Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 

gonet

Documentation Go Report Card CircleCI Mentioned in Awesome Go

gonet is a Go module implementing multi-layer Neural Network.

Install

Install the module with:

go get github.com/dathoangnd/gonet

Import it in your project:

import "github.com/dathoangnd/gonet"

Example

This example will train a neural network to predict the outputs of XOR logic gates given two binary inputs:

package main

import (
	"fmt"
	"log"

	"github.com/dathoangnd/gonet"
)

func main() {
	// XOR traning data
	trainingData := [][][]float64{
		{{0, 0}, {0}},
		{{0, 1}, {1}},
		{{1, 0}, {1}},
		{{1, 1}, {0}},
	}

	// Create a neural network
	// 2 nodes in the input layer
	// 2 hidden layers with 4 nodes each
	// 1 node in the output layer
	// The problem is classification, not regression
	nn := gonet.New(2, []int{4, 4}, 1, false)

	// Train the network
	// Run for 3000 epochs
	// The learning rate is 0.4 and the momentum factor is 0.2
	// Enable debug mode to log learning error every 1000 iterations
	nn.Train(trainingData, 3000, 0.4, 0.2, true)

	// Predict
	testInput := []float64{1, 0}
	fmt.Printf("%f XOR %f => %f\n", testInput[0], testInput[1], nn.Predict(testInput)[0])
	// 1.000000 XOR 0.000000 => 0.943074

	// Save the model
	nn.Save("model.json")

	// Load the model
	nn2, err := gonet.Load("model.json")
	if err != nil {
		log.Fatal("Load model failed.")
	}
	fmt.Printf("%f XOR %f => %f\n", testInput[0], testInput[1], nn2.Predict(testInput)[0])
	// 1.000000 XOR 0.000000 => 0.943074
}

Documentation

See: https://pkg.go.dev/github.com/dathoangnd/gonet

License

This project is licensed under the MIT License - see the LICENSE file for details.