M2006 2014 Coursework Option B: Hints and Tips

Dave Cliff, 314 December 2014

From the face-to-face feedback meetings I held on Dec 214, it’s clear that some people could use some hints and
tips about how to edit BSE.py so that you can work on adding automated market-makers.

One thing that seems to be confusing some people is that in its current form, the experiment code in BSE.py (the
stuff right at the end of the source file) is set up to treat the various automated traders in BSE as “sales traders”
designated as either buyers or sellers. That's because the (entirely artificial) division of traders into buyer and
seller roles for the duration of an experiment has been used very frequently in experimental economics, both
with humans and with trading agents. So the current experiment code echoes that tradition, but if you look at the
actual BSE implementation of the trading agents such as ZIP, they are not hard-coded as either buyers or sellers.

From the perspective of adding one or more market-makers to BSE, the existence of a liquid market of sales
traders, of buyers and sellers all engaged in trading, is a good thing: the more other traders there are generating
activity in the market, the better for a market-maker (MM) agent, because there should be more opportunities
for the MM to trade.

So, it seems sensible to leave the BSE.py experiment code largely as it is, and just add in the necessary code for
dealing with the introduction of one or more MM agents.

Let’s start by adding a new class of trader, a market maker -- a Dumb, Illustrative, Market Maker (DIMM). As we
may want to play with more than one type of DIMM, let’s call the first one DIMMO1. For the time being, lets
create DIMMO1 as a straight clone of GVWY - this is absolutely not a market-maker, but at least it is a trader
agent that we know works. We can come back and turn it into a proper MM later. For the time being, we just
want something called a DIMMO1, so we can alter the experiment code to integrate the DIMMO1 into everything
that’s already there. So, here is GVWY cloned as DIMM:

class Trader DIMMO1(Trader):

this is just a copy of GVWY's getorder method
def getorder(self, time, countdown, lob):
if len(self.orders) < 1:
order = None
else:
quoteprice = self.orders[0].price
self.lastquote = quoteprice
order=0Order(self.tid,
self.orders[0].otype,
quoteprice,
self.orders[0].qty,
time)
return order

(NB code in green ink is duplicated, cut and pasted, in from the GVWY definition of getorder (); code in blue ink
is novel, freshly-written for the DIMMO1 class.).

Now let’s go right down to the endzone of the BSE.py file, to the bit where the experiments are set up and run.
Setting up for an experiment previously involved creating a buyers spec and a sellers_spec and then
packaging those two up into a single object, a traders_spec. But now we need to extend the traders_spec
so it includes a specification of one or more marketmakers, which we’ll refer to as the mktmakers_spec. Let's
just add one DIMMO1 trader as a marketmaker:

buyers spec = [('GVWY',10),("'SHVR',10),("'Z2IC',10),('ZIP',10)]

sellers spec = buyers_spec

mktmakers spec = [('DIMMO1',1)]

traders_spec = {'sellers':sellers_spec, 'buyers':buyers spec, 'mktmakers':mktmakers spec}

(Note: old code is in black ink, new code is in blue).

The traders_spec is passed into market_ session(), and the first substantive thing that
market session() doesisacall to populate market (), which constructs the population of traders from

the data in traders_spec. As we've just extended traders_spec to include specification of market makers,
so clearly populate market () will need some extending too.

When we look in the definition of populate market () thereisalocal trader type () method which uses
anif-elif-elif-..else statement reading the robottype (the short codename for the robot type, such as
‘GVWY” or ‘SHVR’, used in the traders_spec) to decide which class of trader to create and instantiate - clearly
this needs extending to include DIMMO1. So, the new trader-type should be something like this:

def trader_ type(robottype, name):

if robottype == 'GVWY'

return Trader Giveaway(' GVWY', name, 0.00)
elif robottype == 'zZIC':

return Trader ZIC('ZIC', name, 0.00)
elif robottype == 'SHVR':

return Trader_ Shaver('SHVR', name, 0.00)
elif robottype == 'SNPR':

return Trader Sniper('SNPR', name, 0.00)
elif robottype == 'ZIP':

return Trader ZIP('ZIP', name, 0.00)
elif robottype == 'DIMMO1l':

return Trader DIMMO1l('DIMMOl', name, 500.00)
else:
sys.exit('FATAL: don\'t know robot type %s\n' % robottype)

