Dimensionality reduction with SVD

Dimensionality reduction

- Dataset X consisting of n points in a d-dimensional space
- Data point x_i ∈ R^d (d-dimensional real vector):

 $\mathbf{x}_{i} = [\mathbf{x}_{i1}, \mathbf{x}_{i2}, \dots, \mathbf{x}_{id}]$

Datasets in the form of matrices

We are given **n** objects and **d** features describing the objects. (Each object has **d** numeric values describing it.)

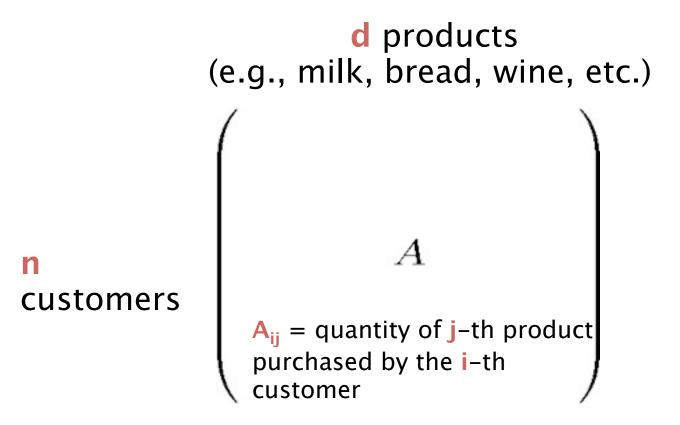
Dataset

An **n-by-d** matrix **A**, **A**_{ij} shows the "**importance**" of feature **j** for object **i**. Every row of **A** represents an object.

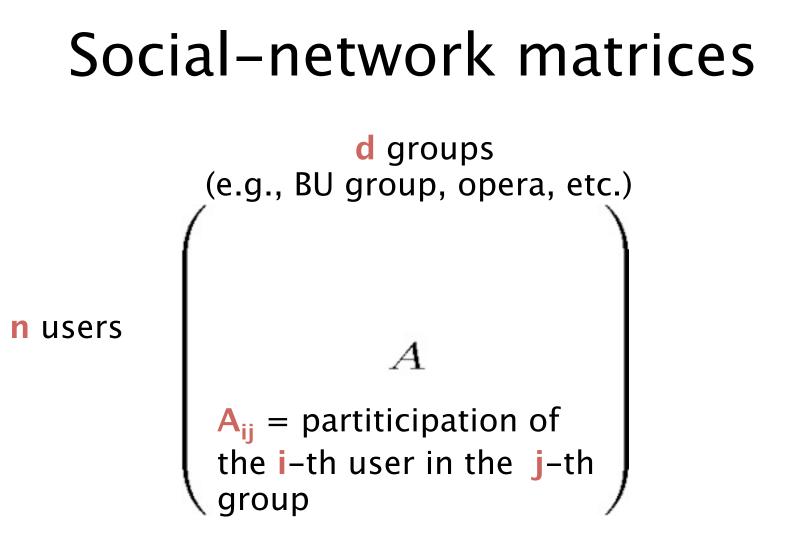
<u>Goal</u>

- **1. Understand** the structure of the data, e.g., the underlying process generating the data.
- 2. Reduce the number of features representing the data

