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We propose a framework for classifying the capabilities and behavior of Artificial General Intelligence
(AGI) models and their precursors. This framework introduces levels of AGI performance, generality,
and autonomy. It is our hope that this framework will be useful in an analogous way to the levels of
autonomous driving, by providing a common language to compare models, assess risks, and measure
progress along the path to AGI. To develop our framework, we analyze existing definitions of AGI, and
distill six principles that a useful ontology for AGI should satisfy. These principles include focusing on
capabilities rather than mechanisms; separately evaluating generality and performance; and defining
stages along the path toward AGI, rather than focusing on the endpoint. With these principles in mind,
we propose “Levels of AGI” based on depth (performance) and breadth (generality) of capabilities, and
reflect on how current systems fit into this ontology. We discuss the challenging requirements for future
benchmarks that quantify the behavior and capabilities of AGI models against these levels. Finally, we
discuss how these levels of AGI interact with deployment considerations such as autonomy and risk, and
emphasize the importance of carefully selecting Human-AI Interaction paradigms for responsible and
safe deployment of highly capable AI systems.
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Introduction

Artificial General Intelligence (AGI)1 is an important and sometimes controversial concept in computing
research, used to describe an AI system that is at least as capable as a human at most tasks. Given the
rapid advancement of Machine Learning (ML) models, the concept of AGI has passed from being the
subject of philosophical debate to one with near-term practical relevance. Some experts believe that
“sparks” of AGI (Bubeck et al., 2023) are already present in the latest generation of large language
models (LLMs); some predict AI will broadly outperform humans within about a decade (Bengio et al.,
2023); some even assert that current LLMs are AGIs (Agüera y Arcas and Norvig, 2023). However, if
you were to ask 100 AI experts to define what they mean by “AGI,” you would likely get 100 related
but different definitions.

The concept of AGI is important as it maps onto goals for, predictions about, and risks of AI:
Goals: Achieving human-level “intelligence” is an implicit or explicit north-star goal for many

in our field, from the 1955 Dartmouth AI Conference (McCarthy et al., 1955) that kick-started the
1 There is controversy over use of the term “AGI." Some communities favor “General AI” or “Human-Level AI” (Gruet-

zemacher and Paradice, 2019) as alternatives, or even simply “AI” as a term that now effectively encompasses AGI (or soon
will, under optimistic predictions). However, AGI is a term of art used by both technologists and the general public, and is
thus useful for clear communication. Similarly, for clarity we use commonly understood terms such as “Artificial Intelligence”
and “Machine Learning,” although we are sympathetic to critiques (Bigham, 2019) that these terms anthropomorphize
computing systems.
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modern field of AI to some of today’s leading AI research firms whose mission statements allude to
concepts such as “ensure transformative AI helps people and society” (Anthropic, 2023a) or “ensure
that artificial general intelligence benefits all of humanity” (OpenAI, 2023).

Predictions: The concept of AGI is related to a prediction about progress in AI, namely that
it is toward greater generality, approaching and exceeding human generality. Additionally, AGI is
typically intertwined with a notion of “emergent” properties (Wei et al., 2022), i.e. capabilities not
explicitly anticipated by the developer. Such capabilities offer promise, perhaps including abilities
that are complementary to typical human skills, enabling new types of interaction or novel industries.
Such predictions about AGI’s capabilities in turn predict likely societal impacts; AGI may have
significant economic implications, i.e., reaching the necessary criteria for widespread labor substitution
(Dell’Acqua et al., 2023; Ellingrud et al., 2023), as well as geo-political implications relating not
only to the economic advantages AGI may confer, but also to military considerations (Kissinger et al.,
2022).

Risks: Lastly, AGI is viewed by some as a concept for identifying the point when there are extreme
risks (Bengio et al., 2023; Shevlane et al., 2023), as some speculate that AGI systems might be able
to deceive and manipulate, accumulate resources, advance goals, behave agentically, outwit humans
in broad domains, displace humans from key roles, and/or recursively self-improve.

In this paper, we argue that it is critical for the AI research community to explicitly reflect on what
we mean by "AGI," and aspire to quantify attributes like the performance, generality, and autonomy
of AI systems. Shared operationalizable definitions for these concepts will support: comparisons
between models; risk assessments and mitigation strategies; clear criteria from policymakers and
regulators; identifying goals, predictions, and risks for research and development; and the ability to
understand and communicate where we are along the path to AGI.

Defining AGI: Case Studies

Many AI researchers and organizations have proposed definitions of AGI. In this section, we consider
nine prominent examples, and reflect on their strengths and limitations. This analysis informs our
subsequent introduction of a two-dimensional, leveled ontology of AGI.