Note that the constructor for DIMMO1 is passed an opening balance of 500, rather than zero. This is because,
unlike the sales traders which can make a profit via executing client orders, for MM agents they are trading on
their own account, and so they need to go into the market with an endowment of some kind: either some money
to buy with or some stock to sell or both. In this simple example we’re just giving our one DIMM trader a starting
balance of $100. If we had specified more than one DIMM trader in the mktmakers_spec, the way this code is
written would give all DIMM traders the same opening balance (you may want to change that if you decide to
experiment with more than one MM in your market).

The main code for the populate market () method as currently written has a loop where the number of
buyers in the spec is counted, and each buyer is given a unique ID; immediately followed by cut-and-paste-
similar code where the number of sellers in the spec is counted, and each seller is given a unique ID. We can do
another cut-and-paste job to add in the necessary code for marketmakers, as illustrated on the next page.

n_buyers = 0
for bs in traders spec]['buyers']:
ttype = bs[0]
for b in range(bs[1l]):
tname = 'B%02d' % n_buyers # buyer i.d. string
traders[tname] = trader_type(ttype, tname)
n_buyers = n_buyers + 1

if n_buyers < 1:
sys.exit('FATAL: no buyers specified\n')

if shuffle: shuffle traders('B', n buyers, traders)

n_sellers = 0
for ss in traders spec|['sellers']:
ttype = ss[0]
for s in range(ss[l]):
tname = 'S%02d' % n_sellers # seller i.d. string
traders[tname] = trader_type(ttype, tname)
n_sellers = n_sellers + 1

if n_sellers < 1:
sys.exit('FATAL: no sellers specified\n')

if shuffle: shuffle traders('S', n sellers, traders)

n_mktmakers= 0
for ms in traders spec['mktmakers']:
ttype = ms[0]
for m in range(ms[1]):
tname = 'M%02d' % n_mktmakers # mktmaker i.d. string
traders[tname] = trader_type(ttype, tname)
n_mktmakers = n_mktmakers + 1

if n_mktmakers < 1:
sys.exit('FATAL: no marketmakers specified\n')

if shuffle: shuffle traders('M', n mktmakers, traders)

if verbose :

for t in range(n_buyers):
bname = 'B%02d' % t
print(traders[bname])

for t in range(n_sellers):
bname = 'S%02d' % t
print(traders[bname])

for t in range(n_mktmakers): #DC added 141202
bname = 'M%02d' % t #DC added 141202
print(traders[bname]) #DC added 141202

return {'n buyers':n buyers, 'n_sellers':n sellers, 'n mktmakers':n mktmakers}

So now when we populate the market, we've added in the specified number of market-maker agents.

Remember, the call to populate market()came at the start of themarket session() method. The next
action, after that, within market session() is to compute the timestep, the nominal fraction of a second
that passes between each trader being processed, such that all traders can be processed in one second. To keep it
consistent, that needs an obvious minor extension:

timestep set so that can process all traders in one second

NB minimum interarrival time of customer orders may be much less than this!!

timestep =
1.0/float(trader_stats['n_buyers']+trader stats['n_ sellers']+trader stats['n_mktmakers'])

And now, if you run the code after making the edits listed above, it should all work: a single DIMMO1 trader is
created, along with all the buyers and all the sellers that we had before. And, as currently configured, the
DIMMO1 trader then simply sits there and does nothing: remember, DIMMO01'’s internal mechanism at the
moment is just GVWY, which just takes a client order and quotes at a give-away price. But because DIMMO01 is
not a sales trader it is never given any client orders to execute, so it never buys and it never sells. It just hangs
around with its money in the bank, oblivious of what's going on in the market.