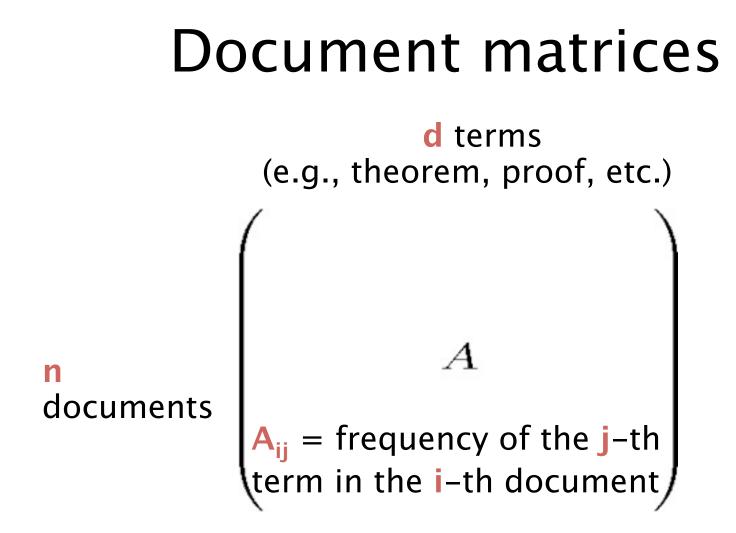
Market basket matrices



Find a subset of the products that characterize customer behavior

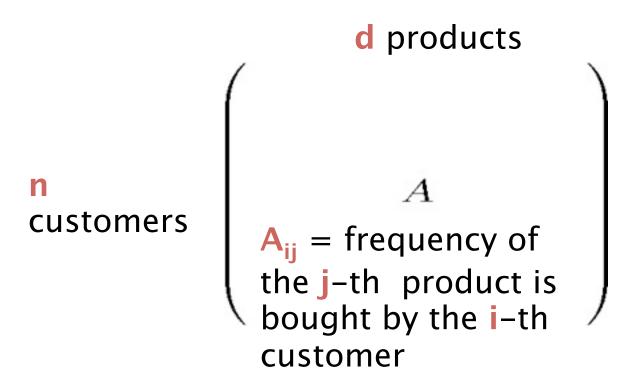


Find a subset of the groups that accurately clusters social-network users



Find a subset of the terms that accurately clusters the documents

Recommendation systems



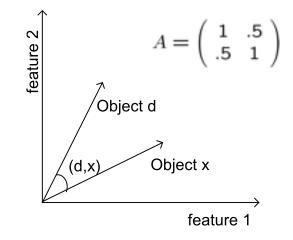
Find a subset of the products that accurately describe the behavior or the customers

The Singular Value Decomposition (SVD)

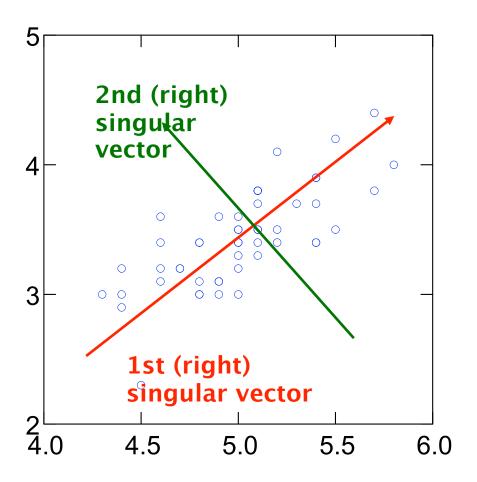
Data matrices have **n** rows (one for each object) and **d** columns (one for each feature).

Rows: vectors in a Euclidean space,

Two objects are "**close**" if the angle between their corresponding vectors is small.



SVD: Example



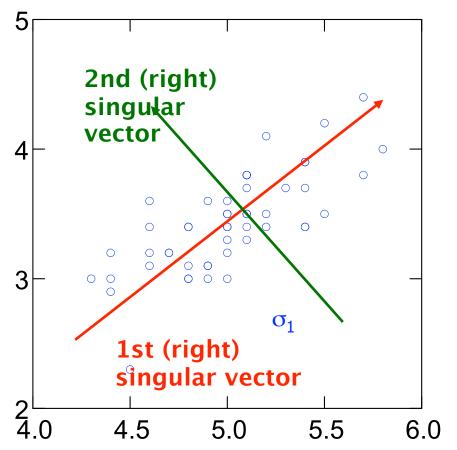
Input: 2-d dimensional points

Output:

<u>1st (right) singular vector:</u> direction of maximal variance,

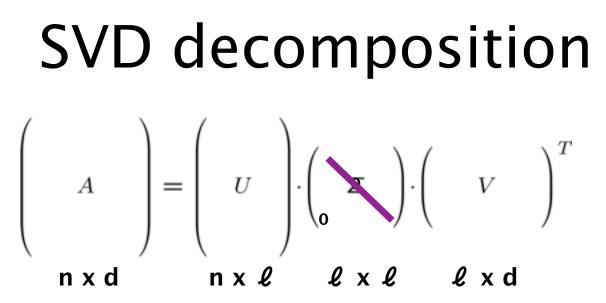
2nd (right) singular vector: direction of maximal variance, after removing the projection of the data along the first singular vector.

Singular values



 σ_1 : measures how much of the data variance is explained by the first singular vector.

 σ_2 : measures how much of the data variance is explained by the second singular vector.



