variance, 
after removing the projection 
of the data along the first 
singular vector.



Singular values

σ1: measures how much of 
the data variance is 
explained by the first 
singular vector.

σ2: measures how much of 
the data variance is 
explained by the second 
singular vector.

σ1
1st (right) 
singular vector

2nd (right) 
singular 
vector



SVD decomposition

U (V): orthogonal matrix containing the left (right) 
singular vectors of A.
Σ: diagonal matrix containing the singular values of A: 
(σ1 ≥ σ2 ≥ … ≥ σℓ )

    
 Exact computation of the SVD takes O(min{mn2 , m2n}) 

time. 
 The top k left/right singular vectors/values can be 

computed faster using Lanczos/Arnoldi methods.
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SVD and Rank-k  approximations 



Rank-k approximations (Ak)

Uk (Vk): orthogonal matrix containing the top k left 
(right) singular vectors of A.
Σk: diagonal matrix containing the top k singular 
values of A

Ak is an approximation of A

n x d n x k k x k k x d

Ak is the best 
approximation 

of A



PCA and SVD
• PCA is SVD done on centered data

• PCA looks for such a direction that the data 
projected to it has the maximal variance

• PCA/SVD continues by seeking the next 
direction that is orthogonal to all previously 
found directions

• All directions are orthogonal



How to compute the PCA
• Data matrix A, rows = data points, 

columns = variables (attributes, features, 
parameters)

1. Center the data by subtracting the mean of 
each column

2. Compute the SVD of the centered matrix 
A’ (i.e., find the first k singular values/vectors)                     
A’ = UΣVT

3. The principal components are the columns of 
V, the coordinates of the data in the basis 
defined by the principal components are UΣ



Singular values tell us something 
about the variance

• The variance in the direction of the k-th principal 
component is given by the corresponding singular 
value σk
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• Singular values can be used to estimate how many 
components to keep

• Rule of thumb: keep enough to explain 85% of the 
variation: 