Case Study 1: The Turing Test. The Turing Test (Turing, 1950) is perhaps the most well-known
attempt to operationalize an AGI-like concept. Turing’s “imitation game” was posited as a way to
operationalize the question of whether machines could think, and asks a human to interactively
distinguish whether text is produced by another human or by a machine. The test as originally framed
is a thought experiment, and is the subject of many critiques (Wikipedia, 2023b); in practice, the
test often highlights the ease of fooling people (Weizenbaum, 1966; Wikipedia, 2023a) rather than
the “intelligence” of the machine. Given that modern LLMs pass some framings of the Turing Test,
it seems clear that this criteria is insufficient for operationalizing or benchmarking AGI. We agree
with Turing that whether a machine can “think,” while an interesting philosophical and scientific
question, seems orthogonal to the question of what the machine can do; the latter is much more
straightforward to measure and more important for evaluating impacts. Therefore we propose that
AGI should be defined in terms of capabilities rather than processes2.

Case Study 2: Strong AI – Systems Possessing Consciousness. Philosopher John Searle
mused, "according to strong AI, the computer is not merely a tool in the study of the mind; rather,
the appropriately programmed computer really is a mind, in the sense that computers given the

2 As research into mechanistic interpretability (Räuker et al., 2023) advances, it may enable process-oriented metrics.
These may be relevant to future definitions of AGI.
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right programs can be literally said to understand and have other cognitive states" (Searle, 1980).
While strong AI might be one path to achieving AGI, there is no scientific consensus on methods
for determining whether machines possess strong AI attributes such as consciousness (Butlin et al.,
2023), making the process-oriented focus of this framing impractical.

Case Study 3: Analogies to the Human Brain. The original use of the term "artificial general
intelligence" was in a 1997 article about military technologies by Mark Gubrud (Gubrud, 1997),
which defined AGI as “AI systems that rival or surpass the human brain in complexity and speed, that
can acquire, manipulate and reason with general knowledge, and that are usable in essentially any
phase of industrial or military operations where a human intelligence would otherwise be needed.”
This early definition emphasizes processes (rivaling the human brain in complexity) in addition to
capabilities; while neural network architectures underlying modern ML systems are loosely inspired
by the human brain, the success of transformer-based architectures (Vaswani et al., 2023) whose
performance is not reliant on human-like learning suggests that strict brain-based processes and
benchmarks are not inherently necessary for AGI.

Case Study 4: Human-Level Performance on Cognitive Tasks. Legg (Legg, 2008) and Goertzel
(Goertzel, 2014) popularized the term AGI among computer scientists in 2001 (Legg, 2022), describing
AGI as a machine that is able to do the cognitive tasks that people can typically do. This definition
notably focuses on non-physical tasks (i.e., not requiring robotic embodiment as a precursor to AGI).
Like many other definitions of AGI, this framing presents ambiguity around choices such as “what
tasks?” and “which people?”.

Case Study 5: Ability to Learn Tasks. In The Technological Singularity (Shanahan, 2015),
Shanahan suggests that AGI is “Artificial intelligence that is not specialized to carry out specific tasks,
but can learn to perform as broad a range of tasks as a human.” An important property of this framing
is its emphasis on the value of including metacognitive tasks (learning) among the requirements for
achieving AGI.

Case Study 6: Economically Valuable Work. OpenAI’s charter defines AGI as “highly autonomous
systems that outperform humans at most economically valuable work” (OpenAI, 2018). This definition
has strengths per the “capabilities, not processes” criteria, as it focuses on performance agnostic to
underlying mechanisms; further, this definition offers a potential yardstick for measurement, i.e.,
economic value. A shortcoming of this definition is that it does not capture all of the criteria that
may be part of “general intelligence.” There are many tasks that are associated with intelligence
that may not have a well-defined economic value (e.g., artistic creativity or emotional intelligence).
Such properties may be indirectly accounted for in economic measures (e.g., artistic creativity might
produce books or movies, emotional intelligence might relate to the ability to be a successful CEO),
though whether economic value captures the full spectrum of “intelligence” remains unclear. Another
challenge with a framing of AGI in terms of economic value is that this implies a need for deployment
of AGI in order to realize that value, whereas a focus on capabilities might only require the potential
for an AGI to execute a task. We may well have systems that are technically capable of performing
economically important tasks but don’t realize that economic value for varied reasons (legal, ethical,
social, etc.).

Case Study 7: Flexible and General – The "Coffee Test" and Related Challenges. Marcus
suggests that AGI is “shorthand for any intelligence (there might be many) that is flexible and general,
with resourcefulness and reliability comparable to (or beyond) human intelligence” (Marcus, 2022b).
This definition captures both generality and performance (via the inclusion of reliability); the mention
of “flexibility” is noteworthy, since, like the Shanahan formulation, this suggests that metacognitive
tasks such as the ability to learn new skills must be included in an AGI’s set of capabilities in order to
achieve sufficient generality. Further, Marcus operationalizes his definition by proposing five concrete
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tasks (understanding a movie, understanding a novel, cooking in an arbitrary kitchen, writing a
bug-free 10,000 line program, and converting natural language mathematical proofs into symbolic
form) (Marcus, 2022a). Accompanying a definition with a benchmark is valuable; however, more
work would be required to construct a sufficiently comprehensive benchmark. While we agree that
failing some of these tasks indicates a system is not an AGI, it is unclear that passing them is sufficient
for AGI status. In the Testing for AGI section, we further discuss the challenge in developing a set
of tasks that is both necessary and sufficient for capturing the generality of AGI. We also note that
one of Marcus’ proposed tasks, “work as a competent cook in an arbitrary kitchen” (a variant of
Steve Wozniak’s “Coffee Test” (Wozniak, 2010)), requires robotic embodiment; this differs from other
definitions that focus on non-physical tasks3.