Nevertheless, with these few minor edits and extensions, DIMMO1 is now integrated into the BSE experiments,
we can go back to the DIMMO1 class definition and start to turn it into something that really does trade on its
own account, buying and selling to make a profit. What we build here in this example will be spectacularly dumb
but it will be illustrative of the basics; and at least now we know that as we extend and test it, it will be
interacting with the other traders, the buyer and seller sales-traders, in the market.

The simplest sort of prop trader or market maker that I can think of in the context of BSE would be one that
implements a minimal “long only” (i.e.,, buy-low, hold, and then sell-high) strategy with a maximum holding of
one unit; along the lines of this pseudocode:

1.1 if (I am not holding a unit)

1.2 and (someone is offering a unit for sale)

1.3 and (I have enough money in my bank to pay the asking price)
1.4 then

1.5 (buy the unit)

1.6 (remember the purchase-price I paid for it)

1.7 if (I am holding a unit)

1.8 then

1.9 (my asking-price is that unit’s purchase-price plus my profit margin)
1.10 if (there is a buyer bidding more than my asking price)

1.11 then

1.12 (sell my unit to the buyer and put the money in my bank)

The idea being that the pseudocode in lines 1.1 to 1.12 is embedded in some kind of repeat-forever loop: the MM
trader is perpetually either seeking to buy a unit using the money it holds, or seeking to sell the unit it holds for a
profit to add to its bank account. Such is the life of a prop trader.

There are very many ways in which we could criticize this strategy, and very many ways in which we could
improve it. But let’s stick with this for the time being and concentrate on how we get it into the definition of
DIMMO1 within BSE.

We can note here that lines 1.1-1.5 are basically about buying something from the market; line 1.6 is a bit of
book-keeping that we need to take care of so that we remember what we’ve paid; and then lines 1.7-1.12 are
basically about selling something back into the market. In principle the Python implementation of lines 1.1-1.5
could be as complex as a ZIP or MGD or AA buyer-agent (or more complex than that even); and similarly the
Python implementation of lines 1.7-1.12 could be as complex as a seller running ZIP, MGD, AA, or anything more
complex (or indeed any combination of these kind of strategies). But we’re aiming for minimally simple here, so
we’ll stick to implementing the pseudocode as directly as possible.

Now if you look at the definition of ZIP in BSE.py, you can see that it overloads the respond () method that is
declared as a stub in the Trader superclass, implementing a method for allowing ZIP traders to watch what'’s
happening on the LOB and responding by updating their internal state accordingly. We can do the same in DIMM,
but let’s start a fresh page...

First of all, let’s express the pseudocode lines 1.1-1.5 in proper Python...

def respond(self, time, lob, trade, verbose):
DIMM buys and holds, sells as soon as it can make a "decent" profit

if self.job == 'Buy':
see what's on the LOB
if lob['asks']['n"'] > 0:

there is at least one ask on the LOB

bestask = lob['asks']['best']

try to buy a single unit at price of bestask+biddelta

bidprice = bestask + self.bid delta

if bidprice < self.balance
can afford it!
do this by issuing order to self, processed in getorder()
order=Order(self.tid, 'Bid', bidprice, 1, time)
self.orders=[order]
if verbose : print('DIMMOl Buy order=%s ' % (order))

..and then continuing in the same method we can deal with lines 1.7-1.12 too:

elif self.job == 'Sell':
is there at least one counterparty on the LOB?
if lob['bids']['n'] > O0:

there is at least one bid on the LOB

bestbid = lob['bids']['best']

sell single unit at price of purchaseprice+askdelta

askprice = self.last purchase price + self.ask delta

if askprice < bestbid
seems we have a buyer
do this by issuing order to self, processed in getorder()
order=Order(self.tid, 'Ask', askprice, 1, time)
self.orders=[order]
if verbose : print('DIMMO01 Sell order=%s ' % (order))

else
sys.exit('FATAL: DIMMO1l doesn\'t know self.job type %s\n' % self.job)

