
Enabling custom rate limiters in Spark C* connector
Author: axeln@uber.com

Motivation
During usage of the spark-cassandra-connector, we have come across use cases where we
need to provide a custom rate limiter which throttles based on the current state of our production
environment. Instead of introducing all logic needed to the connector, which is dependent on
many different internal systems, we propose the introduction of an interface that users can
implement when wanting to provide a custom rate limiter. By doing so, we enable great flexibility
in tuning the inner workings of the throttling which is needed when using the connector in
complex environments the way Uber does.

One of the use cases where we need custom throttling is when running Spark jobs on
large-scale database clusters, where we need the jobs to dynamically adapt based on external
information. Having the option to provide a custom rate limiter makes it possible for us to adapt
these jobs based on our internal metrics system, which enables us to increase the utilization of
our Spark clusters while at the same time not affecting various important services in our
systems.

An alternative to merging these changes upstream is for us to maintain a custom build of the
connector and publish internally, which comes with a lot of overhead whenever there are
updates in the upstream since we would need to keep updating our custom version of the
connector to receive the latest update.

Approach
In order to implement support for custom rate limiters, an interface called RateLimiterProvider
has been introduced. This interface represents a provider, that given a set of arguments, returns
a rate limiter that callers can use in the same way as they do today. All logic related to
constructing rate limiters is preserved within this provider. The returned rate limiter must
implement the interface BaseRateLimiter, which consists of one method - maybeSleep. This is
the only public method available in the rate limiter found in the source code today and to make
this change as seamless as possible, the same method is present in the interface.

To preserve backwards compatibility, the original leaky bucket rate limiter has been refactored
into a class called LeakyBucketRateLimiterProvider which instantiates and returns a
LeakyBucketRateLimiter with specified configuration when no custom provider is specified or
should there be an error when trying to instantiate a custom one.

mailto:axeln@uber.com
https://github.com/axelniklasson/spark-cassandra-connector/blob/custom-rate-limiter/spark-cassandra-connector/src/main/scala/com/datastax/spark/connector/writer/RateLimiterProvider.scala
https://github.com/axelniklasson/spark-cassandra-connector/blob/custom-rate-limiter/spark-cassandra-connector/src/main/scala/com/datastax/spark/connector/writer/BaseRateLimiter.scala
https://github.com/axelniklasson/spark-cassandra-connector/blob/custom-rate-limiter/spark-cassandra-connector/src/main/scala/com/datastax/spark/connector/writer/LeakyBucketRateLimiterProvider.scala
https://github.com/axelniklasson/spark-cassandra-connector/blob/custom-rate-limiter/spark-cassandra-connector/src/main/scala/com/datastax/spark/connector/writer/LeakyBucketRateLimiter.scala

Apart from the two mentioned interfaces, two new config variables have been introduced and
added to the ReadConf as well as to the WriteConf. These config variables correspond to the
fully qualified name of the supplied RateLimiterProvider to use for read/writes. The specified
RateLimiterProvider must be available in the classpath, since it is instantiated during runtime.
Should the instantiation of the supplied rate limiter provider fail, an exception is thrown to alert
the user that can further investigate.

https://github.com/axelniklasson/spark-cassandra-connector/blob/custom-rate-limiter/spark-cassandra-connector/src/main/scala/com/datastax/spark/connector/rdd/ReadConf.scala
https://github.com/axelniklasson/spark-cassandra-connector/blob/custom-rate-limiter/spark-cassandra-connector/src/main/scala/com/datastax/spark/connector/writer/WriteConf.scala