Case Study 8: Artificial Capable Intelligence. In The Coming Wave, Suleyman proposed the
concept of "Artificial Capable Intelligence (ACI)" (Mustafa Suleyman and Michael Bhaskar, 2023) to
refer to AI systems with sufficient performance and generality to accomplish complex, multi-step tasks
in the open world. More specifically, Suleyman proposed an economically-based definition of ACI skill
that he dubbed the “Modern Turing Test,” in which an AI would be given $100,000 of capital and
tasked with turning that into $1,000,000 over a period of several months. This framing is more narrow
than OpenAI’s definition of economically valuable work and has the additional downside of potentially
introducing alignment risks (Kenton et al., 2021) by only targeting fiscal profit. However, a strength
of Suleyman’s concept is the focus on performing a complex, multi-step task that humans value.
Construed more broadly than making a million dollars, ACI’s emphasis on complex, real-world tasks
is noteworthy, since such tasks may have more ecological validity than many current AI benchmarks;
Marcus’ aforementioned five tests of flexibility and generality (Marcus, 2022a) seem within the spirit
of ACI, as well.

Case Study 9: SOTA LLMs as Generalists. Agüera y Arcas and Norvig (Agüera y Arcas and
Norvig, 2023) suggested that state-of-the-art LLMs (e.g. mid-2023 deployments of GPT-4, Bard, Llama
2, and Claude) already are AGIs, arguing that generality is the key property of AGI, and that because
language models can discuss a wide range of topics, execute a wide range of tasks, handle multimodal
inputs and outputs, operate in multiple languages, and “learn” from zero-shot or few-shot examples,
they have achieved sufficient generality. While we agree that generality is a crucial characteristic of
AGI, we posit that it must also be paired with a measure of performance (i.e., if an LLM can write code
or perform math, but is not reliably correct, then its generality is not yet sufficiently performant).

Defining AGI: Six Principles

Reflecting on these nine example formulations of AGI (or AGI-adjacent concepts), we identify properties
and commonalities that we feel contribute to a clear, operationalizable definition of AGI. We argue
that any definition of AGI should meet the following six criteria:

1. Focus on Capabilities, not Processes. The majority of definitions focus on what an AGI can
accomplish, not on the mechanism by which it accomplishes tasks. This is important for identifying
characteristics that are not necessarily a prerequisite for achieving AGI (but may nonetheless be
interesting research topics). This focus on capabilities allows us to exclude the following from our
requirements for AGI:

• Achieving AGI does not imply that systems think or understand in a human-like way (since this
focuses on processes, not capabilities)

3 Though robotics might also be implied by the OpenAI charter’s focus on “economically valuable work,” the fact that
OpenAI shut down its robotics research division in 2021 (Wiggers, 2021) suggests this is not their intended interpretation.
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• Achieving AGI does not imply that systems possess qualities such as consciousness (subjective
awareness) (Butlin et al., 2023) or sentience (the ability to have feelings) (since these qualities
not only have a process focus, but are not currently measurable by agreed-upon scientific
methods)

2. Focus on Generality and Performance. All of the above definitions emphasize generality
to varying degrees, but some exclude performance criteria. We argue that both generality and
performance are key components of AGI. In the next section we introduce a leveled taxonomy that
considers the interplay between these dimensions.

3. Focus on Cognitive and Metacognitive Tasks. Whether to require robotic embodiment (Roy
et al., 2021) as a criterion for AGI is a matter of some debate. Most definitions focus on cognitive
tasks, by which we mean non-physical tasks. Despite recent advances in robotics (Brohan et al.,
2023), physical capabilities for AI systems seem to be lagging behind non-physical capabilities. It is
possible that embodiment in the physical world is necessary for building the world knowledge to be
successful on some cognitive tasks (Shanahan, 2010), or at least may be one path to success on some
classes of cognitive tasks; if that turns out to be true then embodiment may be critical to some paths
toward AGI. We suggest that the ability to perform physical tasks increases a system’s generality, but
should not be considered a necessary prerequisite to achieving AGI. On the other hand, metacognitive
capabilities (such as the ability to learn new tasks or the ability to know when to ask for clarification
or assistance from a human) are key prerequisites for systems to achieve generality.

4. Focus on Potential, not Deployment. Demonstrating that a system can perform a requisite
set of tasks at a given level of performance should be sufficient for declaring the system to be an
AGI; deployment of such a system in the open world should not be inherent in the definition of AGI.
For instance, defining AGI in terms of reaching a certain level of labor substitution would require
real-world deployment, whereas defining AGI in terms of being capable of substituting for labor would
focus on potential. Requiring deployment as a condition of measuring AGI introduces non-technical
hurdles such as legal and social considerations, as well as potential ethical and safety concerns.