Thus far, all seem well. We still have some work to do though. In writing this version of respond () we have
implied that the DIMM trader has internal variable like self.bid deltaand self.last purchase price that
we will need to make sure are declared and initialized in the DIMM’s version of __init__ (), the object
constructor. Also we have not addressed the book-keeping needed for line 1.6 of the pseudocode. And we need to
make sure that the orders that a DIMM agent issues to itself in this version of respond () actually get executed
appropriately (and that it does the right thing if the orders happen not to be executed).

(Now it’s written out in Python, maybe it is more clear just how naive this DIMMO1 strategy really is: there is no
sense of being influenced by past events or of estimating the likelihood of future expectations. DIMMO01 buys
when it can afford to buy, and it sells as soon as it can find a willing counterparty who will buy at a price which
gives DIMMO1 the minimum profit that it seeks in a trade. Don’t bet your life savings on the performance of this
trader. Anyhow, back to the coding...)

Let’s deal with the easy stuff first. To create and instantiate the new variables local to DIMMO01, we need to give
that classitsownlocal __init () constructor, like this:

def init (self, ttype, tid, balance):
self.ttype = ttype
self.tid = tid
self.balance = balance
self.startbalance = balance # remember how much it started with
self.blotter = []
self.orders = []
self.job = 'Buy' #flag switches between 'Buy' & 'Sell' shows what DIMM does next
self.last purchase price = None
self.bid delta = 1 # how much (absolute value) to improve on best ask when buying
self.ask delta = 5 # how much (absolute value) to improve on purchase price

(NB code in green ink is duplicated in from the Trader superclass definitionof __init _ (); codein blue ink is
novel, freshly-written for the DIMMO1 class.).

Now the last thing to do is to take care of the book-keeping. For a prop trader or a market maker, money is made
by selling things at a price higher than that paid for them. So, unlike a sales trader, a prop trader bears the whole
cost of purchasing an item and, again unlike a sales trader, a prop trader receives the whole of the income from
the sale of an item. We also need to remember that when a DIMM trader buys an item it should then switch to
selling that item, and when a DIMM trader sells an item it should then switch to bidding to buy a new item. We
can do all that by creating a bookkeep () method local to DIM, overloading the one that would otherwise be
inherited from the Trader superclass, like so:

def bookkeep(self,trade,order,verbose):

outstr="'%s (%s) bookkeep: orders=' % (self.tid, self.ttype)
for order in self.orders: outstr = outstr + str(order)

self.blotter.append(trade) # add trade record to trader's blotter

NB What follows is **LAZY** —- assumes all orders are quantity=1
transactionprice = trade['price']
if self.orders[0].otype == 'Bid':
Bid order succeeded, remember the price and adjust the balance
self.balance -= transactionprice
self.last purchase price = transactionprice
self.job = 'Sell' # now try to sell it for a profit
elif self.orders[0].otype == 'Ask':

Sold! put the money in the bank

self.balance += transactionprice

self.last purchase price = 0

self.job = 'Buy' # now go back and buy another one
else:

sys.exit('FATAL: DIMMO1l doesn\'t know .otype %s\n' %

self.orders[0].otype)

verbose =1
if verbose

net worth = self.balance + self.last purchase price

print('%s Balance=%d NetWorth=%d' %

(outstr, self.balance, net_worth))

self.del order(order) # delete the order

Notice here that we're treating any unit held by the trader as contributing to that trader’s “net worth”, and
assuming that its value has not changed since it was purchased. This is a fairly major simplifying assumption: the
market price for selling the asset may have changed since it was purchased. (Economists have spent a lot of time
looking at markets in which the value of an asset decays over time: rural Spanish fish markets in particular
where a lack of air-conditioning and refrigeration mean that a fish fresh landed at sunrise commands a high price
yet is worth very much less at sunset.)

