Dimensionality reduction with SVD

Dimensionality reduction

- Dataset X consisting of n points in a d-dimensional space
- Data point $x_{i} \in \mathbb{R}^{d}$ (d-dimensional real vector): $x_{i}=\left[x_{i 1}, x_{i 2}, \ldots, x_{i d}\right]$

Datasets in the form of matrices

We are given n objects and dl features describing the objects. (Each object has dl numeric values describing it.)

Dataset
An n-by-d matrix $A, A_{i j}$ shows the "importance" of feature j for object i.
Every row of A represents an object.
Goal

1. Understand the structure of the data, e.g., the underlying process generating the data.
2. Reduce the number of features representing the data

Market basket matrices

d products
(e.g., milk, bread, wine, etc.)
n
customers

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{ij}}=\text { quantity of } \mathrm{j} \text {-th product } \\
& \text { purchased by the } \mathrm{i} \text {-th } \\
& \text { customer }
\end{aligned}
$$

Find a subset of the products that characterize customer behavior

Social-network matrices

n users $\left(\begin{array}{c}\text { d groups } \\ \text { (e.g., BU group, opera, etc.) } \\ A \\ \begin{array}{l}\mathrm{A}_{\mathrm{ij}}=\text { partiticipation of } \\ \text { the } \mathrm{i}-\mathrm{th} \text { user in the } \mathrm{j}-\mathrm{th} \\ \text { group }\end{array}\end{array}\right)$

Find a subset of the groups that accurately clusters social-network users

Document matrices

d terms
(e.g., theorem, proof, etc.)
documents $\left(\begin{array}{l} \\ \\ \mathrm{A}_{\mathrm{ij}}=\text { frequency of the } \mathrm{j}-\mathrm{th} \\ \text { term in the } \mathrm{i}-\mathrm{th} \text { document }\end{array}\right)$
Find a subset of the terms that accurately clusters the documents

Recommendation systems

d products

Find a subset of the products that accurately describe the behavior or the customers

The Singular Value Decomposition (SVD)

Data matrices have n rows (one for each object) and d columns (one for each feature).

Rows: vectors in a Euclidean space,
Two objects are "close" if the angle between their corresponding vectors is small.

SVD: Example

Input: 2-d dimensional points

Output:

1st (right) singular vector: direction of maximal variance,
2nd (right) singular vector: direction of maximal variance, after removing the projection of the data along the first singular vector.

Singular values

σ_{1} : measures how much of the data variance is explained by the first singular vector.
σ_{2} : measures how much of the data variance is explained by the second singular vector.

SVD decomposition

$$
\begin{aligned}
& \binom{A}{\mathbf{n x d}}=\left(\mathbf{v}_{0} \quad\left(\begin{array}{l}
\\
0
\end{array}\right)^{T}\right. \\
& \mathbf{n} \mathbf{x} \boldsymbol{\ell} \quad \boldsymbol{\ell} \mathbf{x} \boldsymbol{\ell} \quad \boldsymbol{\ell} \mathbf{x d}
\end{aligned}
$$

$\mathrm{U}(\mathrm{V})$: orthogonal matrix containing the left (right) singular vectors of A.
Σ : diagonal matrix containing the singular values of A : ($\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{\ell}$)

Exact computation of the SVD takes $O\left(m i n\left\{m n^{2}, m^{2} n\right\}\right)$ time.
The top k left/right singular vectors/values can be computed faster using Lanczos/Arnoldi methods.

SVD and Rank-k approximations

Rank-k approximations $\left(\mathrm{A}_{\mathrm{k}}\right)$

A_{k} is an approximation of A

PCA and SVD

- PCA is SVD done on centered data
- PCA looks for such a direction that the data projected to it has the maximal variance
- PCA/SVD continues by seeking the next direction that is orthogonal to all previously found directions
- All directions are orthogonal

How to compute the PCA

- Data matrix A, rows = data points, columns = variables (attributes, features, parameters)

1. Center the data by subtracting the mean of each column
2. Compute the SVD of the centered matrix A^{\prime} (i.e., find the first k singular values/vectors) $\mathrm{A}^{\prime}=\mathbf{U} \Sigma \mathrm{V}^{\top}$
3. The principal components are the columns of V , the coordinates of the data in the basis defined by the principal components are UE

Singular values tell us something about the variance

- The variance in the direction of the k-th principal component is given by the corresponding singular value $\sigma_{k}{ }^{2}$
- Singular values can be used to estimate how many components to keep
- Rule of thumb: keep enough to explain $\mathbf{8 5 \%}$ of the variation:

$$
\frac{\sum_{j=1}^{k} \sigma_{j}^{2}}{\sum_{j=1}^{n} \sigma_{j}^{2}} \approx 0.85
$$