5. Focus on Ecological Validity. Tasks that can be used to benchmark progress toward AGI are
critical to operationalizing any proposed definition. While we discuss this further in the “Testing for
AGI” section, we emphasize here the importance of choosing tasks that align with real-world (i.e.,
ecologically valid) tasks that people value (construing “value” broadly, not only as economic value but
also social value, artistic value, etc.). This may mean eschewing traditional AI metrics that are easy to
automate or quantify (Raji et al., 2021) but may not capture the skills that people would value in an
AGI.

6. Focus on the Path to AGI, not a Single Endpoint. Much as the adoption of a standard set of
Levels of Driving Automation (SAE International, 2021) allowed for clear discussions of policy and
progress relating to autonomous vehicles, we posit there is value in defining “Levels of AGI.” As we
discuss in subsequent sections, we intend for each level of AGI to be associated with a clear set of
metrics/benchmarks, as well as identified risks introduced at each level, and resultant changes to
the Human-AI Interaction paradigm (Morris et al., 2023). This level-based approach to defining AGI
supports the coexistence of many prominent formulations – for example, Aguera y Arcas & Norvig’s
definition (Agüera y Arcas and Norvig, 2023) would fall into the “Emerging AGI” category of our
ontology, while OpenAI’s threshold of labor replacement (OpenAI, 2018) better matches “Virtuoso
AGI.” Our “Competent AGI” level is probably the best catch-all for many existing definitions of AGI
(e.g., the Legg (Legg, 2008), Shanahan (Shanahan, 2015), and Suleyman (Mustafa Suleyman and
Michael Bhaskar, 2023) formulations). In the next section, we introduce a level-based ontology of
AGI.
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Levels of AGI

Performance (rows) x
Generality (columns)

Narrow
clearly scoped task or set of tasks

General
wide range of non-physical tasks,
including metacognitive abilities
like learning new skills

Level 0: No AI Narrow Non-AI
calculator software; compiler

General Non-AI
human-in-the-loop computing,
e.g., Amazon Mechanical Turk

Level 1: Emerging
equal to or somewhat better than
an unskilled human

Emerging Narrow AI
GOFAI4; simple rule-based sys-
tems, e.g., SHRDLU (Winograd,
1971)

Emerging AGI
ChatGPT (OpenAI, 2023), Bard
(Anil et al., 2023), Llama 2
(Touvron et al., 2023)

Level 2: Competent
at least 50th percentile of skilled
adults

Competent Narrow AI
toxicity detectors such as Jig-
saw (Das et al., 2022); Smart
Speakers such as Siri (Apple),
Alexa (Amazon), or Google As-
sistant (Google); VQA systems
such as PaLI (Chen et al., 2023);
Watson (IBM); SOTA LLMs for a
subset of tasks (e.g., short essay
writing, simple coding)

Competent AGI
not yet achieved

Level 3: Expert
at least 90th percentile of skilled
adults

Expert Narrow AI
spelling & grammar checkers
such as Grammarly (Gram-
marly, 2023); generative im-
age models such as Imagen (Sa-
haria et al., 2022) or Dall-E 2
(Ramesh et al., 2022)

Expert AGI
not yet achieved

Level 4: Virtuoso
at least 99th percentile of skilled
adults

Virtuoso Narrow AI
Deep Blue (Campbell et al.,
2002), AlphaGo (Silver et al.,
2016, 2017)

Virtuoso AGI
not yet achieved

Level 5: Superhuman
outperforms 100% of humans

Superhuman Narrow AI
AlphaFold (Jumper et al., 2021;
Varadi et al., 2021), AlphaZero
(Silver et al., 2018), StockFish
(Stockfish, 2023)

Artificial Superintelligence
(ASI)
not yet achieved

Table 1 | A leveled, matrixed approach toward classifying systems on the path to AGI based on
depth (performance) and breadth (generality) of capabilities. Example systems in each cell are
approximations based on current descriptions in the literature or experiences interacting with deployed
systems. Unambiguous classification of AI systems will require a standardized benchmark of tasks, as
we discuss in the Testing for AGI section.

In accordance with Principle 2 ("Focus on Generality and Performance") and Principle 6 ("Focus
on the Path to AGI, not a Single Endpoint"), in Table 1 we introduce a matrixed leveling system that
focuses on performance and generality as the two dimensions that are core to AGI:
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• Performance refers to the depth of an AI system’s capabilities, i.e., how it compares to human-
level performance for a given task. Note that for all performance levels above “Emerging,”
percentiles are in reference to a sample of adults who possess the relevant skill (e.g., “Competent”
or higher performance on a task such as English writing ability would only be measured against
the set of adults who are literate and fluent in English).

• Generality refers to the breadth of an AI system’s capabilities, i.e., the range of tasks for which
an AI system reaches a target performance threshold.