Now, having written response () and made the specified edits to the local versionsof __init () and
bookeep (), we can keep the GVWY code for getorder () because the order-prices that DIMMO1 sets include
the margin priced in at the point the order is generated (this, again, is a simplification).

And that's it, that’s all we need to get a dumb, illustrative market-maker up and running. When you run BSE with
these edits, you see that this version of DIMMO01 blurts out a sequence of orders for a second or two, when it first
gets a chance to respond to the LOB after the DIMMO1 has changes its order. In the output that follows, I've
edited those out, leaving only the first and the last in each sequence, using ellipsis (“...”) to show where the edits
are. The console output from BSE is shown on the next page. As you can see, the NetWorth value for the DIMMO01
trader increases over the course of this run. This run used supply and demand schedules where there was a
growing sinusoidal oscillation in the price, but with the market steadily rising.

A simple strategy such as DIMMO1 should be expected to make some money in what is overall a rising market, so
the fact that this console output does show DIMMO01 making money is really just a confirmation that nothing is
broken in the code: in almost any other kind of market, DIMMO1 is unlikely to make much money at all, but that
is because it is DIMM. Your job is to try to design and implement something cleverer: good luck.

[TID S38 type SHVR balance 0.0 blotter [] orders []]
[TID S39 type ZIC balance 0.0 blotter [] orders []]
[TID MOO type DIMMO1l balance 500.0 blotter [] orders []]

DIMMO1 Buy order=[M00 Bid P=120 Q=1 T= 0.50]

DIMMOl Buy order=[M00 Bid P=119 Q=1 T=
MO0 (DIMMOl) bookkeep: orders=[M00 Bid
DIMMO1l Sell order=[M00 Ask P=123 Q=1 T=247.66]

1.41]

DIMMO1l Sell order=[M00 Ask P=123 Q=1 T=249.36]
MO0 (DIMMO1l) bookkeep:
DIMMO1 Buy order=[M00 Bid P=128 Q=1 T=249.37]

DIMMO1l Buy order=[M00 Bid P=128 Q=1 T=249.84]

MO0 (DIMMOl) bookkeep: orders=[M00 Bid P=128 Q=1

DIMMO1l Sell order=[M00 Ask P=132 Q=1 T=257.76]
DIMMO1 Sell order=[M00 Ask P=132 Q=1 T=258.44]
MO0 (DIMMO1l) bookkeep:
DIMMO1 Buy order=[M00 Bid P=147 Q=1 T=258.60]

DIMMO1 Buy order=[M00 Bid P=147 Q=1 T=259.14]

MO0 (DIMMOl) bookkeep: orders=[M00 Bid P=147 Q=1

DIMMO1 Sell order=[M00 Ask P=151 Q=1 T=435.11]
DIMMO1l Sell order=[M00 Ask P=151 Q=1 T=435.87]
MO0 (DIMMO1l) bookkeep:
DIMMO1 Buy order=[M00 Bid P=170 Q=1 T=435.89]

DIMMO1 Buy order=[M00 Bid P=169 Q=1 T=436.20]

MO0 (DIMMOl) bookkeep: orders=[M00 Bid P=169 Q=1

P=119 0=1

orders=[M00 Ask P=123 Q=1

orders=[M00 Ask P=132 Q=1

orders=[M00 Ask P=151 Q=1

T= 1.41] Balance=382 NetWorth=500

T=249.

T=249.

T=258.

T=259.

T=435.

T=436.

36]

84]

44

14]

871

20]

Balance=507

Balance=380

Balance=512

Balance=366

Balance=521

Balance=353

NetWorth=507

NetWorth=507

NetWorth=512

NetWorth=512

NetWorth=521

NetWorth=521

