Skip to content
Python implementation of 'Scalable Recommendation with Hierarchical Poisson Factorization'.
Branch: master
Clone or download
Latest commit 294e2d3 Jul 28, 2019
Type Name Latest commit message Commit time
Failed to load latest commit information.
docs missing IDs, description on docs May 30, 2018
example various improvements Aug 10, 2018
.gitattributes improved readme May 29, 2018
LICENSE add build-time dependencies for pip Apr 14, 2019 update readme instructions Jul 28, 2019
pyproject.toml add build-time dependencies for pip Apr 14, 2019
requirements.txt workaround for readthedocs Aug 1, 2018
setup.cfg uploaded May 28, 2018 fix bug with passing validation set as COO matrix Jul 28, 2019

Hierarchical Poisson Factorization

This is a Python package for hierarchical Poisson factorization, a form of probabilistic matrix factorization used for recommender systems with implicit count data, based on the paper Scalable Recommendation with Hierarchical Poisson Factorization (P. Gopalan, 2015).

Although the package was created with recommender systems in mind, it can also be used for other domains, e.g. as a faster alternative to LDA (Latent Ditichlet Allocation), where users become documents and items become words.

Supports parallelization, full-batch variational inference, mini-batch stochastic variational inference (alternating between epochs sampling batches of users and epochs sampling batches of items), and different stopping criteria for the coordinate-ascent procedure. The main computations are written in fast Cython code.

As a point of reference, fitting the model through full-batch updates to the MillionSong TasteProfile dataset (48M records from 1M users on 380K items) took around 45 minutes on a server from Google Cloud with Skylake CPU when using 24 cores.

For a similar package using also item/user side information see ctpfrec. For a much faster non-Bayesian alternative see poismf.

Model description

The model consists in producing a non-negative low-rank matrix factorization of counts data (such as number of times each user played each song in some internet service) Y ~= UV', produced by a generative model as follows:

ksi_u ~ Gamma(a_prime, a_prime/b_prime)
Theta_uk ~ Gamma(a, ksi_u)

eta_i ~ Gamma(c_prime, c_prime/d_prime)
Beta_ik ~ Gamma(c, eta_i)

Y_ui ~ Poisson(Theta_u' Beta_i)

The parameters are fit using mean-field approximation (a form of Bayesian variational inference) with coordinate ascent (updating each parameter separately until convergence).


Package is available on PyPI, can be installed with:

pip install hpfrec

As it contains Cython code, it requires a C compiler. In Windows, this usually means it requires a Visual Studio Build Tools installation (with MSVC140 component for conda) (or MinGW + GCC), and if using Anaconda, might also require configuring it to use said Visual Studio instead of MinGW, otherwise the installation from pip might fail. For more details see this guide: Cython Extensions On Windows

On Python 2.7 on Windows, it might additionally require installing extra Visual Basic modules (untested).

On Linux, the pip install should work out-of-the-box, as long as the system has gcc.

On Mac, installing this package will first require getting OpenMP modules for the default clang compiler (redistributions from apple don't come with this essential component, even though clang itself does fully support it), or installing gcc (by default, apple systems will alias gcc to clang, which causes a lot of problems).

Sample usage

import pandas as pd, numpy as np
from hpfrec import HPF

## Generating sample counts data
nusers = 10**2
nitems = 10**2
nobs = 10**4

counts_df = pd.DataFrame({
	'UserId' : np.random.randint(nusers, size=nobs),
	'ItemId' : np.random.randint(nitems, size=nobs),
	'Count' : np.random.gamma(1,1, size=nobs).astype('int32')
counts_df = counts_df.loc[counts_df.Count > 0].reset_index(drop=True)

## Initializing the model object
recommender = HPF()

## For stochastic variational inference, need to select batch size (number of users)
recommender = HPF(users_per_batch = 20)

## Full function call
recommender = HPF(
	k=30, a=0.3, a_prime=0.3, b_prime=1.0,
	c=0.3, c_prime=0.3, d_prime=1.0, ncores=-1,
	stop_crit='train-llk', check_every=10, stop_thr=1e-3,
	users_per_batch=None, items_per_batch=None, step_size=lambda x: 1/np.sqrt(x+2),
	maxiter=100, reindex=True, verbose=True,
	random_seed = None, allow_inconsistent_math=False, full_llk=False,
	alloc_full_phi=False, keep_data=True, save_folder=None,
	produce_dicts=True, keep_all_objs=True, sum_exp_trick=False

## Fitting the model to the data

## Fitting the model while monitoring a validation set
recommender = HPF(stop_crit='val-llk'), val_set=counts_df.sample(10**2))
## Note: a real validation should NEVER be a subset of the training set