This taxonomy specifies the minimum performance over most tasks needed to achieve a given
rating – e.g., a Competent AGI must have performance at least at the 50th percentile for skilled adult
humans on most cognitive tasks, but may have Expert, Virtuoso, or even Superhuman performance
on a subset of tasks. As an example of how individual systems may straddle different points in our
taxonomy, we posit that as of this writing in September 2023, frontier language models (e.g., ChatGPT
(OpenAI, 2023), Bard (Anil et al., 2023), Llama2 (Touvron et al., 2023), etc.) exhibit “Competent”
performance levels for some tasks (e.g., short essay writing, simple coding), but are still at “Emerging”
performance levels for most tasks (e.g., mathematical abilities, tasks involving factuality). Overall,
current frontier language models would therefore be considered a Level 1 General AI (“Emerging
AGI”) until the performance level increases for a broader set of tasks (at which point the Level 2
General AI, “Competent AGI,” criteria would be met). We suggest that documentation for frontier
AI models, such as model cards (Mitchell et al., 2019), should detail this mixture of performance
levels. This will help end-users, policymakers, and other stakeholders come to a shared, nuanced
understanding of the likely uneven performance of systems progressing along the path to AGI.

The order in which stronger skills in specific cognitive areas are acquired may have serious
implications for AI safety (e.g., acquiring strong knowledge of chemical engineering before acquiring
strong ethical reasoning skills may be a dangerous combination). Note also that the rate of progression
between levels of performance and/or generality may be nonlinear. Acquiring the capability to learn
new skills may particularly accelerate progress toward the next level.

While this taxonomy rates systems according to their performance, systems that are capable of
achieving a certain level of performance (e.g., against a given benchmark) may not match this level
in practice when deployed. For instance, user interface limitations may reduce deployed performance.
Consider the example of DALLE-2 (Ramesh et al., 2022), which we estimate as a Level 3 Narrow AI
(“Expert Narrow AI”) in our taxonomy. We estimate the “Expert” level of performance since DALLE-2
produces images of higher quality than most people are able to draw; however, the system has
failure modes (e.g., drawing hands with incorrect numbers of digits, rendering nonsensical or illegible
text) that prevent it from achieving a “Virtuoso” performance designation. While theoretically an
“Expert” level system, in practice the system may only be “Competent,” because prompting interfaces
are too complex for most end-users to elicit optimal performance (as evidenced by the existence of
marketplaces (e.g., (PromptBase)) in which skilled prompt engineers sell prompts). This observation
emphasizes the importance of designing ecologically valid benchmarks (that would measure deployed
rather than idealized performance) as well as the importance of considering how human-AI interaction
paradigms interact with the notion of AGI (a topic we return to in the “Capabilities vs. Autonomy”
Section).

The highest level in our matrix in terms of combined performance and generality is ASI (Artificial
Superintelligence). We define "Superhuman" performance as outperforming 100% of humans. For
instance, we posit that AlphaFold (Jumper et al., 2021; Varadi et al., 2021) is a Level 5 Narrow
AI ("Superhuman Narrow AI") since it performs a single task (predicting a protein’s 3D structure
from an amino acid sequence) above the level of the world’s top scientists. This definition means
that Level 5 General AI ("ASI") systems will be able to do a wide range of tasks at a level that no
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human can match. Additionally, this framing also implies that Superhuman systems may be able to
perform an even broader generality of tasks than lower levels of AGI, since the ability to execute tasks
that qualitiatively differ from existing human skills would by definition outperform all humans (who
fundamentally cannot do such tasks). For example, non-human skills that an ASI might have could
include capabilities such as neural interfaces (perhaps through mechanisms such as analyzing brain
signals to decode thoughts (Tang et al., 2023)), oracular abilities (perhaps through mechanisms such
as analyzing large volumes of data to make high-quality predictions), or the ability to communicate
with animals (perhaps by mechanisms such as analyzing patterns in their vocalizations, brain waves,
or body language).

Testing for AGI

Two of our six proposed principles for defining AGI (Principle 2: Generality and Performance; Principle
6: Focus on the Path to AGI) influenced our choice of a matrixed, leveled ontology for facilitating
nuanced discussions of the breadth and depth of AI capabilities. Our remaining four principles
(Principle 1: Capabilities, not Processes; Principle 3: Cognitive and Metacognitive Tasks; Principle 4:
Potential, not Deployment; and Principle 5: Ecological Validity) relate to the issue of measurement.

While our performance dimension specifies one aspect of measurement (e.g., percentile ranges
for task performance relative to particular subsets of people), our generality dimension leaves open
important questions: What is the set of tasks that constitute the generality criteria? What proportion
of such tasks must an AI system master to achieve a given level of generality in our schema? Are there
some tasks that must always be performed to meet the criteria for certain generality levels, such as
metacognitive tasks?

Operationalizing an AGI definition requires answering these questions, as well as developing
specific diverse and challenging tasks. Because of the immense complexity of this process, as well
as the importance of including a wide range of perspectives (including cross-organizational and
multi-disciplinary viewpoints), we do not propose a benchmark in this paper. Instead, we work to
clarify the ontology a benchmark should attempt to measure. We also discuss properties an AGI
benchmark should possess.