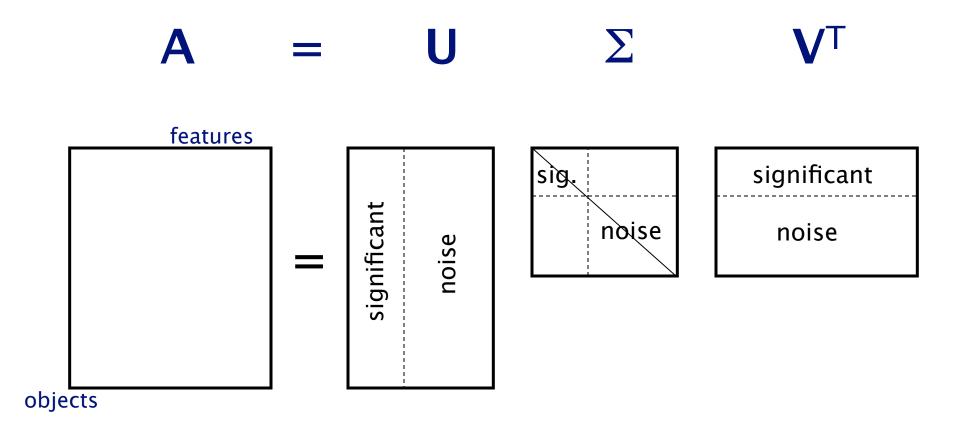
U(**V**): orthogonal matrix containing the left (right) singular vectors of **A**.

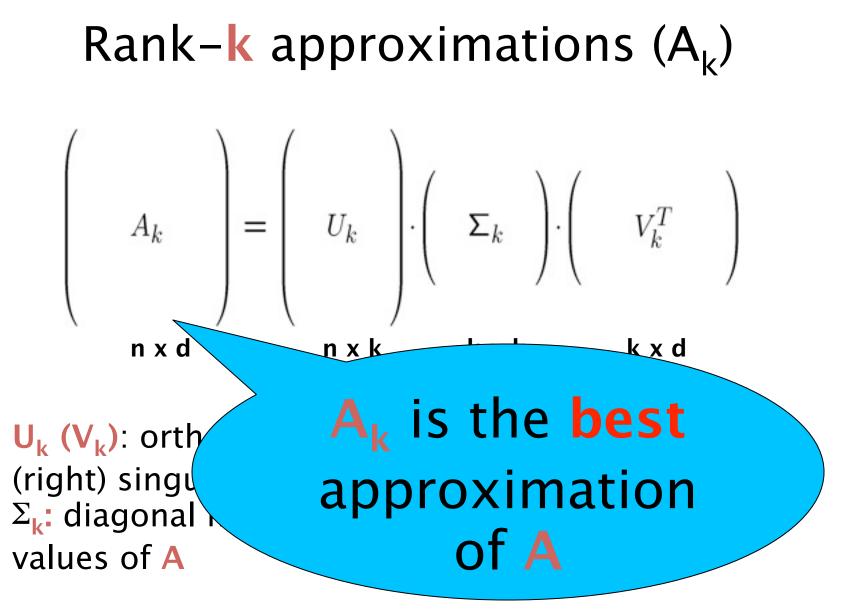
 Σ : diagonal matrix containing the singular values of A: ($\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_\ell$)

Exact computation of the SVD takes O(min{mn², m²n}) time.

The top k left/right singular vectors/values can be **computed faster** using Lanczos/Arnoldi methods.

SVD and Rank-k approximations





 A_k is an approximation of A

PCA and SVD

- PCA is SVD done on centered data
- PCA looks for such a direction that the data projected to it has the maximal variance
- PCA/SVD continues by seeking the next direction that is orthogonal to all previously found directions
- All directions are orthogonal

How to compute the PCA

- Data matrix A, rows = data points, columns = variables (attributes, features, parameters)
- 1. Center the data by subtracting the mean of each column
- 2. Compute the SVD of the centered matrix A' (i.e., find the first k singular values/vectors) A' = $U\Sigma V^T$
- The principal components are the columns of V, the coordinates of the data in the basis defined by the principal components are UΣ

Singular values tell us something about the variance

- The variance in the direction of the k-th principal component is given by the corresponding singular value $\sigma_k{}^2$
- Singular values can be used to estimate how many components to keep
- **Rule of thumb:** keep enough to explain 85% of the variation: $\sum_{k=2}^{k} -2^{2}$

$$\frac{\sum_{j=1}^{n} \sigma_{j}^{2}}{\sum_{i=1}^{n} \sigma_{j}^{2}} \approx 0.85$$