## Fitting the model to data in batches passed by the user
recommender = HPF(reindex=False, keep_data=False)
users_batch1 = np.unique(np.random.randint(10**2, size=20))
users_batch2 = np.unique(np.random.randint(10**2, size=20))
users_batch3 = np.unique(np.random.randint(10**2, size=20))
recommender.partial_fit(counts_df.loc[counts_df.UserId.isin(users_batch1)], nusers=10**2, nitems=10**2)

## Making predictions
# recommender.topN(user=10, n=10, exclude_seen=True) ## not available when using 'partial_fit'
recommender.topN(user=10, n=10, exclude_seen=False, items_pool=np.array([1,2,3,4]))
recommender.predict(user=10, item=11)
recommender.predict(user=[10,10,10], item=[1,2,3])
recommender.predict(user=[10,11,12], item=[4,5,6])

## Evaluating Poisson likelihood
recommender.eval_llk(counts_df, full_llk=True)

## Determining latent factors for a new user, given her item interactions
nobs_new = 20
counts_df_new = pd.DataFrame({
	'ItemId' : np.random.choice(np.arange(nitems), size=nobs_new, replace=False),
	'Count' : np.random.gamma(1,1, size=nobs_new).astype('int32')
counts_df_new = counts_df_new.loc[counts_df_new.Count > 0].reset_index(drop=True)

## Adding a user without refitting the whole model
recommender.add_user(user_id=nusers+1, counts_df=counts_df_new)

## Updating data for an existing user without refitting the whole model
chosen_user = counts_df.UserId.values[10]
recommender.add_user(user_id=chosen_user, counts_df=counts_df_new, update_existing=True)

If passing reindex=True, all user and item IDs that you pass to .fit will be reindexed internally (they need to be hashable types like str, int or tuple), and you can use these same IDs to make predictions later. The IDs returned by predict and topN are these IDs passed to .fit too.

For a more detailed example, see the IPython notebook recommending songs with EchoNest MillionSong dataset illustrating its usage with the EchoNest TasteProfile dataset.

This package contains only functionality related to fitting this model. For general evaluation metrics for recommendations on implicit data see other packages such as lightFM.


Documentation is available at readthedocs:

It is also internally documented through docstrings (e.g. you can try help(hpfrec.HPF)), help(, etc.

Serializing (pickling) the model

Don't use pickle to save an HPF object, as it will fail due to problems with lambda functions. Rather, use dill instead, which has the same syntax as pickle:

import dill
from hpfrec import HPF

h = HPF()
dill.dump(h, open("HPF_obj.dill", "wb"))
h = dill.load(open("HPF_obj.dill", "rb"))

Speeding up optimization procedure

For faster fitting and predictions, use SciPy and NumPy libraries compiled against MKL or OpenBLAS. In Windows, you can find Python wheels (installable with pip after downloading them) of numpy and scipy precompiled with MKL in Christoph Gohlke's website. In Linux and Mac, these come by default in Anaconda installations (but are likely to get overwritten if you enable conda-forge).

The constructor for HPF allows some parameters to make it run faster (if you know what you're doing): these are allow_inconsistent_math=True, full_llk=False, stop_crit='diff-norm', reindex=False, verbose=False. See the documentation for more details.

Using stochastic variational inference, which fits the data in smaller batches containing all the user-item interactions only for subsets of users, might converge in fewer iterations (epochs), but the results tend be slightly worse.


  • Package uses only one CPU core: make sure that your C compiler supports OpenMP (both Visual Studio and GCC do in default installations, but with MinGW you might need additional modules).
  • Error with vcvarsall.bat: see installation instructions (you need to configure your Python installation to use Visual Studio and set the correct paths to libraries). If you are using Python 2, try installing under a Python 3 environment instead and the problem might disappear.
  • Parameters turn to NaN: you might have run into an unlucky parmeter initialization. Try using a different random seed, or changing the number of latent factors (k). If passing reindex=False, try changing to reindex=True.

The package has only been tested under Python 3.6.


  • [1] Gopalan, Prem, Jake M. Hofman, and David M. Blei. "Scalable Recommendation with Hierarchical Poisson Factorization." UAI. 2015.
  • [2] Gopalan, Prem, Jake M. Hofman, and David M. Blei. "Scalable recommendation with poisson factorization." arXiv preprint arXiv:1311.1704 (2013).
  • [3] Hoffman, Matthew D., et al. "Stochastic variational inference." The Journal of Machine Learning Research 14.1 (2013): 1303-1347.
You can’t perform that action at this time.