Our intent is that an AGI benchmark would include a broad suite of cognitive and metacognitive
tasks (per Principle 3), measuring diverse properties including (but not limited to) linguistic intel-
ligence, mathematical and logical reasoning (Webb et al., 2023), spatial reasoning, interpersonal
and intra-personal social intelligences, the ability to learn new skills and creativity. A benchmark
might include tests covering psychometric categories proposed by theories of intelligence from psy-
chology, neuroscience, cognitive science, and education; however, such “traditional” tests must first
be evaluated for suitability for benchmarking computing systems, since many may lack ecological
and construct validity in this context (Serapio-García et al., 2023).

One open question for benchmarking performance is whether to allow the use of tools, including
potentially AI-powered tools, as an aid to human performance. This choice may ultimately be task
dependent and should account for ecological validity in benchmark choice (per Principle 5). For
example, in determining whether a self-driving car is sufficiently safe, benchmarking against a person
driving without the benefit of any modern AI-assisted safety tools would not be the most informative
comparison; since the relevant counterfactual involves some driver-assistance technology, we may
prefer a comparison to that baseline.

While an AGI benchmark might draw from some existing AI benchmarks (Lynch, 2023) (e.g.,
HELM (Liang et al., 2023), BIG-bench (Srivastava et al., 2023)), we also envision the inclusion of
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open-ended and/or interactive tasks that might require qualitative evaluation (Bubeck et al., 2023;
Papakyriakopoulos et al., 2021; Yang et al., 2023). We suspect that these latter classes of complex,
open-ended tasks, though difficult to benchmark, will have better ecological validity than traditional
AI metrics, or than adapted traditional measures of human intelligence.

It is impossible to enumerate the full set of tasks achievable by a sufficiently general intelligence.
As such, an AGI benchmark should be a living benchmark. Such a benchmark should therefore include
a framework for generating and agreeing upon new tasks.

Determining that something is not an AGI at a given level simply requires identifying several5 tasks
that people can typically do but the system cannot adequately perform. Systems that pass the majority
of the envisioned AGI benchmark at a particular performance level ("Emerging," "Competent," etc.),
including new tasks added by the testers, can be assumed to have the associated level of generality
for practical purposes (i.e., though in theory there could still be a test the AGI would fail, at some
point unprobed failures are so specialized or atypical as to be practically irrelevant).

Developing an AGI benchmark will be a challenging and iterative process. It is nonetheless a
valuable north-star goal for the AI research community. Measurement of complex concepts may be
imperfect, but the act of measurement helps us crisply define our goals and provides an indicator of
progress.

Risk in Context: Autonomy and Human-AI Interaction

Discussions of AGI often include discussion of risk, including "x-risk" – existential (for AI Safety, 2023)
or other very extreme risks (Shevlane et al., 2023). A leveled approach to defining AGI enables a
more nuanced discussion of how different combinations of performance and generality relate to
different types of AI risk. While there is value in considering extreme risk scenarios, understanding
AGI via our proposed ontology rather than as a single endpoint (per Principle 6) can help ensure that
policymakers also identify and prioritize risks in the near-term and on the path to AGI.

Levels of AGI as a Framework for Risk Assessment

As we advance along our capability levels toward ASI, new risks are introduced, including misuse
risks, alignment risks, and structural risks (Zwetsloot and Dafoe, 2019). For example, the “Expert AGI”
level is likely to involve structural risks related to economic disruption and job displacement, as more
and more industries reach the substitution threshold for machine intelligence in lieu of human labor.
On the other hand, reaching “Expert AGI” likely alleviates some risks introduced by “Emerging AGI”
and “Competent AGI,” such as the risk of incorrect task execution. The “Virtuoso AGI” and “ASI” levels
are where many concerns relating to x-risk are most likely to emerge (e.g., an AI that can outperform
its human operators on a broad range of tasks might deceive them to achieve a mis-specified goal, as
in misalignment thought experiments (Christian, 2020)).

Systemic risks such as destabilization of international relations may be a concern if the rate of
progression between levels outpaces regulation or diplomacy (e.g., the first nation to achieve ASI may
have a substantial geopolitical/military advantage, creating complex structural risks). At levels below

5We hesitate to specify the precise number or percentage of tasks that a system must pass at a given level of performance
in order to be declared a General AI at that Level (e.g., a rule such as "a system must pass at least 90% of an AGI benchmark
at a given performance level to get that rating"). While we think this will be a very high percentage, it will probably not
be 100%, since it seems clear that broad but imperfect generality is impactful (individual humans also lack consistent
performance across all possible tasks, but remain generally intelligent). Determining what portion of benchmarking tasks at
a given level demonstrate generality remains an open research question.
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“Expert AGI” (e.g., “Emerging AGI,” “Competent AGI,” and all “Narrow” AI categories), risks likely
stem more from human actions (e.g., risks of AI misuse, whether accidental, incidental, or malicious).
A more complete analysis of risk profiles associated with each level is a critical step toward developing
a taxonomy of AGI that can guide safety/ethics research and policymaking.

We acknowledge that whether an AGI benchmark should include tests for potentially dangerous
capabilities (e.g., the ability to deceive, to persuade (Veerabadran et al., 2023), or to perform advanced
biochemistry (Morris, 2023)) is controversial. We lean on the side of including such capabilities
in benchmarking, since most such skills tend to be dual use (having valid applications to socially
positive scenarios as well as nefarious ones). Dangerous capability benchmarking can be de-risked
via Principle 4 (Potential, not Deployment) by ensuring benchmarks for any dangerous or dual-use
tasks are appropriately sandboxed and not defined in terms of deployment. However, including such
tests in a public benchmark may allow malicious actors to optimize for these abilities; understanding
how to mitigate risks associated with benchmarking dual-use abilities remains an important area for
research by AI safety, AI ethics, and AI governance experts.

Concurrent with this work, Anthropic released Version 1.0 of its Responsible Scaling Policy (RSP)
(Anthropic, 2023b). This policy uses a levels-based approach (inspired by biosafety level standards)
to define the level of risk associated with an AI system, identifying what dangerous capabilities may
be associated with each AI Safety Level (ASL), and what containment or deployment measures should
be taken at each level. Current SOTA generative AIs are classified as an ASL-2 risk. Including items
matched to ASL capabilities in any AGI benchmark would connect points in our AGI taxonomy to
specific risks and mitigations.

Capabilities vs. Autonomy

While capabilities provide prerequisites for AI risks, AI systems (including AGI systems) do not and
will not operate in a vacuum. Rather, AI systems are deployed with particular interfaces and used to
achieve particular tasks in specific scenarios. These contextual attributes (interface, task, scenario,
end-user) have substantial bearing on risk profiles. AGI capabilities alone do not determine destiny
with regards to risk, but must be considered in combination with contextual details.

Consider, for instance, the affordances of user interfaces for AGI systems. Increasing capabilities
unlock new interaction paradigms, but do not determine them. Rather, system designers and end-
users will settle on a mode of human-AI interaction (Morris et al., 2023) that balances a variety of
considerations, including safety. We propose characterizing human-AI interaction paradigms with six
Levels of Autonomy, described in Table 2.

These Levels of Autonomy are correlated with the Levels of AGI. Higher levels of autonomy are
“unlocked” by AGI capability progression, though lower levels of autonomy may be desirable for
particular tasks and contexts (including for safety reasons) even as we reach higher levels of AGI.
Carefully considered choices around human-AI interaction are vital to safe and responsible deployment
of frontier AI models.

We emphasize the importance of the “No AI” paradigm. There may be many situations where this
is desirable, including for education, enjoyment, assessment, or safety reasons. For example, in the
domain of self-driving vehicles, when Level 5 Self-Driving technology is widely available, there may
be reasons for using a Level 0 (No Automation) vehicle. These include for instructing a new driver
(education), for pleasure by driving enthusiasts (enjoyment), for driver’s licensing exams (assessment),
or in conditions where sensors cannot be relied upon such as technology failures or extreme weather
events (safety). While Level 5 Self-Driving (SAE International, 2021) vehicles would likely be a Level
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Autonomy Level Example Systems Unlocking
AGI Level(s)

Example Risks
Introduced

Autonomy Level 0:
No AI
human does every-
thing

Analogue approaches (e.g.,
sketching with pencil on paper)

Non-AI digital workflows
(e.g., typing in a text editor;
drawing in a paint program)

No AI n/a (status quo risks)

Autonomy Level 1:
AI as a Tool
human fully controls
task and uses AI to
automate mundane
sub-tasks

Information-seeking with the
aid of a search engine

Revising writing with the
aid of a grammar-checking
program

Reading a sign with a
machine translation app

Possible:
Emerging Narrow AI

Likely:
Competent Narrow
AI

de-skilling
(e.g., over-reliance)

disruption of
established
industries

Autonomy Level 2:
AI as a Consultant
AI takes on a
substantive role, but
only when invoked by
a human

Relying on a language model
to summarize a set of documents

Accelerating computer program-
ming with a code-generating
model

Consuming most entertain-
ment via a sophisticated
recommender system

Possible:
Competent Narrow
AI

Likely:
Expert Narrow AI;
Emerging AGI

over-trust

radicalization

targeted
manipulation

Autonomy Level 3:
AI as a
Collaborator
co-equal human-AI
collaboration; inter-
active coordination
of goals & tasks

Training as a chess player
through interactions with and
analysis of a chess-playing AI

Entertainment via social
interactions with AI-generated
personalities

Possible:
Emerging AGI

Likely:
Expert Narrow AI;
Competent AGI

anthropomorphization
(e.g., parasocial
relationships)

rapid societal change

Autonomy Level 4:
AI as an Expert
AI drives interaction;
human provides
guidance & feedback
or performs subtasks

Using an AI system to advance
scientific discovery (e.g., protein-
folding)

Possible:
Virtuoso Narrow AI

Likely:
Expert AGI

societal-scale ennui

mass labor
displacement

decline of human
exceptionalism

Autonomy Level 5:
AI as an Agent
fully autonomous AI

Autonomous AI-powered
personal assistants
(not yet unlocked)

Likely:
Virtuoso AGI;
ASI

misalignment

concentration
of power

Table 2 | More capable AI systems unlock new human-AI interaction paradigms (including fully
autonomous AI). The choice of appropriate autonomy level need not be the maximum achievable
given the capabilities of the underlying model. One consideration in the choice of autonomy level
are resulting risks. This table’s examples illustrate the importance of carefully considering human-AI
interaction design decisions.
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5 Narrow AI (“Superhuman Narrow AI”) under our taxonomy6, the same considerations regarding
human vs. computer autonomy apply to AGIs. We may develop an AGI, but choose not to deploy it
autonomously (or choose to deploy it with differentiated autonomy levels in distinct circumstances as
dictated by contextual considerations).

Certain aspects of generality may be required to make particular interaction paradigms desirable.
For example, the Autonomy Levels 3, 4, and 5 ("Collaborator," "Expert," and "Agent") may only work
well if an AI system also demonstrates strong performance on certain metacognitive abilities (learning
when to ask a human for help, theory of mind modeling, social-emotional skills). Implicit in our
definition of Autonomy Level 5 ("AI as an Agent") is that such a fully autonomous AI can act in an
aligned fashion without continuous human oversight, but knows when to consult humans (Shah et al.,
2021). Interfaces that support human-AI alignment through better task specification, the bridging of
process gulfs, and evaluation of outputs (Terry et al., 2023) are a vital area of research for ensuring
that the field of human-computer interaction keeps pace with the challenges and opportunities of
interacting with AGI systems.

Human-AI Interaction Paradigm as a Framework for Risk Assessment

Table 2 illustrates the interplay between AGI Level, Autonomy Level, and risk. Advances in model
performance and generality unlock additional interaction paradigm choices (including potentially fully
autonomous AI). These interaction paradigms in turn introduce new classes of risk. The interplay of
model capabilities and interaction design will enable more nuanced risk assessments and responsible
deployment decisions than considering model capabilities alone.

Table 2 also provides concrete examples of each of our six proposed Levels of Autonomy. For each
level of autonomy, we indicate the corresponding levels of performance and generality that "unlock"
that interaction paradigm (i.e., levels of AGI at which it is possible or likely for that paradigm to be
successfully deployed and adopted).

Our predictions regarding "unlocking" levels tend to require higher levels of performance for
Narrow than for General AI systems; for instance, we posit that the use of AI as a Consultant is
likely with either an Expert Narrow AI or an Emerging AGI. This discrepancy reflects the fact that for
General systems, capability development is likely to be uneven; for example, a Level 1 General AI
("Emerging AGI") is likely to have Level 2 or perhaps even Level 3 performance across some subset of
tasks. Such unevenness of capability for General AIs may unlock higher autonomy levels for particular
tasks that are aligned with their specific strengths.

Considering AGI systems in the context of use by people allows us to reflect on the interplay
between advances in models and advances in human-AI interaction paradigms. The role of model
building research can be seen as helping systems’ capabilities progress along the path to AGI in their
performance and generality, such that an AI system’s abilities will overlap an increasingly large portion
of human abilities. Conversely, the role of human-AI interaction research can be viewed as ensuring
new AI systems are usable by and useful to people such that AI systems successfully extend people’s
capabilities (i.e., "intelligence augmentation" (Brynjolfsson, 2022)).

6 Fully autonomous vehicles might arguably be classified as Level 4 Narrow AI ("Virtuoso Narrow AI") per our tax-
onomy; however, we suspect that in practice autonomous vehicles may need to reach the Superhuman performance
standard to achieve widespread social acceptance regarding perceptions of safety, illustrating the importance of contextual
considerations.
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Conclusion

Artificial General Intelligence (AGI) is a concept of both aspirational and practical consequences. In this
paper, we analyzed nine prominent definitions of AGI, identifying strengths and weaknesses. Based
on this analysis, we introduce six principles we believe are necessary for a clear, operationalizable
definition of AGI: focusing on capabilities, not processes; focusing on generality and performance;
focusing on cognitive and metacognitive (rather than physical) tasks; focusing on potential rather
than deployment; focusing on ecological validity for benchmarking tasks; and focusing on the path
toward AGI rather than a single endpoint.

With these principles in mind, we introduced our Levels of AGI ontology, which offers a more
nuanced way to define our progress toward AGI by considering generality (either Narrow or General)
in tandem with five levels of performance (Emerging, Competent, Expert, Virtuoso, and Superhuman).
We reflected on how current AI systems and AGI definitions fit into this framing. Further, we discussed
the implications of our principles for developing a living, ecologically valid AGI benchmark, and argue
that such an endeavor (while sure to be challenging) is a vital one for our community to engage with.

Finally, we considered how our principles and ontology can reshape discussions around the risks
associated with AGI. Notably, we observed that AGI is not necessarily synonymous with autonomy.
We introduced Levels of Autonomy that are unlocked, but not determined by, progression through
the Levels of AGI. We illustrated how considering AGI Level jointly with Autonomy Level can provide
more nuanced insights into likely risks associated with AI systems, underscoring the importance of
investing in human-AI interaction research in tandem with model improvements.
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